Problem:
I have a structure that represent RGB colors. I would like to define an enum to be able to directly assign the colors to a variable.
1) Desired enum of struct:
What I would like is to define an enum that directly maps a color name to its value, just like I would do with an integer parameter or a list of items.
#include <iostream>
#include <array>
typedef struct _Color_3u8
{
std::array<unsigned char,3> rgb;
} Color_3u8;
std::ostream& operator<<(std::ostream& os, const Color_3u8& dt)
{
os << "R: " << (int)dt.rgb[0] << " | G: " << (int)dt.rgb[1] << " | B: " << (int)dt.rgb[2] << "\n";
return os;
}
typedef enum _Default_color
{
RED = (Color_3u8){255,0,0},
GREEN = (Color_3u8){0,255,0},
BLUE = (Color_3u8){0,0,255},
} Default_color;
int main()
{
Color_3u8 my_color = Default_color::RED;
std::cout << my_color;
return 0;
}
Now, the code above clearly doesn't work because enums are limited to integers.
2) constant array + enum:
One way to make it work is to use a constant array filled with the vaules and use the enum to index that array. It looks a lot clunkier since there are two separate definitions.
#include <iostream>
#include <array>
typedef struct _Color_3u8
{
std::array<unsigned char,3> rgb;
} Color_3u8;
std::ostream& operator<<(std::ostream& os, const Color_3u8& dt)
{
os << "R: " << (int)dt.rgb[0] << " | G: " << (int)dt.rgb[1] << " | B: " << (int)dt.rgb[2] << "\n";
return os;
}
typedef enum _Default_color
{
RED = 0,
GREEN = 1,
BLUE = 2,
NUM_COLORS = 3,
} Default_color;
const std::array<Color_3u8,Default_color::NUM_COLORS> c_default_colors=
{
(Color_3u8){255,0,0},
(Color_3u8){0,255,0},
(Color_3u8){0,0,255},
};
int main()
{
Color_3u8 my_color = c_default_colors[Default_color::BLUE];
std::cout << my_color;
return 0;
}
Output: "R: 0 | G: 0 | B: 255"
3) struct class:
Another way I can think of is to move the constant array from code 2) inside the structure and add a method to initialize the structure to a default color. It would work and it would be very clean, but like the 2), it would be more effort to add a color than I feels is necessary... I feel there should be a way to make code 1) work in some form.
4) Hack struct into integer
In this case since my structure is three bytes, I can convert a color to its integer representation and use that for the enum. I would like to find a way that works with structures bigger than an int as well.
Solution) namespace+constexpr
constexpr is used to declare a compile time variable ofthe right type with the right constructor. namespace wraps around the definitions and scope them.
struct Color_3u8
{
std::array<unsigned char,3> rgb;
};
std::ostream& operator<<(std::ostream& os, const Color_3u8& dt)
{
os << "R: " << (int)dt.rgb[0] << " | G: " << (int)dt.rgb[1] << " | B: " << (int)dt.rgb[2] << "\n";
return os;
}
namespace Default_color
{
constexpr Color_3u8 RED{255,0,0};
constexpr Color_3u8 GREEN{0,255,0};
constexpr Color_3u8 BLUE{0,0,255};
};
int main()
{
Color_3u8 my_color = Default_color::RED;
std::cout << my_color;
return 0;
}
Question
Is there a way in C++ to make something similar to code 1)? I would like to map a name to a structure content with just one entry in one table, like the enum does.
I would use inline constexpr variables and wrap them in a namespace. That would look like
namespace Default_colors
{
inline constexpr Color_3u8 RED{255,0,0};
inline constexpr Color_3u8 GREEN{0,255,0};
inline constexpr Color_3u8 BLUE{0,0,255};
}
and then you would use it like
Default_colors::RED
The reason to use inline variables here is so you can declare them in a header file and not have to worry about defining them in a single translation unit.
Also note that in C++, there is no reason to do
typedef struct _Color_3u8
{
std::array<unsigned char,3> rgb;
} Color_3u8;
like you have to do in C. In C++, you can just use
struct Color_3u8
{
std::array<unsigned char,3> rgb;
};
What if I told you that you can store information about all the three colors in a single variable? Will you believe me? Well this is how,
If you know about binary, if we OR something, it adds the '1' bit to a certain location (in binary). This means that we can assign a binary value to each color, and by OR-ing it, we can store the data about the color.
#define BIT_SHIFT(x) (1 << x)
enum Colors {
Red = BIR_SHIFT(0), // Which is gonna be 1.
Green = BIR_SHIFT(1), // Which is gonna be 2.
Blue = BIR_SHIFT(2), // Which is gonna be 4.
};
Now we can have a variable to store the colors,
int colors = Colors::Red | Colors::Green;
Now when were gonna print, we just need to AND the color to check if its there.
std::ostream& operator<<(std::ostream& os, const Color_3u8& dt)
{
// Red color value.
if(colors & Colors::Red)
os << "R: 255 |";
else
os << "R: 0 |"
// Green color value.
if(colors & Colors::Green)
os << "G: 255 |";
else
os << "G: 0 |"
// Blue color value.
if(colors & Colors::Blue)
os << "B: 255\n";
else
os << "B: 0\n"
return os;
}
One downside of using this is that you cant store the individual color values (meaning its gonna be either 0 or 255, which I came to conclusion using the example). But on the plus size, you only need one variable to get it done.
Related
I had this question on a test.
I know that I can do something like:
enum class Color { red, green = 1, blue };
Color c = Color::blue;
if( c == Color::blue )
cout << "blue\n";
But when I replace cout << "blue\n"; with cout << Color::green, it doesn't even compile. Why doesn't it compile?
This error happens because C++ does not have a pre-defined way of printing an enum. You need to define an operator << for printing objects of Color enum type according to your needs.
For example, if you would like to print the numeric value, cast the color to int inside your operator:
ostream& operator<<(ostream& ostr, const Color& c) {
ostr << (int)c;
return ostr;
}
Demo.
If you would like to print enum value as text, see this Q&A for a sample implementation.
I have to write a C++ program on in VS which does the same as a previously written programm for Solaris which is compiled with gcc.
The following "problem" occured:
int var1 = 42;
int* var1Ptr = &var1;
cout << "Address of pointer " << var1Ptr << endl;
This code returns in the solaris program a 0x indexed address (0x08FFAFC).
In my VS code it returns as 008FFAFC.
Since we only do comparison within the code it would be fine, but the supportteam have their own tools which extract data from the logs which is looking for those 0x indexed values. Is there a way to format it like this without adding the 0x prefix everytime we write into the logs?
cout << "Maybe this way: " << hex << int(&var1Ptr) << endl;
doesn't have the effect I wanted.
A little helper class:
namespace detail {
template<class T>
struct debug_pointer
{
constexpr static std::size_t pointer_digits()
{
return sizeof(void*) * 2;
};
static constexpr std::size_t width = pointer_digits();
std::ostream& operator()(std::ostream& os) const
{
std::uintptr_t i = reinterpret_cast<std::uintptr_t>(p);
return os << "0x" << std::hex << std::setw(width) << std::setfill('0') << i;
}
T* p;
friend
std::ostream& operator<<(std::ostream& os, debug_pointer const& dp) {
return dp(os);
}
};
}
offered via a custom manipulator...
template<class T>
auto debug_pointer(T* p)
{
return detail::debug_pointer<T>{ p };
}
allows us this expression:
int i;
std::cout << debug_pointer(&i) << std::endl;
Which will yield either an 8-digit or 16-digit hex pointer value, depending on your architecture (mine is 64-bit):
0x00007fff5fbff3bc
I was debugging some code involving pointers to member fields, and i decided to print them out to see their values. I had a function returning a pointer to member:
#include <stdio.h>
struct test {int x, y, z;};
typedef int test::*ptr_to_member;
ptr_to_member select(int what)
{
switch (what) {
case 0: return &test::x;
case 1: return &test::y;
case 2: return &test::z;
default: return NULL;
}
}
I tried using cout:
#include <iostream>
int main()
{
std::cout << select(0) << " and " << select(3) << '\n';
}
I got 1 and 0. I thought the numbers indicated the position of the field inside the struct (that is, 1 is y and 0 is x), but no, the printed value is actually 1 for non-null pointer and 0 for null pointer. I guess this is a standard-compliant behavior (even though it's not helpful) - am i right? In addition, is it possible for a compliant c++ implementation to print always 0 for pointers-to-members? Or even an empty string?
And, finally, how can i print a pointer-to-member in a meaningful manner? I came up with two ugly ways:
printf("%d and %d\n", select(0), select(3)); // not 64-bit-compatible, i guess?
ptr_to_member temp1 = select(0); // have to declare temporary variables
ptr_to_member temp2 = select(3);
std::cout << *(int*)&temp1 << " and " << *(int*)&temp2 << '\n'; // UGLY!
Any better ways?
Pointers to members are not as simple as you may think. Their size changes from compiler to compiler and from class to class depending on whether the class has virtual methods or not and whether it has multiple inheritance or not. Assuming they are int sized is not the right way to go. What you can do is print them in hexadecimal:
void dumpByte(char i_byte)
{
std::cout << std::hex << static_cast<int>((i_byte & 0xf0) >> 4);
std::cout << std::hex << static_cast<int>(i_byte & 0x0f));
} // ()
template <typename T>
void dumpStuff(T* i_pStuff)
{
const char* pStuff = reinterpret_cast<const char*>(i_pStuff);
size_t size = sizeof(T);
while (size)
{
dumpByte(*pStuff);
++pStuff;
--size;
} // while
} // ()
However, I'm not sure how useful that information will be to you since you don't know what is the structure of the pointers and what each byte (or several bytes) mean.
Member pointers aren't ordinary pointers. The overloads you expect for << aren't in fact there.
If you don't mind some type punning, you can hack something up to print the actual values:
int main()
{
ptr_to_member a = select(0), b = select(1);
std::cout << *reinterpret_cast<uint32_t*>(&a) << " and "
<< *reinterpret_cast<uint32_t*>(&b) << " and "
<< sizeof(ptr_to_member) << '\n';
}
You can display the raw values of these pointer-to-members as follows:
#include <iostream>
struct test {int x, y, z;};
typedef int test::*ptr_to_member;
ptr_to_member select(int what)
{
switch (what) {
case 0: return &test::x;
case 1: return &test::y;
case 2: return &test::z;
default: return NULL;
}
}
int main()
{
ptr_to_member x = select(0) ;
ptr_to_member y = select(1) ;
ptr_to_member z = select(2) ;
std::cout << *(void**)&x << ", " << *(void**)&y << ", " << *(void**)&z << std::endl ;
}
You get warnings about breaking strict anti-aliasing rules (see this link), but the result is what you might expect:
0, 0x4, 0x8
Nevertheless, the compiler is free to implement pointer-to-member functionality however it likes, so you can't rely on these values being meaningful.
I think you should use printf to solve this problen
#include <stdio.h>
struct test{int x,y,z;}
int main(int argc, char* argv[])
{
printf("&test::x=%p\n", &test::x);
printf("&test::y=%p\n", &test::y);
printf("&test::z=%p\n", &test::z);
return 0;
}
I can make an std::ostream object output integer numbers in hex, for example
std::cout << std::hex << 0xabc; //prints `abc`, not the base-10 representation
Is there any manipulator that is universal for all bases? Something like
std::cout << std::base(4) << 20; //I want this to output 110
If there is one, then I have no further question.
If there isn't one, then can I write one? Won't it require me to access private implementation details of std::ostream?
Note that I know I can write a function that takes a number and converts it to a string which is the representation of that number in any base. Or I can use one that already exists. I am asking about custom stream manipulators - are they possible?
You can do something like the following. I have commented the code to explain what each part is doing, but essentially its this:
Create a "manipulator" struct which stores some data in the stream using xalloc and iword.
Create a custom num_put facet which looks for your manipulator and applies the manipulation.
Here is the code...
Edit: Note that im not sure I handled the std::ios_base::internal flag correctly here - as I dont actually know what its for.
Edit 2: I found out what std::ios_base::internal is for, and updated the code to handle it.
Edit 3: Added a call to std::locacle::global to show how to make all the standard stream classes support the new stream manipulator by default, rather than having to imbue them.
#include <algorithm>
#include <cassert>
#include <climits>
#include <iomanip>
#include <iostream>
#include <locale>
namespace StreamManip {
// Define a base manipulator type, its what the built in stream manipulators
// do when they take parameters, only they return an opaque type.
struct BaseManip
{
int mBase;
BaseManip(int base) : mBase(base)
{
assert(base >= 2);
assert(base <= 36);
}
static int getIWord()
{
// call xalloc once to get an index at which we can store data for this
// manipulator.
static int iw = std::ios_base::xalloc();
return iw;
}
void apply(std::ostream& os) const
{
// store the base value in the manipulator.
os.iword(getIWord()) = mBase;
}
};
// We need this so we can apply our custom stream manipulator to the stream.
std::ostream& operator<<(std::ostream& os, const BaseManip& bm)
{
bm.apply(os);
return os;
}
// convience function, so we can do std::cout << base(16) << 100;
BaseManip base(int b)
{
return BaseManip(b);
}
// A custom number output facet. These are used by the std::locale code in
// streams. The num_put facet handles the output of numberic values as characters
// in the stream. Here we create one that knows about our custom manipulator.
struct BaseNumPut : std::num_put<char>
{
// These absVal functions are needed as std::abs doesnt support
// unsigned types, but the templated doPutHelper works on signed and
// unsigned types.
unsigned long int absVal(unsigned long int a) const
{
return a;
}
unsigned long long int absVal(unsigned long long int a) const
{
return a;
}
template <class NumType>
NumType absVal(NumType a) const
{
return std::abs(a);
}
template <class NumType>
iter_type doPutHelper(iter_type out, std::ios_base& str, char_type fill, NumType val) const
{
// Read the value stored in our xalloc location.
const int base = str.iword(BaseManip::getIWord());
// we only want this manipulator to affect the next numeric value, so
// reset its value.
str.iword(BaseManip::getIWord()) = 0;
// normal number output, use the built in putter.
if (base == 0 || base == 10)
{
return std::num_put<char>::do_put(out, str, fill, val);
}
// We want to conver the base, so do it and output.
// Base conversion code lifted from Nawaz's answer
int digits[CHAR_BIT * sizeof(NumType)];
int i = 0;
NumType tempVal = absVal(val);
while (tempVal != 0)
{
digits[i++] = tempVal % base;
tempVal /= base;
}
// Get the format flags.
const std::ios_base::fmtflags flags = str.flags();
// Add the padding if needs by (i.e. they have used std::setw).
// Only applies if we are right aligned, or none specified.
if (flags & std::ios_base::right ||
!(flags & std::ios_base::internal || flags & std::ios_base::left))
{
std::fill_n(out, str.width() - i, fill);
}
if (val < 0)
{
*out++ = '-';
}
// Handle the internal adjustment flag.
if (flags & std::ios_base::internal)
{
std::fill_n(out, str.width() - i, fill);
}
char digitCharLc[] = "0123456789abcdefghijklmnopqrstuvwxyz";
char digitCharUc[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const char *digitChar = (str.flags() & std::ios_base::uppercase)
? digitCharUc
: digitCharLc;
while (i)
{
// out is an iterator that accepts characters
*out++ = digitChar[digits[--i]];
}
// Add the padding if needs by (i.e. they have used std::setw).
// Only applies if we are left aligned.
if (str.flags() & std::ios_base::left)
{
std::fill_n(out, str.width() - i, fill);
}
// clear the width
str.width(0);
return out;
}
// Overrides for the virtual do_put member functions.
iter_type do_put(iter_type out, std::ios_base& str, char_type fill, long val) const
{
return doPutHelper(out, str, fill, val);
}
iter_type do_put(iter_type out, std::ios_base& str, char_type fill, unsigned long val) const
{
return doPutHelper(out, str, fill, val);
}
};
} // namespace StreamManip
int main()
{
// Create a local the uses our custom num_put
std::locale myLocale(std::locale(), new StreamManip::BaseNumPut());
// Set our locacle to the global one used by default in all streams created
// from here on in. Any streams created in this app will now support the
// StreamManip::base modifier.
std::locale::global(myLocale);
// imbue std::cout, so it uses are custom local.
std::cout.imbue(myLocale);
std::cerr.imbue(myLocale);
// Output some stuff.
std::cout << std::setw(50) << StreamManip::base(2) << std::internal << -255 << std::endl;
std::cout << StreamManip::base(4) << 255 << std::endl;
std::cout << StreamManip::base(8) << 255 << std::endl;
std::cout << StreamManip::base(10) << 255 << std::endl;
std::cout << std::uppercase << StreamManip::base(16) << 255 << std::endl;
return 0;
}
Custom manipulators are indeed possible. See for example this question. I'm not familiar with any specific one for universal bases.
You really have two separate problems. The one I think you're asking about is entirely solvable. The other, unfortunately, is rather less so.
Allocating and using some space in the stream to hold some stream state is a problem that was foreseen. Streams have a couple of members (xalloc, iword, pword) that let you allocate a spot in an array in the stream, and read/write data there. As such, the stream manipulator itself is entirely possible. You'd basically use xalloc to allocate a spot in the stream's array to hold the current base, to be used by the insertion operator when it converts a number.
The problem for which I don't see a solution is rather simpler: the standard library already provides an operator<< to insert an int into a stream, and it obviously does not know about your hypothetical data to hold the base for a conversion. You can't overload that, because it would need exactly the same signature as the existing one, so your overload would be ambiguous.
The overloads for int, short, etc., however, are overloaded member functions. I guess if you wanted to badly enough, you could get by with using a template to overload operator<<. If I recall correctly, that would be preferred over even an exact match with a non-template function as the library provides. You'd still be breaking the rules, but if you put such a template in namespace std, there's at least some chance that it would work.
I attempted to write a code, and its working with some limitations. Its not stream manipulator as such, as that is simply not possible, as pointed out by others (especially #Jerry).
Here is my code:
struct base
{
mutable std::ostream *_out;
int _value;
base(int value=10) : _value(value) {}
template<typename T>
const base& operator << (const T & data) const
{
*_out << data;
return *this;
}
const base& operator << (const int & data) const
{
switch(_value)
{
case 2:
case 4:
case 8: return print(data);
case 16: *_out << std::hex << data; break;
default: *_out << data;
}
return *this;
}
const base & print(int data) const
{
int digits[CHAR_BIT * sizeof(int)], i = 0;
while(data)
{
digits[i++] = data % _value;
data /= _value;
}
while(i) *_out << digits[--i] ;
return *this;
}
friend const base& operator <<(std::ostream& out, const base& b)
{
b._out = &out;
return b;
}
};
And this is the test code:
int main() {
std::cout << base(2) << 255 <<", " << 54 << ", " << 20<< "\n";
std::cout << base(4) << 255 <<", " << 54 << ", " << 20<< "\n";
std::cout << base(8) << 255 <<", " << 54 << ", " << 20<< "\n";
std::cout << base(16) << 255 <<", " << 54 << ", " << 20<< "\n";
}
Output:
11111111, 110110, 10100
3333, 312, 110
377, 66, 24
ff, 36, 14
Online demo : http://www.ideone.com/BWhW5
Limitations:
The base cannot be changed twice. So this would be an error:
std::cout << base(4) << 879 << base(8) << 9878 ; //error
Other manipulator cannot be used after base is used:
std::cout << base(4) << 879 << std::hex << 9878 ; //error
std::cout << std::hex << 879 << base(8) << 9878 ; //ok
std::endl cannot be used after base is used:
std::cout << base(4) << 879 << std::endl ; //error
//that is why I used "\n" in the test code.
I don't think that syntax is possible for arbitrary streams (using a manipulator, #gigantt linked an answer that shows some alternative non-manipulator solutions). The standard manipulators merely set options that are implemented inside the stream.
OTOH, you could certainly make this syntax work:
std::cout << base(4, 20);
Where base is an object that provides a stream insertion operator (no need to return a temporary string).
I want to work with unsigned 8-bit variables in C++. Either unsigned char or uint8_t do the trick as far as the arithmetic is concerned (which is expected, since AFAIK uint8_t is just an alias for unsigned char, or so the debugger presents it.
The problem is that if I print out the variables using ostream in C++ it treats it as char. If I have:
unsigned char a = 0;
unsigned char b = 0xff;
cout << "a is " << hex << a <<"; b is " << hex << b << endl;
then the output is:
a is ^#; b is 377
instead of
a is 0; b is ff
I tried using uint8_t, but as I mentioned before, that's typedef'ed to unsigned char, so it does the same. How can I print my variables correctly?
Edit: I do this in many places throughout my code. Is there any way I can do this without casting to int each time I want to print?
Use:
cout << "a is " << hex << (int) a <<"; b is " << hex << (int) b << endl;
And if you want padding with leading zeros then:
#include <iomanip>
...
cout << "a is " << setw(2) << setfill('0') << hex << (int) a ;
As we are using C-style casts, why not go the whole hog with terminal C++ badness and use a macro!
#define HEX( x )
setw(2) << setfill('0') << hex << (int)( x )
you can then say
cout << "a is " << HEX( a );
Edit: Having said that, MartinStettner's solution is much nicer!
I would suggest using the following technique:
struct HexCharStruct
{
unsigned char c;
HexCharStruct(unsigned char _c) : c(_c) { }
};
inline std::ostream& operator<<(std::ostream& o, const HexCharStruct& hs)
{
return (o << std::hex << (int)hs.c);
}
inline HexCharStruct hex(unsigned char _c)
{
return HexCharStruct(_c);
}
int main()
{
char a = 131;
std::cout << hex(a) << std::endl;
}
It's short to write, has the same efficiency as the original solution and it lets you choose to use the "original" character output. And it's type-safe (not using "evil" macros :-))
You can read more about this at http://cpp.indi.frih.net/blog/2014/09/tippet-printing-numeric-values-for-chars-and-uint8_t/ and http://cpp.indi.frih.net/blog/2014/08/code-critique-stack-overflow-posters-cant-print-the-numeric-value-of-a-char/. I am only posting this because it has become clear that the author of the above articles does not intend to.
The simplest and most correct technique to do print a char as hex is
unsigned char a = 0;
unsigned char b = 0xff;
auto flags = cout.flags(); //I only include resetting the ioflags because so
//many answers on this page call functions where
//flags are changed and leave no way to
//return them to the state they were in before
//the function call
cout << "a is " << hex << +a <<"; b is " << +b << endl;
cout.flags(flags);
The readers digest version of how this works is that the unary + operator forces a no op type conversion to an int with the correct signedness. So, an unsigned char converts to unsigned int, a signed char converts to int, and a char converts to either unsigned int or int depending on whether char is signed or unsigned on your platform (it comes as a shock to many that char is special and not specified as either signed or unsigned).
The only negative of this technique is that it may not be obvious what is happening to a someone that is unfamiliar with it. However, I think that it is better to use the technique that is correct and teach others about it rather than doing something that is incorrect but more immediately clear.
Well, this works for me:
std::cout << std::hex << (0xFF & a) << std::endl;
If you just cast (int) as suggested it might add 1s to the left of a if its most significant bit is 1. So making this binary AND operation guarantees the output will have the left bits filled by 0s and also converts it to unsigned int forcing cout to print it as hex.
I hope this helps.
In C++20 you'll be able to use std::format to do this:
std::cout << std::format("a is {:x}; b is {:x}\n", a, b);
Output:
a is 0; b is ff
In the meantime you can use the {fmt} library, std::format is based on. {fmt} also provides the print function that makes this even easier and more efficient (godbolt):
fmt::print("a is {:x}; b is {:x}\n", a, b);
Disclaimer: I'm the author of {fmt} and C++20 std::format.
Hm, it seems I re-invented the wheel yesterday... But hey, at least it's a generic wheel this time :) chars are printed with two hex digits, shorts with 4 hex digits and so on.
template<typename T>
struct hex_t
{
T x;
};
template<typename T>
hex_t<T> hex(T x)
{
hex_t<T> h = {x};
return h;
}
template<typename T>
std::ostream& operator<<(std::ostream& os, hex_t<T> h)
{
char buffer[2 * sizeof(T)];
for (auto i = sizeof buffer; i--; )
{
buffer[i] = "0123456789ABCDEF"[h.x & 15];
h.x >>= 4;
}
os.write(buffer, sizeof buffer);
return os;
}
I think TrungTN and anon's answer is okay, but MartinStettner's way of implementing the hex() function is not really simple, and too dark, considering hex << (int)mychar is already a workaround.
here is my solution to make "<<" operator easier:
#include <sstream>
#include <iomanip>
string uchar2hex(unsigned char inchar)
{
ostringstream oss (ostringstream::out);
oss << setw(2) << setfill('0') << hex << (int)(inchar);
return oss.str();
}
int main()
{
unsigned char a = 131;
std::cout << uchar2hex(a) << std::endl;
}
It's just not worthy implementing a stream operator :-)
I think we are missing an explanation of how these type conversions work.
char is platform dependent signed or unsigned. In x86 char is equivalent to signed char.
When an integral type (char, short, int, long) is converted to a larger capacity type, the conversion is made by adding zeros to the left in case of unsigned types and by sign extension for signed ones. Sign extension consists in replicating the most significant (leftmost) bit of the original number to the left till we reach the bit size of the target type.
Hence if I am in a signed char by default system and I do this:
char a = 0xF0; // Equivalent to the binary: 11110000
std::cout << std::hex << static_cast<int>(a);
We would obtain F...F0 since the leading 1 bit has been extended.
If we want to make sure that we only print F0 in any system we would have to make an additional intermediate type cast to an unsigned char so that zeros are added instead and, since they are not significant for a integer with only 8-bits, not printed:
char a = 0xF0; // Equivalent to the binary: 11110000
std::cout << std::hex << static_cast<int>(static_cast<unsigned char>(a));
This produces F0
I'd do it like MartinStettner but add an extra parameter for number of digits:
inline HexStruct hex(long n, int w=2)
{
return HexStruct(n, w);
}
// Rest of implementation is left as an exercise for the reader
So you have two digits by default but can set four, eight, or whatever if you want to.
eg.
int main()
{
short a = 3142;
std:cout << hex(a,4) << std::endl;
}
It may seem like overkill but as Bjarne said: "libraries should be easy to use, not easy to write".
I would suggest:
std::cout << setbase(16) << 32;
Taken from:
http://www.cprogramming.com/tutorial/iomanip.html
You can try the following code:
unsigned char a = 0;
unsigned char b = 0xff;
cout << hex << "a is " << int(a) << "; b is " << int(b) << endl;
cout << hex
<< "a is " << setfill('0') << setw(2) << int(a)
<< "; b is " << setfill('0') << setw(2) << int(b)
<< endl;
cout << hex << uppercase
<< "a is " << setfill('0') << setw(2) << int(a)
<< "; b is " << setfill('0') << setw(2) << int(b)
<< endl;
Output:
a is 0; b is ff
a is 00; b is ff
a is 00; b is FF
I use the following on win32/linux(32/64 bit):
#include <iostream>
#include <iomanip>
template <typename T>
std::string HexToString(T uval)
{
std::stringstream ss;
ss << "0x" << std::setw(sizeof(uval) * 2) << std::setfill('0') << std::hex << +uval;
return ss.str();
}
I realize this is an old question, but its also a top Google result in searching for a solution to a very similar problem I have, which is the desire to implement arbitrary integer to hex string conversions within a template class. My end goal was actually a Gtk::Entry subclass template that would allow editing various integer widths in hex, but that's beside the point.
This combines the unary operator+ trick with std::make_unsigned from <type_traits> to prevent the problem of sign-extending negative int8_t or signed char values that occurs in this answer
Anyway, I believe this is more succinct than any other generic solution. It should work for any signed or unsigned integer types, and throws a compile-time error if you attempt to instantiate the function with any non-integer types.
template <
typename T,
typename = typename std::enable_if<std::is_integral<T>::value, T>::type
>
std::string toHexString(const T v)
{
std::ostringstream oss;
oss << std::hex << +((typename std::make_unsigned<T>::type)v);
return oss.str();
}
Some example usage:
int main(int argc, char**argv)
{
int16_t val;
// Prints 'ff' instead of "ffffffff". Unlike the other answer using the '+'
// operator to extend sizeof(char) int types to int/unsigned int
std::cout << toHexString(int8_t(-1)) << std::endl;
// Works with any integer type
std::cout << toHexString(int16_t(0xCAFE)) << std::endl;
// You can use setw and setfill with strings too -OR-
// the toHexString could easily have parameters added to do that.
std::cout << std::setw(8) << std::setfill('0') <<
toHexString(int(100)) << std::endl;
return 0;
}
Update: Alternatively, if you don't like the idea of the ostringstream being used, you can combine the templating and unary operator trick with the accepted answer's struct-based solution for the following. Note that here, I modified the template by removing the check for integer types. The make_unsigned usage might be enough for compile time type safety guarantees.
template <typename T>
struct HexValue
{
T value;
HexValue(T _v) : value(_v) { }
};
template <typename T>
inline std::ostream& operator<<(std::ostream& o, const HexValue<T>& hs)
{
return o << std::hex << +((typename std::make_unsigned<T>::type) hs.value);
}
template <typename T>
const HexValue<T> toHex(const T val)
{
return HexValue<T>(val);
}
// Usage:
std::cout << toHex(int8_t(-1)) << std::endl;
If you're using prefill and signed chars, be careful not to append unwanted 'F's
char out_character = 0xBE;
cout << setfill('0') << setw(2) << hex << unsigned short(out_character);
prints: ffbe
using int instead of short results in ffffffbe
To prevent the unwanted f's you can easily mask them out.
char out_character = 0xBE;
cout << setfill('0') << setw(2) << hex << unsigned short(out_character) & 0xFF;
I'd like to post my re-re-inventing version based on #FredOverflow's. I made the following modifications.
fix:
Rhs of operator<< should be of const reference type. In #FredOverflow's code, h.x >>= 4 changes output h, which is surprisingly not compatible with standard library, and type T is requared to be copy-constructable.
Assume only CHAR_BITS is a multiple of 4. #FredOverflow's code assumes char is 8-bits, which is not always true, in some implementations on DSPs, particularly, it is not uncommon that char is 16-bits, 24-bits, 32-bits, etc.
improve:
Support all other standard library manipulators available for integral types, e.g. std::uppercase. Because format output is used in _print_byte, standard library manipulators are still available.
Add hex_sep to print separate bytes (note that in C/C++ a 'byte' is by definition a storage unit with the size of char). Add a template parameter Sep and instantiate _Hex<T, false> and _Hex<T, true> in hex and hex_sep respectively.
Avoid binary code bloat. Function _print_byte is extracted out of operator<<, with a function parameter size, to avoid instantiation for different Size.
More on binary code bloat:
As mentioned in improvement 3, no matter how extensively hex and hex_sep is used, only two copies of (nearly) duplicated function will exits in binary code: _print_byte<true> and _print_byte<false>. And you might realized that this duplication can also be eliminated using exactly the same approach: add a function parameter sep. Yes, but if doing so, a runtime if(sep) is needed. I want a common library utility which may be used extensively in the program, thus I compromised on the duplication rather than runtime overhead. I achieved this by using compile-time if: C++11 std::conditional, the overhead of function call can hopefully be optimized away by inline.
hex_print.h:
namespace Hex
{
typedef unsigned char Byte;
template <typename T, bool Sep> struct _Hex
{
_Hex(const T& t) : val(t)
{}
const T& val;
};
template <typename T, bool Sep>
std::ostream& operator<<(std::ostream& os, const _Hex<T, Sep>& h);
}
template <typename T> Hex::_Hex<T, false> hex(const T& x)
{ return Hex::_Hex<T, false>(x); }
template <typename T> Hex::_Hex<T, true> hex_sep(const T& x)
{ return Hex::_Hex<T, true>(x); }
#include "misc.tcc"
hex_print.tcc:
namespace Hex
{
struct Put_space {
static inline void run(std::ostream& os) { os << ' '; }
};
struct No_op {
static inline void run(std::ostream& os) {}
};
#if (CHAR_BIT & 3) // can use C++11 static_assert, but no real advantage here
#error "hex print utility need CHAR_BIT to be a multiple of 4"
#endif
static const size_t width = CHAR_BIT >> 2;
template <bool Sep>
std::ostream& _print_byte(std::ostream& os, const void* ptr, const size_t size)
{
using namespace std;
auto pbyte = reinterpret_cast<const Byte*>(ptr);
os << hex << setfill('0');
for (int i = size; --i >= 0; )
{
os << setw(width) << static_cast<short>(pbyte[i]);
conditional<Sep, Put_space, No_op>::type::run(os);
}
return os << setfill(' ') << dec;
}
template <typename T, bool Sep>
inline std::ostream& operator<<(std::ostream& os, const _Hex<T, Sep>& h)
{
return _print_byte<Sep>(os, &h.val, sizeof(T));
}
}
test:
struct { int x; } output = {0xdeadbeef};
cout << hex_sep(output) << std::uppercase << hex(output) << endl;
output:
de ad be ef DEADBEEF
This will also work:
std::ostream& operator<< (std::ostream& o, unsigned char c)
{
return o<<(int)c;
}
int main()
{
unsigned char a = 06;
unsigned char b = 0xff;
std::cout << "a is " << std::hex << a <<"; b is " << std::hex << b << std::endl;
return 0;
}
I have used in this way.
char strInput[] = "yourchardata";
char chHex[2] = "";
int nLength = strlen(strInput);
char* chResut = new char[(nLength*2) + 1];
memset(chResut, 0, (nLength*2) + 1);
for (int i = 0; i < nLength; i++)
{
sprintf(chHex, "%02X", strInput[i]& 0x00FF);
memcpy(&(chResut[i*2]), chHex, 2);
}
printf("\n%s",chResut);
delete chResut;
chResut = NULL;