Round list of doubles - list

I have a list of many double elements which contains for example the following elements: [1.95, 1.986, 1.9602, 2.0477,...
I tried to use this code to round the elements to two numbers of decimal places:
List<double> listMax = List.from(data_snap()['animals']); //from Firebase
for (var value in listMax) {
value = roundDouble(value,2);
}
double roundDouble(double value, int places){
double mod = pow(10.0, places);
return ((value * mod).round().toDouble() / mod);
}
And as an alternative:
listMax.forEach((element) => roundDouble(element,2));
But both codes are not successful.

in your codes you are changing the value of a temp variable, to change the value in the list your code should be like:
List<double> listMax = List.from(data_snap()['animals']); //from Firebase
for(int i =0 ;i<listMax.length;i++){
listMax[i]= roundDouble(listMax[i],2);
}
double roundDouble(double value, int places){
double mod = pow(10.0, places);
return ((value * mod).round().toDouble() / mod);
}

Related

Representation of Fourier series depends on tabulation points

Well, I had task to create function that does Fourier series with some mathematical function, so I found all the formulas, but the main problem is when I change count of point on some interval to draw those series I have very strange artifact:
This is Fourier series of sin(x) on interavl (-3.14; 314) with 100 point for tabulation
And this is same function with same interval but with 100000 points for tabulation
Code for Fourier series coeficients:
void fourieSeriesDecompose(std::function<double(double)> func, double period, long int iterations, double *&aParams, double *&bParams){
aParams = new double[iterations];
aParams[0] = integrateRiemans(func, 0, period, 1000);
for(int i = 1; i < iterations; i++){
auto sineFunc = [&](double x) -> double { return 2 * (func(x) * cos((2 * x * i * M_PI) / period)); };
aParams[i] = integrateRiemans(sineFunc, -period / 2, period / 2, 1000) / period;
}
bParams = new double[iterations];
for(int i = 1; i < iterations; i++){
auto sineFunc = [&](double x) -> double { return 2 * (func(x) * sin(2 * (x * (i + 1) * M_PI) / period)); };
bParams[i] = integrateRiemans(sineFunc, -period / 2, period / 2, 1000) / period;
}
}
This code I use to reproduce function using found coeficients:
double fourieSeriesCompose(double x, double period, long iterations, double *aParams, double *bParams){
double y = aParams[0];
for(int i = 1; i < iterations; i++){
y += sqrt(aParams[i] * aParams[i] + bParams[i] * bParams[i]) * cos((2 * i * x * M_PI) / period - atan(bParams[i] / aParams[i]));
}
return y;
}
And the runner code
double period = M_PI * 2;
auto startFunc = [](double x) -> double{ return sin(x); };
fourieSeriesDecompose(*startFunc, period, 1000, aCoeficients, bCoeficients);
auto readyFunc = [&](double x) -> double{ return fourieSeriesCompose(x, period, 1000, aCoeficients, bCoeficients); };
tabulateFunc(readyFunc);
scaleFunc();
//Draw methods after this
see:
How to compute Discrete Fourier Transform?
So if I deciphered it correctly the aParams,bParams represent the real and imaginary part of the result then the angles in sin and cos must be the same but you have different! You got this:
auto sineFunc = [&](double x) -> double { return 2*(func(x)*cos((2* x* i *M_PI)/period));
auto sineFunc = [&](double x) -> double { return 2*(func(x)*sin( 2*(x*(i+1)*M_PI)/period));
as you can see its not the same angle. Also what is period? You got iterations! if it is period of the function you want to transform then it should be applied to it and not to the kernel ... Also integrateRiemans does what? its the nested for loop to integrate the furrier transform? Btw. hope that func is real domain otherwise the integration/sumation needs both real and imaginary part not just one ...
So what you should do is:
create (cplx) table of the func(x) data on the interval you want with iterations samples
so for loop where x = x0+i*(x1-x0)/(iterations-1) and x0,x1 is the range you want the func to sample. Lets call it f[i]
for (i=0;i<iteration;i++) f[i]=func(x0+i*(x1-x0)/(iterations-1));
furrier transform it
something like this:
for (i=0;i<iteration;i++) a[i]=b[i]=0;
for (j=0;j<iteration;j++)
for (i=0;i<iteration;i++)
{
a[j]+=f[i]*cos(-2.0*M_PI*i*j/iterations);
b[j]+=f[i]*sin(-2.0*M_PI*i*j/iterations);
}
now a[],b[] should hold your slow DFT result ... beware integer rounding ... depending on compiler you might need to cast some stuff to double to avoid integer rounding.

How to do logarithmic binning on a histogram?

I'm looking for a technique to logarithmically bin some data sets. We've got data with values ranging from _min to _max (floats >= 0) and the user needs to be able to specify a varying number of bins _num_bins (some int n).
I've implemented a solution taken from this question and some help on scaling here but my solution stops working when my data values lie below 1.0.
class Histogram {
double _min, _max;
int _num_bins;
......
};
double Histogram::logarithmicValueOfBin(double in) const {
if (in == 0.0)
return _min;
double b = std::log(_max / _min) / (_max - _min);
double a = _max / std::exp(b * _max);
double in_unscaled = in * (_max - _min) / _num_bins + _min;
return a * std::exp(b * in_unscaled) ;
}
When the data values are all greater than 1 I get nicely sized bins and can plot properly. When the values are less than 1 the bins come out more or less the same size and we get way too many of them.
I found a solution by reimplementing an opensource version of Matlab's logspace function.
Given a range and a number of bins you need to create an evenly spaced numerical sequence
module.exports = function linspace(a,b,n) {
var every = (b-a)/(n-1),
ranged = integers(a,b,every);
return ranged.length == n ? ranged : ranged.concat(b);
}
After that you need to loop through each value and with your base (e, 2 or 10 most likely) store the power and you get your bin ranges.
module.exports.logspace = function logspace(a,b,n) {
return linspace(a,b,n).map(function(x) { return Math.pow(10,x); });
}
I rewrote this in C++ and it's able to support ranges > 0.
You can do something like the following
// Create isolethargic binning
int T_MIN = 0; //The lower limit i.e. 1.e0
int T_MAX = 8; //The uper limit i.e. 1.e8
int ndec = T_MAX - T_MIN; //Number of decades
int N_BPDEC = 1000; //Number of bins per decade
int nbins = (int) ndec*N_BPDEC; //Total number of bins
double step = (double) ndec / nbins;//The increment
double tbins[nbins+1]; //The array to store the bins
for(int i=0; i <= nbins; ++i)
tbins[i] = (float) pow(10., step * (double) i + T_MIN);

Value inside loop doesnt change in C++

here is a sample code that doesnt seem to work. I get the same value of X and Y ( both of them equal to zero ) for all the iteration. Can someone help me with this mistake of mine?
#include <iostream>
using namespace std;
int main()
{
double coord[4][2];
int div_x, div_y;
coord[1][0]=2;
coord[1][1]=0;
coord[2][0]=2;
coord[2][1]=4;
coord[3][0]=0;
coord[3][1]=4;
div_x = 4;
div_y = 3;
double a =0,b=0,c=0,d=0,e=0,f=0,g=0,h=0;
a = coord[1][0]+coord[2][0]+coord[3][0];
b = coord[1][0]+coord[2][0]-coord[3][0];
c = coord[2][0]-coord[1][0]+coord[3][0];
d = coord[2][0]-coord[1][0]-coord[3][0];
e = coord[1][1]+coord[2][1]+coord[3][1];
f = coord[1][1]+coord[2][1]-coord[3][1];
g = coord[2][1]-coord[1][1]+coord[3][1];
h = coord[2][1]-coord[1][1]-coord[3][1];
for (int i=0; i<div_y+1; i++){ // loop all rows (blue)
for (int j=0; j<div_x+1; j++){ // loop all nodes of one row (green)
double w = -1 + (2/div_x)*j;
double s = -1 + (2/div_y)*i;
double X = (a+b*w+c*s+(w*s*d));
double Y = (e+f*w+g*s+(h*s*w));
cout<<"\nX "<<X<<endl;
cout<<"\nY "<<Y<<endl;
}
}
return 0;
}
.
Your problem is with the divisions here:
double w = -1 + (2/div_x)*j;
double s = -1 + (2/div_y)*i;
2/div_x and 2/div_y are integer divisions. When you divide two values of type integer in C++, the division is carried out as an integer division. Since div_x is 4 and div_y is 3, the result of both of them is 0. As an integer division:
2 / 4 = 0
2 / 3 = 0
The easiest way to fix this is to use a double value for one of the two values, which results in a double division. For example:
double w = -1.0 + (2.0/div_x)*j;
double s = -1.0 + (2.0/div_y)*i;
You may also want to consider using the float type instead of double, unless you really need more than float precision, which is about 7 decimal digits.
In your code, div_x and div_y are int, thus, (2/div_x) and (2/div_y) are integer divisions, and evaluate to 0.
So w and s are both always equal to -1.
You can force float evaluation by using : (2.0/div_x) and (2.0/div_y)

"double" does not print decimals

i was wondering why in this program, "pi_estimated" wouldn't print out as a number with decimal places although the variable was declared as a "double". However, it prints out an integer.
double get_pi(double required_accuracy)
{
double pi_estimation=0.0;
int x,y;
double p=0.0,q=0.0,r=0.0;
int D=0;
for(int N=1;N<=1e2;N++)
{
x = rand()%100;
p = (x/50.0 - 1.0)/100.0;
y = rand()%100;
q = (y/50.0 - 1.0)/100.0;
r = p*p + q*q;
if((sqrt(r))<1.0)
{
D++;
pi_estimation = 4.0*(double (D/N));
}
if(double (4/(N+1)) < (required_accuracy*pi_estimation/100.0))
{
cout<<pi_estimation<<endl;
return (pi_estimation);
}
}
}
int main()
{
double pi_approx=0.0, a, actual_accuracy=0.0;
for(a=0.1;a>=1e-14;a/=10)
{
pi_approx = get_pi(a);
actual_accuracy = (fabs((pi_approx - M_PI)/(M_PI)))*100.0;
cout<<actual_accuracy<<endl;
}
}
This line is the culprit:
pi_estimation = 4.0*(double (D/N));
Since D and N are both ints, D/N is an int. Casting the int to a double cannot magically make decimals appear out of nowhere.
Here's the line, fixed:
pi_estimation = 4.0 * (((double) D) / N));
You could also multiply first, so you don't need so many parens:
pi_estimation = 4.0 * D / N;
D is being multiplied by 4.0, so it becomes a double because double * int = double. Then it's divided by N. Since (x * y) / z === x * (y / z) (associative property), the expressions are equivalent.
The problem is here:
pi_estimation = 4.0*(double (D/N));
D and N are both integers, so D/N is an integer that you are casting to a double and then multiplying by 4.0.
You want to do this:
pi_estimation = 4.0 * (static_cast<double>(D) / N));
Since D and N are both integral types, D/N is performed in integer arithmetic; the cast to double happens too late as precision is lost prior to the cast.
One fix is to write 4.0 * D / N. This will ensure that everything is calculated in floating point. (Since * and / have the same precedence, you don't need to write (double).)

Constructing fractions Interview challenge

I recently came across the following interview question, I was wondering if a dynamic programming approach would work, or/and if there was some kind of mathematical insight that would make the solution easier... Its very similar to how ieee754 doubles are constructed.
Question:
There is vector V of N double values. Where the value at the ith index of the vector is equal to 1/2^(i+1). eg: 1/2, 1/4, 1/8, 1/16 etc...
You're to write a function that takes one double 'r' as input, where 0 < r < 1, and output the indexes of V to stdout that when summed will give a value closest to the value 'r' than any other combination of indexes from the vector V.
Furthermore the number of indexes should be a minimum, and in the event there are two solutions, the solution closest to zero should be preferred.
void getIndexes(std::vector<double>& V, double r)
{
....
}
int main()
{
std::vector<double> V;
// populate V...
double r = 0.3;
getIndexes(V,r);
return 0;
}
Note: It seems like there are a few SO'ers that aren't in the mood of reading the question completely. So lets all note the following:
The solution, aka the sum may be larger than r - hence any strategy incrementally subtracting fractions from r, until it hits zero or near zero is wrong
There are examples of r, where there will be 2 solutions, that is |r-s0| == |r-s1| and s0 < s1 - in this case s0 should be selected, this makes the problem slightly more difficult, as the knapsack style solutions tend to greedy overestimates first.
If you believe this problem is trivial, you most likely haven't understood it. Hence it would be a good idea to read the question again.
EDIT (Matthieu M.): 2 examples for V = {1/2, 1/4, 1/8, 1/16, 1/32}
r = 0.3, S = {1, 3}
r = 0.256652, S = {1}
Algorithm
Consider a target number r and a set F of fractions {1/2, 1/4, ... 1/(2^N)}. Let the smallest fraction, 1/(2^N), be denoted P.
Then the optimal sum will be equal to:
S = P * round(r/P)
That is, the optimal sum S will be some integer multiple of the smallest fraction available, P. The maximum error, err = r - S, is ± 1/2 * 1/(2^N). No better solution is possible because this would require the use of a number smaller than 1/(2^N), which is the smallest number in the set F.
Since the fractions F are all power-of-two multiples of P = 1/(2^N), any integer multiple of P can be expressed as a sum of the fractions in F. To obtain the list of fractions that should be used, encode the integer round(r/P) in binary and read off 1 in the kth binary place as "include the kth fraction in the solution".
Example:
Take r = 0.3 and F as {1/2, 1/4, 1/8, 1/16, 1/32}.
Multiply the entire problem by 32.
Take r = 9.6, and F as {16, 8, 4, 2, 1}.
Round r to the nearest integer.
Take r = 10.
Encode 10 as a binary integer (five places)
10 = 0b 0 1 0 1 0 ( 8 + 2 )
^ ^ ^ ^ ^
| | | | |
| | | | 1
| | | 2
| | 4
| 8
16
Associate each binary bit with a fraction.
= 0b 0 1 0 1 0 ( 1/4 + 1/16 = 0.3125 )
^ ^ ^ ^ ^
| | | | |
| | | | 1/32
| | | 1/16
| | 1/8
| 1/4
1/2
Proof
Consider transforming the problem by multiplying all the numbers involved by 2**N so that all the fractions become integers.
The original problem:
Consider a target number r in the range 0 < r < 1, and a list of fractions {1/2, 1/4, .... 1/(2**N). Find the subset of the list of fractions that sums to S such that error = r - S is minimised.
Becomes the following equivalent problem (after multiplying by 2**N):
Consider a target number r in the range 0 < r < 2**N and a list of integers {2**(N-1), 2**(N-2), ... , 4, 2, 1}. Find the subset of the list of integers that sums to S such that error = r - S is minimised.
Choosing powers of two that sum to a given number (with as little error as possible) is simply binary encoding of an integer. This problem therefore reduces to binary encoding of a integer.
Existence of solution: Any positive floating point number r, 0 < r < 2**N, can be cast to an integer and represented in binary form.
Optimality: The maximum error in the integer version of the solution is the round-off error of ±0.5. (In the original problem, the maximum error is ±0.5 * 1/2**N.)
Uniqueness: for any positive (floating point) number there is a unique integer representation and therefore a unique binary representation. (Possible exception of 0.5 = see below.)
Implementation (Python)
This function converts the problem to the integer equivalent, rounds off r to an integer, then reads off the binary representation of r as an integer to get the required fractions.
def conv_frac (r,N):
# Convert to equivalent integer problem.
R = r * 2**N
S = int(round(R))
# Convert integer S to N-bit binary representation (i.e. a character string
# of 1's and 0's.) Note use of [2:] to trim leading '0b' and zfill() to
# zero-pad to required length.
bin_S = bin(S)[2:].zfill(N)
nums = list()
for index, bit in enumerate(bin_S):
k = index + 1
if bit == '1':
print "%i : 1/%i or %f" % (index, 2**k, 1.0/(2**k))
nums.append(1.0/(2**k))
S = sum(nums)
e = r - S
print """
Original number `r` : %f
Number of fractions `N` : %i (smallest fraction 1/%i)
Sum of fractions `S` : %f
Error `e` : %f
""" % (r,N,2**N,S,e)
Sample output:
>>> conv_frac(0.3141,10)
1 : 1/4 or 0.250000
3 : 1/16 or 0.062500
8 : 1/512 or 0.001953
Original number `r` : 0.314100
Number of fractions `N` : 10 (smallest fraction 1/1024)
Sum of fractions `S` : 0.314453
Error `e` : -0.000353
>>> conv_frac(0.30,5)
1 : 1/4 or 0.250000
3 : 1/16 or 0.062500
Original number `r` : 0.300000
Number of fractions `N` : 5 (smallest fraction 1/32)
Sum of fractions `S` : 0.312500
Error `e` : -0.012500
Addendum: the 0.5 problem
If r * 2**N ends in 0.5, then it could be rounded up or down. That is, there are two possible representations as a sum-of-fractions.
If, as in the original problem statement, you want the representation that uses fewest fractions (i.e. the least number of 1 bits in the binary representation), just try both rounding options and pick whichever one is more economical.
Perhaps I am dumb...
The only trick I can see here is that the sum of (1/2)^(i+1) for i in [0..n) where n tends towards infinity gives 1. This simple fact proves that (1/2)^i is always superior to sum (1/2)^j for j in [i+1, n), whatever n is.
So, when looking for our indices, it does not seem we have much choice. Let's start with i = 0
either r is superior to 2^-(i+1) and thus we need it
or it is inferior and we need to choose whether 2^-(i+1) OR sum 2^-j for j in [i+2, N] is closest (deferring to the latter in case of equality)
The only step that could be costly is obtaining the sum, but it can be precomputed once and for all (and even precomputed lazily).
// The resulting vector contains at index i the sum of 2^-j for j in [i+1, N]
// and is padded with one 0 to get the same length as `v`
static std::vector<double> partialSums(std::vector<double> const& v) {
std::vector<double> result;
// When summing doubles, we need to start with the smaller ones
// because of the precision of representations...
double sum = 0;
BOOST_REVERSE_FOREACH(double d, v) {
sum += d;
result.push_back(sum);
}
result.pop_back(); // there is a +1 offset in the indexes of the result
std::reverse(result.begin(), result.end());
result.push_back(0); // pad the vector to have the same length as `v`
return result;
}
// The resulting vector contains the indexes elected
static std::vector<size_t> getIndexesImpl(std::vector<double> const& v,
std::vector<double> const& ps,
double r)
{
std::vector<size_t> indexes;
for (size_t i = 0, max = v.size(); i != max; ++i) {
if (r >= v[i]) {
r -= v[i];
indexes.push_back(i);
continue;
}
// We favor the closest to 0 in case of equality
// which is the sum of the tail as per the theorem above.
if (std::fabs(r - v[i]) < std::fabs(r - ps[i])) {
indexes.push_back(i);
return indexes;
}
}
return indexes;
}
std::vector<size_t> getIndexes(std::vector<double>& v, double r) {
std::vector<double> const ps = partialSums(v);
return getIndexesImpl(v, ps, r);
}
The code runs (with some debug output) at ideone. Note that for 0.3 it gives:
0.3:
1: 0.25
3: 0.0625
=> 0.3125
which is slightly different from the other answers.
At the risk of downvotes, this problem seems to be rather straightforward. Just start with the largest and smallest numbers you can produce out of V, adjust each index in turn until you have the two possible closest answers. Then evaluate which one is the better answer.
Here is untested code (in a language that I don't write):
void getIndexes(std::vector<double>& V, double r)
{
double v_lower = 0;
double v_upper = 1.0 - 0.5**V.size();
std::vector<int> index_lower;
std::vector<int> index_upper;
if (v_upper <= r)
{
// The answer is trivial.
for (int i = 0; i < V.size(); i++)
cout << i;
return;
}
for (int i = 0; i < N; i++)
{
if (v_lower + V[i] <= r)
{
v_lower += V[i];
index_lower.push_back(i);
}
if (r <= v_upper - V[i])
v_upper -= V[i];
else
index_upper.push_back(i);
}
if (r - v_lower < v_upper - r)
printIndexes(index_lower);
else if (v_upper - r < r - v_lower)
printIndexes(index_upper);
else if (v_upper.size() < v_lower.size())
printIndexes(index_upper);
else
printIndexes(index_lower);
}
void printIndexes(std::vector<int>& ind)
{
for (int i = 0; i < ind.size(); i++)
{
cout << ind[i];
}
}
Did I get the job! :D
(Please note, this is horrible code that relies on our knowing exactly what V has in it...)
I will start by saying that I do believe that this problem is trivial...
(waits until all stones have been thrown)
Yes, I did read the OP's edit that says that I have to re-read the question if I think so. Therefore I might be missing something that I fail to see - in this case please excuse my ignorance and feel free to point out my mistakes.
I don't see this as a dynamic programming problem. At the risk of sounding naive, why not try keeping two estimations of r while searching for indices - namely an under-estimation and an over-estimation. After all, if r does not equal any sum that can be computed from elements of V, it will lie between some two sums of the kind. Our goal is to find these sums and to report which is closer to r.
I threw together some quick-and-dirty Python code that does the job. The answer it reports is correct for the two test cases that the OP provided. Note that if the return is structured such that at least one index always has to be returned - even if the best estimation is no indices at all.
def estimate(V, r):
lb = 0 # under-estimation (lower-bound)
lbList = []
ub = 1 - 0.5**len(V) # over-estimation = sum of all elements of V
ubList = range(len(V))
# calculate closest under-estimation and over-estimation
for i in range(len(V)):
if r == lb + V[i]:
return (lbList + [i], lb + V[i])
elif r == ub:
return (ubList, ub)
elif r > lb + V[i]:
lb += V[i]
lbList += [i]
elif lb + V[i] < ub:
ub = lb + V[i]
ubList = lbList + [i]
return (ubList, ub) if ub - r < r - lb else (lbList, lb) if lb != 0 else ([len(V) - 1], V[len(V) - 1])
# populate V
N = 5 # number of elements
V = []
for i in range(1, N + 1):
V += [0.5**i]
# test
r = 0.484375 # this value is equidistant from both under- and over-estimation
print "r:", r
estimate = estimate(V, r)
print "Indices:", estimate[0]
print "Estimate:", estimate[1]
Note: after finishing writing my answer I noticed that this answer follows the same logic. Alas!
I don't know if you have test cases, try the code below. It is a dynamic-programming approach.
1] exp: given 1/2^i, find the largest i as exp. Eg. 1/32 returns 5.
2] max: 10^exp where exp=i.
3] create an array of size max+1 to hold all possible sums of the elements of V.
Actually the array holds the indexes, since that's what you want.
4] dynamically compute the sums (all invalids remain null)
5] the last while loop finds the nearest correct answer.
Here is the code:
public class Subset {
public static List<Integer> subsetSum(double[] V, double r) {
int exp = exponent(V);
int max = (int) Math.pow(10, exp);
//list to hold all possible sums of the elements in V
List<Integer> indexes[] = new ArrayList[max + 1];
indexes[0] = new ArrayList();//base case
//dynamically compute the sums
for (int x=0; x<V.length; x++) {
int u = (int) (max*V[x]);
for(int i=max; i>=u; i--) if(null != indexes[i-u]) {
List<Integer> tmp = new ArrayList<Integer>(indexes[i - u]);
tmp.add(x);
indexes[i] = tmp;
}
}
//find the best answer
int i = (int)(max*r);
int j=i;
while(null == indexes[i] && null == indexes[j]) {
i--;j++;
}
return indexes[i]==null || indexes[i].isEmpty()?indexes[j]:indexes[i];
}// subsetSum
private static int exponent(double[] V) {
double d = V[V.length-1];
int i = (int) (1/d);
String s = Integer.toString(i,2);
return s.length()-1;
}// summation
public static void main(String[] args) {
double[] V = {1/2.,1/4.,1/8.,1/16.,1/32.};
double r = 0.6, s=0.3,t=0.256652;
System.out.println(subsetSum(V,r));//[0, 3, 4]
System.out.println(subsetSum(V,s));//[1, 3]
System.out.println(subsetSum(V,t));//[1]
}
}// class
Here are results of running the code:
For 0.600000 get 0.593750 => [0, 3, 4]
For 0.300000 get 0.312500 => [1, 3]
For 0.256652 get 0.250000 => [1]
For 0.700000 get 0.687500 => [0, 2, 3]
For 0.710000 get 0.718750 => [0, 2, 3, 4]
The solution implements Polynomial time approximate algorithm. Output of the program is the same as outputs of another solutions.
#include <math.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <functional>
void populate(std::vector<double> &vec, int count)
{
double val = .5;
vec.clear();
for (int i = 0; i < count; i++) {
vec.push_back(val);
val *= .5;
}
}
void remove_values_with_large_error(const std::vector<double> &vec, std::vector<double> &res, double r, double max_error)
{
std::vector<double>::const_iterator iter;
double min_err, err;
min_err = 1.0;
for (iter = vec.begin(); iter != vec.end(); ++iter) {
err = fabs(*iter - r);
if (err < max_error) {
res.push_back(*iter);
}
min_err = std::min(err, min_err);
}
}
void find_partial_sums(const std::vector<double> &vec, std::vector<double> &res, double r)
{
std::vector<double> svec, tvec, uvec;
std::vector<double>::const_iterator iter;
int step = 0;
svec.push_back(0.);
for (iter = vec.begin(); iter != vec.end(); ++iter) {
step++;
printf("step %d, svec.size() %d\n", step, svec.size());
tvec.clear();
std::transform(svec.begin(), svec.end(), back_inserter(tvec),
std::bind2nd(std::plus<double>(), *iter));
uvec.clear();
uvec.insert(uvec.end(), svec.begin(), svec.end());
uvec.insert(uvec.end(), tvec.begin(), tvec.end());
sort(uvec.begin(), uvec.end());
uvec.erase(unique(uvec.begin(), uvec.end()), uvec.end());
svec.clear();
remove_values_with_large_error(uvec, svec, r, *iter * 4);
}
sort(svec.begin(), svec.end());
svec.erase(unique(svec.begin(), svec.end()), svec.end());
res.clear();
res.insert(res.end(), svec.begin(), svec.end());
}
double find_closest_value(const std::vector<double> &sums, double r)
{
std::vector<double>::const_iterator iter;
double min_err, res, err;
min_err = fabs(sums.front() - r);
res = sums.front();
for (iter = sums.begin(); iter != sums.end(); ++iter) {
err = fabs(*iter - r);
if (err < min_err) {
min_err = err;
res = *iter;
}
}
printf("found value %lf with err %lf\n", res, min_err);
return res;
}
void print_indexes(const std::vector<double> &vec, double value)
{
std::vector<double>::const_iterator iter;
int index = 0;
printf("indexes: [");
for (iter = vec.begin(); iter != vec.end(); ++iter, ++index) {
if (value >= *iter) {
printf("%d, ", index);
value -= *iter;
}
}
printf("]\n");
}
int main(int argc, char **argv)
{
std::vector<double> vec, sums;
double r = .7;
int n = 5;
double value;
populate(vec, n);
find_partial_sums(vec, sums, r);
value = find_closest_value(sums, r);
print_indexes(vec, value);
return 0;
}
Sort the vector and search for the closest fraction available to r. store that index, subtract the value from r, and repeat with the remainder of r. iterate until r is reached, or no such index can be found.
Example :
0.3 - the biggest value available would be 0.25. (index 2). the remainder now is 0.05
0.05 - the biggest value available would be 0.03125 - the remainder will be 0.01875
etc.
etc. every step would be an O(logN) search in a sorted array. the number of steps will also be O(logN) total complexity will be than O(logN^2).
This is not dynamic programming question
The output should rather be vector of ints (indexes), not vector of doubles
This might by off 0-2 in exact values, this is just concept:
A) output zero index until the r0 (r - index values already outputded) is bigger than 1/2
B) Inspect the internal representation of r0 double and:
x (1st bit shift) = -Exponent; // The bigger exponent, the smallest numbers (bigger x in 1/2^(x) you begin with)
Inspect bit representation of the fraction part of float in cycle with body:
(direction depends on little/big endian)
{
if (bit is 1)
output index x;
x++;
}
Complexity of each step is constant, so overall it is O(n) where n is size of output.
To paraphrase the question, what are the one bits in the binary representation of r (after the binary point)? N is the 'precision', if you like.
In Cish pseudo-code
for (int i=0; i<N; i++) {
if (r>V[i]) {
print(i);
r -= V[i];
}
}
You could add an extra test for r == 0 to terminate the loop early.
Note that this gives the least binary number closest to 'r', i.e. the one closer to zero if there are two equally 'right' answers.
If the Nth digit was a one, you'll need to add '1' to the 'binary' number obtained and check both against the original 'r'. (Hint: construct vectors a[N], b[N] of 'bits', set '1' bits instead of 'print'ing above. Set b = a and do a manual add, digit by digit from the end of 'b' until you stop carrying. Convert to double and choose whichever is closer.
Note that a[] <= r <= a[] + 1/2^N and that b[] = a[] + 1/2^N.
The 'least number of indexes [sic]' is a red-herring.