I'm on a Fortran project, that I have to link 2 libraries who have same module name, under which, have same subroutine name.
I'm using Intel Fortran compiler, when I import the module and call the subroutine, it always goes to the first one linked.
Is there a way that I can specifically call a subroutine from a specific library?
Here's some pseudo code:
Lib1 and Lib 2 both have this:
module foo
subroutine func()
write (*, *) "Hello from Lib1" ! or Lib2
end subroutine()
end module
Main
program Main
use foo, only: func
call func()
end program
CMakeLists.txt
target_link_libraries(Main PRIVATE libLib1.so libLib2.so)
It is illegal to have two modules name identically in Fortran. When writing libraries used by other users, I highly recommend to use prefixes such as mylibrary_foo for module names and other entities that might clash.
Now you cannot do much, apart from renaming the stuff. If you want to try to somehow separate the stuff using tricks in your toolchain, you firstly have to specify your toolchain in detail, but I'm sceptical.
Related
I am trying to build a Fortran program, but I get errors about an undefined reference or an unresolved external symbol. I've seen another question about these errors, but the answers there are mostly specific to C++.
What are common causes of these errors when writing in Fortran, and how do I fix/prevent them?
This is a canonical question for a whole class of errors when building Fortran programs. If you've been referred here or had your question closed as a duplicate of this one, you may need to read one or more of several answers. Start with this answer which acts as a table of contents for solutions provided.
A link-time error like these messages can be for many of the same reasons as for more general uses of the linker, rather than just having compiled a Fortran program. Some of these are covered in the linked question about C++ linking and in another answer here: failing to specify the library, or providing them in the wrong order.
However, there are common mistakes in writing a Fortran program that can lead to link errors.
Unsupported intrinsics
If a subroutine reference is intended to refer to an intrinsic subroutine then this can lead to a link-time error if that subroutine intrinsic isn't offered by the compiler: it is taken to be an external subroutine.
implicit none
call unsupported_intrinsic
end
With unsupported_intrinsic not provided by the compiler we may see a linking error message like
undefined reference to `unsupported_intrinsic_'
If we are using a non-standard, or not commonly implemented, intrinsic we can help our compiler report this in a couple of ways:
implicit none
intrinsic :: my_intrinsic
call my_intrinsic
end program
If my_intrinsic isn't a supported intrinsic, then the compiler will complain with a helpful message:
Error: ‘my_intrinsic’ declared INTRINSIC at (1) does not exist
We don't have this problem with intrinsic functions because we are using implicit none:
implicit none
print *, my_intrinsic()
end
Error: Function ‘my_intrinsic’ at (1) has no IMPLICIT type
With some compilers we can use the Fortran 2018 implicit statement to do the same for subroutines
implicit none (external)
call my_intrinsic
end
Error: Procedure ‘my_intrinsic’ called at (1) is not explicitly declared
Note that it may be necessary to specify a compiler option when compiling to request the compiler support non-standard intrinsics (such as gfortran's -fdec-math). Equally, if you are requesting conformance to a particular language revision but using an intrinsic introduced in a later revision it may be necessary to change the conformance request. For example, compiling
intrinsic move_alloc
end
with gfortran and -std=f95:
intrinsic move_alloc
1
Error: The intrinsic ‘move_alloc’ declared INTRINSIC at (1) is not available in the current standard settings but new in Fortran 2003. Use an appropriate ‘-std=*’ option or enable ‘-fall-intrinsics’ in order to use it.
External procedure instead of module procedure
Just as we can try to use a module procedure in a program, but forget to give the object defining it to the linker, we can accidentally tell the compiler to use an external procedure (with a different link symbol name) instead of the module procedure:
module mod
implicit none
contains
integer function sub()
sub = 1
end function
end module
use mod, only :
implicit none
integer :: sub
print *, sub()
end
Or we could forget to use the module at all. Equally, we often see this when mistakenly referring to external procedures instead of sibling module procedures.
Using implicit none (external) can help us when we forget to use a module but this won't capture the case here where we explicitly declare the function to be an external one. We have to be careful, but if we see a link error like
undefined reference to `sub_'
then we should think we've referred to an external procedure sub instead of a module procedure: there's the absence of any name mangling for "module namespaces". That's a strong hint where we should be looking.
Mis-specified binding label
If we are interoperating with C then we can specify the link names of symbols incorrectly quite easily. It's so easy when not using the standard interoperability facility that I won't bother pointing this out. If you see link errors relating to what should be C functions, check carefully.
If using the standard facility there are still ways to trip up. Case sensitivity is one way: link symbol names are case sensitive, but your Fortran compiler has to be told the case if it's not all lower:
interface
function F() bind(c)
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
tells the Fortran compiler to ask the linker about a symbol f, even though we've called it F here. If the symbol really is called F, we need to say that explicitly:
interface
function F() bind(c, name='F')
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
If you see link errors which differ by case, check your binding labels.
The same holds for data objects with binding labels, and also make sure that any data object with linkage association has matching name in any C definition and link object.
Equally, forgetting to specify C interoperability with bind(c) means the linker may look for a mangled name with a trailing underscore or two (depending on compiler and its options). If you're trying to link against a C function cfunc but the linker complains about cfunc_, check you've said bind(c).
Not providing a main program
A compiler will often assume, unless told otherwise, that it's compiling a main program in order to generate (with the linker) an executable. If we aren't compiling a main program that's not what we want. That is, if we're compiling a module or external subprogram, for later use:
module mod
implicit none
contains
integer function f()
f = 1
end function f
end module
subroutine s()
end subroutine s
we may get a message like
undefined reference to `main'
This means that we need to tell the compiler that we aren't providing a Fortran main program. This will often be with the -c flag, but there will be a different option if trying to build a library object. The compiler documentation will give the appropriate options in this case.
There are many possible ways you can see an error like this. You may see it when trying to build your program (link error) or when running it (load error). Unfortunately, there's rarely a simple way to see which cause of your error you have.
This answer provides a summary of and links to the other answers to help you navigate. You may need to read all answers to solve your problem.
The most common cause of getting a link error like this is that you haven't correctly specified external dependencies or do not put all parts of your code together correctly.
When trying to run your program you may have a missing or incompatible runtime library.
If building fails and you have specified external dependencies, you may have a programming error which means that the compiler is looking for the wrong thing.
Not linking the library (properly)
The most common reason for the undefined reference/unresolved external symbol error is the failure to link the library that provides the symbol (most often a function or subroutine).
For example, when a subroutine from the BLAS library, like DGEMM is used, the library that provides this subroutine must be used in the linking step.
In the most simple use cases, the linking is combined with compilation:
gfortran my_source.f90 -lblas
The -lblas tells the linker (here invoked by the compiler) to link the libblas library. It can be a dynamic library (.so, .dll) or a static library (.a, .lib).
In many cases, it will be necessary to provide the library object defining the subroutine after the object requesting it. So, the linking above may succeed where switching the command line options (gfortran -lblas my_source.f90) may fail.
Note that the name of the library can be different as there are multiple implementations of BLAS (MKL, OpenBLAS, GotoBLAS,...).
But it will always be shortened from lib... to l... as in liopenblas.so and -lopenblas.
If the library is in a location where the linker does not see it, you can use the -L flag to explicitly add the directory for the linker to consider, e.g.:
gfortran -L/usr/local/lib -lopenblas
You can also try to add the path into some environment variable the linker searches, such as LIBRARY_PATH, e.g.:
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
When linking and compilation are separated, the library is linked in the linking step:
gfortran -c my_source.f90 -o my_source.o
gfortran my_source.o -lblas
Not providing the module object file when linking
We have a module in a separate file module.f90 and the main program program.f90.
If we do
gfortran -c module.f90
gfortran program.f90 -o program
we receive an undefined reference error for the procedures contained in the module.
If we want to keep separate compilation steps, we need to link the compiled module object file
gfortran -c module.f90
gfortran module.o program.f90 -o program
or, when separating the linking step completely
gfortran -c module.f90
gfortran -c program.f90
gfortran module.o program.o -o program
Problems with the compiler's own libraries
Most Fortran compilers need to link your code against their own libraries. This should happen automatically without you needing to intervene, but this can fail for a number of reasons.
If you are compiling with gfortran, this problem will manifest as undefined references to symbols in libgfortran, which are all named _gfortran_.... These error messages will look like
undefined reference to '_gfortran_...'
The solution to this problem depends on its cause:
The compiler library is not installed
The compiler library should have been installed automatically when you installed the compiler. If the compiler did not install correctly, this may not have happened.
This can be solved by correctly installing the library, by correctly installing the compiler. It may be worth uninstalling the incorrectly installed compiler to avoid conflicts.
N.B. proceed with caution when uninstalling a compiler: if you uninstall the system compiler it may uninstall other necessary programs, and may render other programs unusable.
The compiler cannot find the compiler library
If the compiler library is installed in a non-standard location, the compiler may be unable to find it. You can tell the compiler where the library is using LD_LIBRARY_PATH, e.g. as
export LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH"
If you can't find the compiler library yourself, you may need to install a new copy.
The compiler and the compiler library are incompatible
If you have multiple versions of the compiler installed, you probably also have multiple versions of the compiler library installed. These may not be compatible, and the compiler might find the wrong library version.
This can be solved by pointing the compiler to the correct library version, e.g. by using LD_LIBRARY_PATH as above.
The Fortran compiler is not used for linking
If you are linking invoking the linker directly, or indirectly through a C (or other) compiler, then you may need to tell this compiler/linker to include the Fortran compiler's runtime library. For example, if using GCC's C frontend:
gcc -o program fortran_object.o c_object.o -lgfortran
I have a main program but I want to use it as a subroutine. Therefore, I defined a subroutine inside it
Program main
contains
subroutine ram_cpl
.
.
.
end subroutine ram_cpl
end program main
I am supposed to link it to an executable exe1 and then use further for some external programs. I get exe1 normally but when I call this subroutine in an external program located in a different directory, I get an error
undefined reference to `ram_cpl'
I think the problem is occurring with the linkage as either I should declare this subroutine as public or the linkage should be done properly.
But I can use the PUBLIC statement only inside a module, I also checked my command line used for linkage but I did not get any clue.
/usr/local/bin/mpif90 -frepack-arrays -O3 -ftree-vectorize -ftree-loop-linear -funroll-loops -w -ffree-form -ffree-line-length-none -frecord-marker=4 -fconvert=big-endian -I.. master.o -o exe2 -L.. ../main.o
where main.o is the compiled program containing the subroutine and master is the another program that calls it. exe2 is the executable I am trying to get.
This command line runs properly with other programs and I also tried to replace the program main with module main but it gave me another error.
Your subroutine is internal to the program where it is declared. You cannot call it from anywhere else.
If you want to call a subroutine from multiple locations, place it in a module, do not make it internal. All subroutines in modern Fortran should be placed in a module unless you have a good reason to place them elsewhere.
You must use the module when before you call the subroutine from it.
You can also make it external (after end program), but the module is a better and the modern way to go. External subroutine is like any other, it is just outside of any other program unit. An external statement should be used in the calling code (often not necessary).
Also, you cannot compile two programs at the same time. Only one main program is allowed.
I am trying to build a Fortran program, but I get errors about an undefined reference or an unresolved external symbol. I've seen another question about these errors, but the answers there are mostly specific to C++.
What are common causes of these errors when writing in Fortran, and how do I fix/prevent them?
This is a canonical question for a whole class of errors when building Fortran programs. If you've been referred here or had your question closed as a duplicate of this one, you may need to read one or more of several answers. Start with this answer which acts as a table of contents for solutions provided.
A link-time error like these messages can be for many of the same reasons as for more general uses of the linker, rather than just having compiled a Fortran program. Some of these are covered in the linked question about C++ linking and in another answer here: failing to specify the library, or providing them in the wrong order.
However, there are common mistakes in writing a Fortran program that can lead to link errors.
Unsupported intrinsics
If a subroutine reference is intended to refer to an intrinsic subroutine then this can lead to a link-time error if that subroutine intrinsic isn't offered by the compiler: it is taken to be an external subroutine.
implicit none
call unsupported_intrinsic
end
With unsupported_intrinsic not provided by the compiler we may see a linking error message like
undefined reference to `unsupported_intrinsic_'
If we are using a non-standard, or not commonly implemented, intrinsic we can help our compiler report this in a couple of ways:
implicit none
intrinsic :: my_intrinsic
call my_intrinsic
end program
If my_intrinsic isn't a supported intrinsic, then the compiler will complain with a helpful message:
Error: ‘my_intrinsic’ declared INTRINSIC at (1) does not exist
We don't have this problem with intrinsic functions because we are using implicit none:
implicit none
print *, my_intrinsic()
end
Error: Function ‘my_intrinsic’ at (1) has no IMPLICIT type
With some compilers we can use the Fortran 2018 implicit statement to do the same for subroutines
implicit none (external)
call my_intrinsic
end
Error: Procedure ‘my_intrinsic’ called at (1) is not explicitly declared
Note that it may be necessary to specify a compiler option when compiling to request the compiler support non-standard intrinsics (such as gfortran's -fdec-math). Equally, if you are requesting conformance to a particular language revision but using an intrinsic introduced in a later revision it may be necessary to change the conformance request. For example, compiling
intrinsic move_alloc
end
with gfortran and -std=f95:
intrinsic move_alloc
1
Error: The intrinsic ‘move_alloc’ declared INTRINSIC at (1) is not available in the current standard settings but new in Fortran 2003. Use an appropriate ‘-std=*’ option or enable ‘-fall-intrinsics’ in order to use it.
External procedure instead of module procedure
Just as we can try to use a module procedure in a program, but forget to give the object defining it to the linker, we can accidentally tell the compiler to use an external procedure (with a different link symbol name) instead of the module procedure:
module mod
implicit none
contains
integer function sub()
sub = 1
end function
end module
use mod, only :
implicit none
integer :: sub
print *, sub()
end
Or we could forget to use the module at all. Equally, we often see this when mistakenly referring to external procedures instead of sibling module procedures.
Using implicit none (external) can help us when we forget to use a module but this won't capture the case here where we explicitly declare the function to be an external one. We have to be careful, but if we see a link error like
undefined reference to `sub_'
then we should think we've referred to an external procedure sub instead of a module procedure: there's the absence of any name mangling for "module namespaces". That's a strong hint where we should be looking.
Mis-specified binding label
If we are interoperating with C then we can specify the link names of symbols incorrectly quite easily. It's so easy when not using the standard interoperability facility that I won't bother pointing this out. If you see link errors relating to what should be C functions, check carefully.
If using the standard facility there are still ways to trip up. Case sensitivity is one way: link symbol names are case sensitive, but your Fortran compiler has to be told the case if it's not all lower:
interface
function F() bind(c)
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
tells the Fortran compiler to ask the linker about a symbol f, even though we've called it F here. If the symbol really is called F, we need to say that explicitly:
interface
function F() bind(c, name='F')
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
If you see link errors which differ by case, check your binding labels.
The same holds for data objects with binding labels, and also make sure that any data object with linkage association has matching name in any C definition and link object.
Equally, forgetting to specify C interoperability with bind(c) means the linker may look for a mangled name with a trailing underscore or two (depending on compiler and its options). If you're trying to link against a C function cfunc but the linker complains about cfunc_, check you've said bind(c).
Not providing a main program
A compiler will often assume, unless told otherwise, that it's compiling a main program in order to generate (with the linker) an executable. If we aren't compiling a main program that's not what we want. That is, if we're compiling a module or external subprogram, for later use:
module mod
implicit none
contains
integer function f()
f = 1
end function f
end module
subroutine s()
end subroutine s
we may get a message like
undefined reference to `main'
This means that we need to tell the compiler that we aren't providing a Fortran main program. This will often be with the -c flag, but there will be a different option if trying to build a library object. The compiler documentation will give the appropriate options in this case.
There are many possible ways you can see an error like this. You may see it when trying to build your program (link error) or when running it (load error). Unfortunately, there's rarely a simple way to see which cause of your error you have.
This answer provides a summary of and links to the other answers to help you navigate. You may need to read all answers to solve your problem.
The most common cause of getting a link error like this is that you haven't correctly specified external dependencies or do not put all parts of your code together correctly.
When trying to run your program you may have a missing or incompatible runtime library.
If building fails and you have specified external dependencies, you may have a programming error which means that the compiler is looking for the wrong thing.
Not linking the library (properly)
The most common reason for the undefined reference/unresolved external symbol error is the failure to link the library that provides the symbol (most often a function or subroutine).
For example, when a subroutine from the BLAS library, like DGEMM is used, the library that provides this subroutine must be used in the linking step.
In the most simple use cases, the linking is combined with compilation:
gfortran my_source.f90 -lblas
The -lblas tells the linker (here invoked by the compiler) to link the libblas library. It can be a dynamic library (.so, .dll) or a static library (.a, .lib).
In many cases, it will be necessary to provide the library object defining the subroutine after the object requesting it. So, the linking above may succeed where switching the command line options (gfortran -lblas my_source.f90) may fail.
Note that the name of the library can be different as there are multiple implementations of BLAS (MKL, OpenBLAS, GotoBLAS,...).
But it will always be shortened from lib... to l... as in liopenblas.so and -lopenblas.
If the library is in a location where the linker does not see it, you can use the -L flag to explicitly add the directory for the linker to consider, e.g.:
gfortran -L/usr/local/lib -lopenblas
You can also try to add the path into some environment variable the linker searches, such as LIBRARY_PATH, e.g.:
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
When linking and compilation are separated, the library is linked in the linking step:
gfortran -c my_source.f90 -o my_source.o
gfortran my_source.o -lblas
Not providing the module object file when linking
We have a module in a separate file module.f90 and the main program program.f90.
If we do
gfortran -c module.f90
gfortran program.f90 -o program
we receive an undefined reference error for the procedures contained in the module.
If we want to keep separate compilation steps, we need to link the compiled module object file
gfortran -c module.f90
gfortran module.o program.f90 -o program
or, when separating the linking step completely
gfortran -c module.f90
gfortran -c program.f90
gfortran module.o program.o -o program
Problems with the compiler's own libraries
Most Fortran compilers need to link your code against their own libraries. This should happen automatically without you needing to intervene, but this can fail for a number of reasons.
If you are compiling with gfortran, this problem will manifest as undefined references to symbols in libgfortran, which are all named _gfortran_.... These error messages will look like
undefined reference to '_gfortran_...'
The solution to this problem depends on its cause:
The compiler library is not installed
The compiler library should have been installed automatically when you installed the compiler. If the compiler did not install correctly, this may not have happened.
This can be solved by correctly installing the library, by correctly installing the compiler. It may be worth uninstalling the incorrectly installed compiler to avoid conflicts.
N.B. proceed with caution when uninstalling a compiler: if you uninstall the system compiler it may uninstall other necessary programs, and may render other programs unusable.
The compiler cannot find the compiler library
If the compiler library is installed in a non-standard location, the compiler may be unable to find it. You can tell the compiler where the library is using LD_LIBRARY_PATH, e.g. as
export LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH"
If you can't find the compiler library yourself, you may need to install a new copy.
The compiler and the compiler library are incompatible
If you have multiple versions of the compiler installed, you probably also have multiple versions of the compiler library installed. These may not be compatible, and the compiler might find the wrong library version.
This can be solved by pointing the compiler to the correct library version, e.g. by using LD_LIBRARY_PATH as above.
The Fortran compiler is not used for linking
If you are linking invoking the linker directly, or indirectly through a C (or other) compiler, then you may need to tell this compiler/linker to include the Fortran compiler's runtime library. For example, if using GCC's C frontend:
gcc -o program fortran_object.o c_object.o -lgfortran
I create a dll in c++. My dll exploits some methods of the gsl dll.
I call my dll in Excel and on my pc it works well, but if I try to call the dll from Excel in another pc returns an error:
"File not found".
All files are in the correct path.
What could be the problem??
Further informations:
I declare the function in Excel in the follow way:
Declare Function MY_DLL_P Lib "C:\Users\Baiso\Desktop\MY_DLL.dll" (ByVal file As String, ByRef results As Double) As Integer
This is a part of Excel function:
sol = MY_DLL_P(objDom.XML, results(0))
Debug.Print CStr(results(0))
Debug.Print CStr(results(1))
Debug.Print CStr(results(2))
Debug.Print CStr(sol)
Dll is in the correct path.
In my c++ project this is the header file MY_DLL.h:
static __declspec(dllexport) int _stdcall MY_DLL_P(char* file, double* result);
and this is MY_DLL.cpp file:
#include "MY_DLL.h"
#include "gsl\gsl_linalg.h"
#include "gsl\gsl_poly.h"
int MY_DLL_P(char* file, double* result)
{
...
}
and this is the file.def
LIBRARY "MY_DLL"
EXPORTS
MY_DLL_P
The most likely explanation is that the dependencies of your DLL are failing to be resolved. Either:
The GSL libraries cannot be located on the target machine, or
The MSVC runtime cannot be located on the target machine.
The module loader will attempt to resolve the GSL libraries using the Dynamic-Link Library Search Order. You'll need to make sure that the GSL libraries can be found that way.
As for the MSVC runtime, you need to make sure that is available on the target machine. Typically you do that by installing the MSVC runtime redistributable package on the target machine.
You can use a tool like Dependency Walker to help you diagnose these kind of issues.
One other possibility is that the error comes from the function that you implemented, MY_DLL_P. Perhaps the file that cannot be found is that which you passed to MY_DLL_P in its first parameter.
You cannot declare the function like this:
Declare Function MY_DLL_P Lib "C:\Users\Baiso\Desktop\MY_DLL.dll" (ByVal file As String, ByRef results As Double) As Integer
and expect it to work on anyone's PC but yours. You have explicitly called out 'Baiso' as the user folder.
I would like to call an executable file and give it variables in my fortran code.
for example:
function obj(ii)
use omp_lib
use ifport
implicit none
integer,intent(in)::ii
integer:: thron
real::obj
thron=omp_get_thread_num()
obj=RUNQQ('C:\pgi\matlab_omp_cuda\test.exe','')
return
end function obj
In this code, "thron" is the thread no. which is a variable in another executable file.
Fortran 2008 provides the intrinsic subroutine EXECUTE_COMMAND_LINE which will allow you to invoke an executable file. You could pass options on the command line. If the executable was created from Fortran, in the Fortran source you could read options on the the command line with the intrinsics COMMAND_ARGUMENT_COUNT and GET_COMMAND_ARGUMENT.