Maximum size of call stack keeps varying in clojure [duplicate] - clojure

This question already has answers here:
Why is the max recursion depth I can reach non-deterministic?
(4 answers)
Why does the count of calls of a recursive method causing a StackOverflowError vary between program runs? [duplicate]
(3 answers)
Closed 3 years ago.
We wanted to check the max depth of the call stack on JVM, for that we ran the following
(defn abcd [i]
"A function to find the max recursion allowed"
(try (abcd (inc i))
(catch Throwable t
(println "Failed at" i)
(prn (class t)))))
I expected the value of i to be same all the time because well the stack size is always going to be the same! (would be ok with small differences but here I saw the depth varying a lot)
(abcd 0)
Failed at 4852
java.lang.StackOverflowError
(abcd 0)
Failed at 4917
java.lang.StackOverflowError
(abcd 0)
Failed at 23609
java.lang.StackOverflowError
(abcd 0)
Failed at 23620
java.lang.StackOverflowError
The depth was lesser in the first run and then was consistently at the 20k range. What optimisation would JVM be doing here?

Related

Getting error with Fibonacci Function in Clojure?

I am trying to print the value of the fibonacci number at position 400, using memoization. At first, I was only able to print the number until the 94th position, because I got an integer overflow error. After reading online, I am now able to print the value up to position 247 by converting into BigInt. But for some reason, when I try 248 or above, I get a huge error. Here is my code:
(def m-fib
(memoize (fn [n]
(condp = n
0N 0N
1N 1N
(+ (m-fib (dec n)) (m-fib (- n 2)))))))
(println(m-fib 248N))
And here is a sample of the error I get (It's too long to put all of it into the question, and it won't specifically tell me what the problem is.
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
at clojure.core$apply.invokeStatic(core.clj:646)
at clojure.core$memoize$fn__5708.doInvoke(core.clj:6107)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at fibonacci.core$_main$fn__28.invoke(core.clj:11)
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
at clojure.core$apply.invokeStatic(core.clj:646)
at clojure.core$memoize$fn__5708.doInvoke(core.clj:6107)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at fibonacci.core$_main$fn__28.invoke(core.clj:11)
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
at clojure.core$apply.invokeStatic(core.clj:646)
at clojure.core$memoize$fn__5708.doInvoke(core.clj:6107)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at fibonacci.core$_main$fn__28.invoke(core.clj:11)
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
at clojure.core$apply.invokeStatic(core.clj:646)
at clojure.core$memoize$fn__5708.doInvoke(core.clj:6107)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at fibonacci.core$_main$fn__28.invoke(core.clj:11)
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
at clojure.core$apply.invokeStatic(core.clj:646)
at clojure.core$memoize$fn__5708.doInvoke(core.clj:6107)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at fibonacci.core$_main$fn__28.invoke(core.clj:11)
at clojure.lang.AFn.applyToHelper(AFn.java:154)
at clojure.lang.AFn.applyTo(AFn.java:144)
How can I fix this and output the fib value at position 400 without any errors?
Your m-fib creates a tree that grows exponentially with the input.
Source: http://www.sicpdistilled.com/section/1.2.2/
The space used by m-fib grows so large that it blows up the stack (StackOverflow) since all intermediate values are kept on the stack, before they are added.
Your function would work fine it is used tail-recursion. This means that intermediate results are calculated every time and put on the stack. Using tail-recursion you don't need space on the stack, since only the intermediate result is stored.
I did't see a way to implement in your structure since it basically uses the stack size to calculate the answer (it spreads out to a large amount of base cases where N are 0 and 1). Here's a tail recursive other way as an example.
Some languages (like Scheme) do automatic tail-call optimization. Clojure also has limited support for tail recursion (because of limitations of the JVM) as long as you use loop and recur (as also said in the answer by zabeltech.
In Clojure we can only use tail recursion in the tail position (last expression). This can, for example, be done by creating an iterative tail-recursive function where we pass the intermediate results along:
(defn m-fib [n]
(m-fib-iter 1 0 n))
(def m-fib-iter
(memoize
(fn [a b count]
(if (= count 0)
b
(recur (+' a b) a (- count 1)))))) ; note the +'
(fib 248) ;; => 3016128079338728432528443992613633888712980904400501N
Here a and b are updated every recurring round.
This answer was based on the Clojure text based on the Structure and Interpretation of Computer programs at SICP distilled. I only added memoization as you did as well, so that previously calculated answers are stored.
See that site for more information.
#zabeltech is right, you reach the limit of the recursion.
In your case the best thing you can do without changing your code is to precall your fib function with some values lower than your desired index, to get memoized data later, instead of recursively calculating it:
user> (m-fib 100N)
354224848179261915075N
user> (m-fib 248N)
3016128079338728432528443992613633888712980904400501N
you can see that the 100th fib doesn't cause stackoverflow, and then 248th also doesn't (because it doesn't go down to 0 recursively, it only goes down to 100, and 100th value (and below) are already memoized)
Also, clojure has some much more elegant approaches to generating fibs, like this for example:
user> (def fibs (lazy-cat [0 1N] (map + fibs (rest fibs))))
#'user/fibs
user> (nth fibs 248)
3016128079338728432528443992613633888712980904400501N
I get a stack overflow error when I try to advance the memoization by a thousand or so (YMMV). This is because the recursion spins up a stack until it finds the largest memoized argument-> value.
Shlomi's comment refers to solutions that yield a sequence. If we want to preserve constant time access, we can build our own lazy vector. I've worked out a way to do this, whereby you supply
an initial sequence of values and
a function that generates the next value from the preceding however
many.
You get a function that
encloses a vector inside an atom that grows to reach any offered
argument.
And never forgets what it has done.
The function-making function is ...
(defn mem-vector [f inits]
(let [mem (atom (vec inits))]
(fn [n]
(let [content- #mem, size- (count content-)]
(loop [content content-, size size-]
(if (> size n)
(do
(if (> size size-) (reset! mem content))
(content n))
(recur (conj content (apply f (subvec content (- size (count inits))))) (inc size))))))))
To generate fibonacci numbers,
the initial values are 0 and 1 and
the function that generates the next value from the previous two is
+'.
So a lazy vector of all the fibonacci numbers is
(def fibs (mem-vector +' [0 1]))
For example
(fibs 100000)
;2597406934722172416615503402127591541488048538651769658472477070395253454351127368626555677283671674475463758722307443211163839947387509103096569738218830449305228763853133492135302679278956701051276578271635608073050532200243233114383986516137827238124777453778337299916214634050054669860390862750996639366409211890125271960172105060300350586894028558103675117658251368377438684936413457338834365158775425371912410500332195991330062204363035213756525421823998690848556374080179251761629391754963458558616300762819916081109836526352995440694284206571046044903805647136346033000520852277707554446794723709030979019014860432846819857961015951001850608264919234587313399150133919932363102301864172536477136266475080133982431231703431452964181790051187957316766834979901682011849907756686456845066287392485603914047605199550066288826345877189410680370091879365001733011710028310473947456256091444932821374855573864080579813028266640270354294412104919995803131876805899186513425175959911520563155337703996941035518275274919959802257507902037798103089922984996304496255814045517000250299764322193462165366210841876745428298261398234478366581588040819003307382939500082132009374715485131027220817305432264866949630987914714362925554252624043999615326979876807510646819068792118299167964409178271868561702918102212679267401362650499784968843680975254700131004574186406448299485872551744746695651879126916993244564817673322257149314967763345846623830333820239702436859478287641875788572910710133700300094229333597292779191409212804901545976262791057055248158884051779418192905216769576608748815567860128818354354292307397810154785701328438612728620176653953444993001980062953893698550072328665131718113588661353747268458543254898113717660519461693791688442534259478126310388952047956594380715301911253964847112638900713362856910155145342332944128435722099628674611942095166100230974070996553190050815866991144544264788287264284501725332048648319457892039984893823636745618220375097348566847433887249049337031633826571760729778891798913667325190623247118037280173921572390822769228077292456662750538337500692607721059361942126892030256744356537800831830637593334502350256972906515285327194367756015666039916404882563967693079290502951488693413799125174856667074717514938979038653338139534684837808612673755438382110844897653836848318258836339917310455850905663846202501463131183108742907729262215943020429159474030610183981685506695026197376150857176119947587572212987205312060791864980361596092339594104118635168854883911918517906151156275293615849000872150192226511785315089251027528045151238603792184692121533829287136924321527332714157478829590260157195485316444794546750285840236000238344790520345108033282013803880708980734832620122795263360677366987578332625485944906021917368867786241120562109836985019729017715780112040458649153935115783499546100636635745448508241888279067531359950519206222976015376529797308588164873117308237059828489404487403932053592935976454165560795472477862029969232956138971989467942218727360512336559521133108778758228879597580320459608479024506385194174312616377510459921102486879496341706862092908893068525234805692599833377510390101316617812305114571932706629167125446512151746802548190358351688971707570677865618800822034683632101813026232996027599403579997774046244952114531588370357904483293150007246173417355805567832153454341170020258560809166294198637401514569572272836921963229511187762530753402594781448204657460288485500062806934811398276016855584079542162057543557291510641537592939022884356120792643705560062367986544382464373946972471945996555795505838034825597839682776084731530251788951718630722761103630509360074262261717363058613291544024695432904616258691774630578507674937487992329181750163484068813465534370997589353607405172909412697657593295156818624747127636468836551757018353417274662607306510451195762866349922848678780591085118985653555434958761664016447588028633629704046289097067736256584300235314749461233912068632146637087844699210427541569410912246568571204717241133378489816764096924981633421176857150311671040068175303192115415611958042570658693127276213710697472226029655524611053715554532499750843275200199214301910505362996007042963297805103066650638786268157658772683745128976850796366371059380911225428835839194121154773759981301921650952140133306070987313732926518169226845063443954056729812031546392324981793780469103793422169495229100793029949237507299325063050942813902793084134473061411643355614764093104425918481363930542369378976520526456347648318272633371512112030629233889286487949209737847861884868260804647319539200840398308008803869049557419756219293922110825766397681361044490024720948340326796768837621396744075713887292863079821849314343879778088737958896840946143415927131757836511457828935581859902923534388888846587452130838137779443636119762839036894595760120316502279857901545344747352706972851454599861422902737291131463782045516225447535356773622793648545035710208644541208984235038908770223039849380214734809687433336225449150117411751570704561050895274000206380497967960402617818664481248547269630823473377245543390519841308769781276565916764229022948181763075710255793365008152286383634493138089971785087070863632205869018938377766063006066757732427272929247421295265000706646722730009956124191409138984675224955790729398495608750456694217771551107346630456603944136235888443676215273928597072287937355966723924613827468703217858459948257514745406436460997059316120596841560473234396652457231650317792833860590388360417691428732735703986803342604670071717363573091122981306903286137122597937096605775172964528263757434075792282180744352908669606854021718597891166333863858589736209114248432178645039479195424208191626088571069110433994801473013100869848866430721216762473119618190737820766582968280796079482259549036328266578006994856825300536436674822534603705134503603152154296943991866236857638062351209884448741138600171173647632126029961408561925599707566827866778732377419444462275399909291044697716476151118672327238679208133367306181944849396607123345271856520253643621964198782752978813060080313141817069314468221189275784978281094367751540710106350553798003842219045508482239386993296926659221112742698133062300073465628498093636693049446801628553712633412620378491919498600097200836727876650786886306933418995225768314390832484886340318940194161036979843833346608676709431643653538430912157815543512852077720858098902099586449602479491970687230765687109234380719509824814473157813780080639358418756655098501321882852840184981407690738507369535377711880388528935347600930338598691608289335421147722936561907276264603726027239320991187820407067412272258120766729040071924237930330972132364184093956102995971291799828290009539147382437802779051112030954582532888721146170133440385939654047806199333224547317803407340902512130217279595753863158148810392952475410943880555098382627633127606718126171022011356181800775400227516734144169216424973175621363128588281978005788832454534581522434937268133433997710512532081478345067139835038332901313945986481820272322043341930929011907832896569222878337497354301561722829115627329468814853281922100752373626827643152685735493223028018101449649009015529248638338885664893002250974343601200814365153625369199446709711126951966725780061891215440222487564601554632812091945824653557432047644212650790655208208337976071465127508320487165271577472325887275761128357592132553934446289433258105028633583669291828566894736223508250294964065798630809614341696830467595174355313224362664207197608459024263017473392225291248366316428006552870975051997504913009859468071013602336440164400179188610853230764991714372054467823597211760465153200163085336319351589645890681722372812310320271897917951272799656053694032111242846590994556380215461316106267521633805664394318881268199494005537068697621855231858921100963441012933535733918459668197539834284696822889460076352031688922002021931318369757556962061115774305826305535862015637891246031220672933992617378379625150999935403648731423208873977968908908369996292995391977217796533421249291978383751460062054967341662833487341011097770535898066498136011395571584328308713940582535274056081011503907941688079197212933148303072638678631411038443128215994936824342998188719768637604496342597524256886188688978980888315865076262604856465004322896856149255063968811404400429503894245872382233543101078691517328333604779262727765686076177705616874050257743749983775830143856135427273838589774133526949165483929721519554793578923866762502745370104660909382449626626935321303744538892479216161188889702077910448563199514826630802879549546453583866307344423753319712279158861707289652090149848305435983200771326653407290662016775706409690183771201306823245333477966660525325490873601961480378241566071271650383582257289215708209369510995890132859490724306183325755201208090007175022022949742801823445413711916298449914722254196594682221468260644961839254249670903104007581488857971672246322887016438403908463856731164308169537326790303114583680575021119639905615169154708510459700542098571797318015564741406172334145847111268547929892443001391468289103679179216978616582489007322033591376706527676521307143985302760988478056216994659655461379174985659739227379416726495377801992098355427866179123126699374730777730569324430166839333011554515542656864937492128687049121754245967831132969248492466744261999033972825674873460201150442228780466124320183016108232183908654771042398228531316559685688005226571474428823317539456543881928624432662503345388199590085105211383124491861802624432195540433985722841341254409411771722156867086291742124053110620522842986199273629406208834754853645128123279609097213953775360023076765694208219943034648783348544492713539450224591334374664937701655605763384697062918725745426505879414630176639760457474311081556747091652708748125267159913793240527304613693961169892589808311906322510777928562071999459487700611801002296132304588294558440952496611158342804908643860880796440557763691857743754025896855927252514563404385217825890599553954627451385454452916761042969267970893580056234501918571489030418495767400819359973218711957496357095967825171096264752068890806407651445893132870767454169607107931692704285168093413311046353506242209810363216771910420786162184213763938194625697286781413636389620123976910465418956806197323148414224550071617215851321302030684176087215892702098879108938081045903397276547326416916845445627600759561367103584575649094430692452532085003091068783157561519847567569191284784654692558665111557913461272425336083635131342183905177154511228464455136016013513228948543271504760839307556100908786096663870612278690274831819331606701484957163004705262228238406266818448788374548131994380387613830128859885264201992286188208499588640888521352501457615396482647451025902530743172956899636499615707551855837165935367125448515089362904567736630035562457374779100987992499146967224041481601289530944015488942613783140087804311431741858071826185149051138744831358439067228949408258286021650288927228387426432786168690381960530155894459451808735197246008221529343980828254126128257157209350985382800738560472910941184006084485235377833503306861977724501886364070344973366473100602018128792886991861824418453968994777259482169137133647470453172979809245844361129618997595696240971845564020511432589591844724920942930301651488713079802102379065536525154780298059407529440513145807551537794861635879901158192019808879694967187448224156836463534326160242632934761634458163890163805123894184523973421841496889262398489648642093409816681494771155177009562669029850101513537599801272501241971119871526593747484778935488777815192931171431167444773882941064615028751327709474504763922874890662989841540259350834035142035136168819248238998027706666916342133424312054507359388616687691188185776118135771332483965209882085982391298606386822804754362408956522921410859852037330544625953261340234864689275060526893755148403298542086991221052597005628576707702567695300978970046408920009852106980295419699802138053295798159478289934443245491565327845223840551240445208226435420656313310702940722371552770504263482073984454889589248861397657079145414427653584572951329719091947694411910966797474262675590953832039169673494261360032263077428684105040061351052194413778158095005714526846009810352109249040027958050736436961021241137739717164869525493114805040126568351268829598413983222676377804500626507241731757395219796890754825199329259649801627068665658030178877405615167159731927320479376247375505855052839660294566992522173600874081212014209071041937598571721431338017425141582491824710905084715977249417049320254165239323233258851588893337097136310892571531417761978326033750109026284066415801371359356529278088456305951770081443994114674291850360748852366654744869928083230516815711602911836374147958492100860528981469547750812338896943152861021202736747049903930417035171342126923486700566627506229058636911882228903170510305406882096970875545329369434063981297696478031825451642178347347716471058423238594580183052756213910186997604305844068665712346869679456044155742100039179758348979935882751881524675930878928159243492197545387668305684668420775409821781247053354523194797398953320175988640281058825557698004397120538312459428957377696001857497335249965013509368925958021863811725906506436882127156815751021712900765992750370228283963962915973251173418586721023497317765969454283625519371556009143680329311962842546628403142444370648432390374906410811300792848955767243481200090309888457270907750873638873299642555050473812528975962934822878917619920725138309388288292510416837622758204081918933603653875284116785703720989718832986921927816629675844580174911809119663048187434155067790863948831489241504300476704527971283482211522202837062857314244107823792513645086677566622804977211397140621664116324756784216612961477109018826094677377686406176721484293894976671380122788941309026553511096118347012565197540807095384060916863936906673786627209429434264260402902158317345003727462588992622049877121178405563348492490326003508569099382392777297498413565614830788262363322368380709822346012274241379036473451735925215754757160934270935192901723954921426490691115271523338109124042812102893738488167358953934508930697715522989199698903885883275409044300321986834003470271220020159699371690650330547577095398748580670024491045504890061727189168031394528036165633941571334637222550477547460756055024108764382121688848916940371258901948490685379722244562009483819491532724502276218589169507405794983759821006604481996519360110261576947176202571702048684914616894068404140833587562118319210838005632144562018941505945780025318747471911604840677997765414830622179069330853875129298983009580277554145435058768984944179136535891620098725222049055183554603706533183176716110738009786625247488691476077664470147193074476302411660335671765564874440577990531996271632972009109449249216456030618827772947750764777446452586328919159107444252320082918209518021083700353881330983215894608680127954224752071924134648334963915094813097541433244209299930751481077919002346128122330161799429930618800533414550633932139339646861616416955220216447995417243171165744471364197733204899365074767844149929548073025856442942381787641506492878361767978677158510784235702640213388018875601989234056868423215585628508645525258377010620532224244987990625263484010774322488172558602233302076399933854152015343847725442917895130637050320444917797752370871958277976799686113626532291118629631164685159934660693460557545956063155830033697634000276685151293843638886090828376141157732003527565158745906567025439437931104838571313294490604926582363108949535090082673154497226396648088618041573977888472892174618974189721700770009862449653759012727015227634510874906948012210684952063002519011655963580552429180205586904259685261047412834518466736938580027700252965356366721619883672428226933950325930390994583168665542234654857020875504617520521853721567282679903418135520602999895366470106557900532129541336924472492212436324523042895188461779122338069674233980694887270587503389228395095135209123109258159006960395156367736067109050566299603571876423247920752836160805597697778756476767210521222327184821484446631261487584226092608875764331731023263768864822594691211032367737558122133470556805958008310127481673962019583598023967414489867276845869819376783757167936723213081586191045995058970991064686919463448038574143829629547131372173669836184558144505748676124322451519943362182916191468026091121793001864788050061351603144350076189213441602488091741051232290357179205497927970924502479940842696158818442616163780044759478212240873204124421169199805572649118243661921835714762891425805771871743688000324113008704819373962295017143090098476927237498875938639942530595331607891618810863505982444578942799346514915952884869757488025823353571677864826828051140885429732788197765736966005727700162592404301688659946862983717270595809808730901820120931003430058796552694788049809205484305467611034654748067290674399763612592434637719995843862812391985470202414880076880818848087892391591369463293113276849329777201646641727587259122354784480813433328050087758855264686119576962172239308693795757165821852416204341972383989932734803429262340722338155102209101262949249742423271698842023297303260161790575673111235465890298298313115123607606773968998153812286999642014609852579793691246016346088762321286205634215901479188632194659637483482564291616278532948239313229440231043277288768139550213348266388687453259281587854503890991561949632478855035090289390973718988003999026132015872678637873095678109625311008054489418857983565902063680699643165033912029944327726770869305240718416592070096139286401966725750087012218149733133695809600369751764951350040285926249203398111014953227533621844500744331562434532484217986108346261345897591234839970751854223281677187215956827243245910829019886390369784542622566912542747056097567984857136623679023878478161201477982939080513150258174523773529510165296934562786122241150783587755373348372764439838082000667214740034466322776918936967612878983488942094688102308427036452854504966759697318836044496702853190637396916357980928865719935397723495486787180416401415281489443785036291071517805285857583987711145474240156416477194116391354935466755593592608849200546384685403028080936417250583653368093407225310820844723570226809826951426162451204040711501448747856199922814664565893938488028643822313849852328452360667045805113679663751039248163336173274547275775636810977344539275827560597425160705468689657794530521602315939865780974801515414987097778078705357058008472376892422189750312758527140173117621279898744958406199843913365680297721208751934988504499713914285158032324823021340630312586072624541637765234505522051086318285359658520708173392709566445011404055106579055037417780393351658360904543047721422281816832539613634982525215232257690920254216409657452618066051777901592902884240599998882753691957540116954696152270401280857579766154722192925655963991820948894642657512288766330302133746367449217449351637104725732980832812726468187759356584218383594702792013663907689741738962252575782663990809792647011407580367850599381887184560094695833270775126181282015391041773950918244137561999937819240362469558235924171478702779448443108751901807414110290370706052085162975798361754251041642244867577350756338018895379263183389855955956527857227926155524494739363665533904528656215464288343162282921123290451842212532888101415884061619939195042230059898349966569463580186816717074818823215848647734386780911564660755175385552224428524049468033692299989300783900020690121517740696428573930196910500988278523053797637940257968953295112436166778910585557213381789089945453947915927374958600268237844486872037243488834616856290097850532497036933361942439802882364323553808208003875741710969289725499878566253048867033095150518452126944989251596392079421452606508516052325614861938282489838000815085351564642761700832096483117944401971780149213345335903336672376719229722069970766055482452247416927774637522135201716231722137632445699154022395494158227418930589911746931773776518735850032318014432883916374243795854695691221774098948611515564046609565094538115520921863711518684562543275047870530006998423140180169421109105925493596116719457630962328831271268328501760321771680400249657674186927113215573270049935709942324416387089242427584407651215572676037924765341808984312676941110313165951429479377670698881249643421933287404390485538222160837088907598277390184204138197811025854537088586701450623578513960109987476052535450100439353062072439709976445146790993381448994644609780957731953604938734950026860564555693224229691815630293922487606470873431166384205442489628760213650246991893040112513103835085621908060270866604873585849001704200923929789193938125116798421788115209259130435572321635660895603514383883939018953166274355609970015699780289236362349895374653428746875N
It ran out of heap space when I tried 1000000 :(.
A more readable example is ...
(map fibs (range 20))
;(0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181)
The point is that this function gives you constant time access to an already found value. You don't have to run down a sequence.
Edited to correct an error whereby the buffer (correctly) expanded and (wrongly) contracted with each offered argument.
this is probably because you reached the maximum recursion limit. In order to go around this one could rewrite the function to be tail recursive and then use the loop-recur pattern.

The usage of lazy-sequences in clojure

I am wondering that lazy-seq returns a finite list or infinite list. There is an example,
(defn integers [n]
(cons n (lazy-seq (integers (inc n)))))
when I run like
(first integers 10)
or
(take 5 (integers 10))
the results are 10 and (10 11 12 13 14)
. However, when I run
(integers 10)
the process cannot print anything and cannot continue. Is there anyone who can tell me why and the usage of laza-seq. Thank you so much!
When you say that you are running
(integers 10)
what you're really doing is something like this:
user> (integers 10)
In other words, you're evaluating that form in a REPL (read-eval-print-loop).
The "read" step will convert from the string "(integers 10)" to the list (integers 10). Pretty straightforward.
The "eval" step will look up integers in the surrounding context, see that it is bound to a function, and evaluate that function with the parameter 10:
(cons 10 (lazy-seq (integers (inc 10))))
Since a lazy-seq isn't realized until it needs to be, simply evaluating this form will result in a clojure.lang.Cons object whose first element is 10 and whose rest element is a clojure.lang.LazySeq that hasn't been realized yet.
You can verify this with a simple def (no infinite hang):
user> (def my-integers (integers 10))
;=> #'user/my-integers
In the final "print" step, Clojure basically tries to convert the result of the form it just evaluated to a string, then print that string to the console. For a finite sequence, this is easy. It just keeps taking items from the sequence until there aren't any left, converts each item to a string, separates them by spaces, sticks some parentheses on the ends, and voilĂ :
user> (take 5 (integers 10))
;=> (10 11 12 13 14)
But as you've defined integers, there won't be a point at which there are no items left (well, at least until you get an integer overflow, but that could be remedied by using inc' instead of just inc). So Clojure is able to read and evaluate your input just fine, but it simply cannot print all the items of an infinite result.
When you try to print an unbounded lazy sequence, it will be completely realized, unless you limit *print-length*.
The lazy-seq macro never constructs a list, finite or infinite. It constructs a clojure.lang.LazySeq object. This is a nominal sequence that wraps a function of no arguments (commonly called a thunk) that evaluates to the actual sequence when called; but it isn't called until it has to be, and that's the purpose of the mechanism: to delay evaluating the actual sequence.
So you can pass endless sequences around as evaluated LazySeq objects, provided you never realise them. Your evaluation at the REPL invokes realisation, an endless process.
It's not returning anything because your integers function creates an infinite loop.
(defn integers [n]
(do (prn n)
(cons n (lazy-seq (integers (inc n))))))
Call it with (integers 10) and you'll see it counting forever.

"compiling" stacktrace error for clojure

I'm learning Clojure, and I find difficult to understand where a specific compiler error happens:
java.lang.ClassCastException: java.lang.Long cannot be cast to
clojure.lang.IPersistentCollection, compiling:(fwpd/core.clj:100:1)
Line 100 is just:
(fib-seq3 5)
So it says nothing, because in fact the error is in the fib-seq3 function (parameters to a "conj" call are inverted, see below).
Is this normal? No way to know where an error is???
Just for reference, here's the code (again, I know where the error is; I just don't understand how was I supposed to find it, given that the message doesn't tell me at which line it happens):
(defn fib-seq3
([to]
(fib-seq3 [] 0 1 0 to))
([coll a b k to]
(if (= k to)
coll
(fib-seq3 (conj b coll) b (+ a b) (inc k) to)))
(fib-seq3 5)
Stack traces in Clojure suck. In fact, error messages were rated by Clojure community as the top priority area for improvements, as well as Clojure most frustrating part.
This problem is not new. There was no considerable improvements in Clojure stack traces for quite a long time. But Clojure team is fully aware of this situation, so we could hope for improvements.
To better understand Clojure stack traces try reading Clojure Stack Traces for the Uninitiated. Though the article is somewhat old, it's still relevant.
In short, you should look for so-called "cause trace", which is a second part of any Clojure stack trace and starts with "Caused by" phrase.
The problem is that I was using REPL (Vim+Fireplace) to execute the code. Executing using lein repl fixed the problem.
#Leonid #amalloy:
(.printStackTrace *e)
gives the proper stacktrace in the REPL (even from inside Fireplace, using "cqp" which gives the REPL prompt), so thank you very much for the comment (didn't know that!)

(println (iterate inc 0)): why does this even start printing?

When I run (println (iterate inc 0)) in my repl, I will get something like this:
user=> (println (iterate inc 0))
(0 1 2 3 4 5 6 7 8 9 10 11 12 13 ....................
My expectation when I run the code is that repl shows nothing and just stuck because (iterate inc 0) never ends. But, I see (0 1 2 3 ....
(iterate inc 0) generates infinite sequence which never returns. If it never ends, then why println starts printing values?
In other words, why (println xx) is started being evaluated even if the input is never finished being evaluated?
You should read up on lazy seqs in Clojure. They're able to produce values that can be consumed incrementally before the whole sequence is realized (which, in this case, will never happen).
It might help to think of it as push vs pull. Instead of iterate creating an entire list of values and then pushing them to the println function (which would never happen), iterate just hands it a lazy sequence, and println pulls values as it needs them. This is why (take 5 (iterate inc 0)) works; take only tries to pull 5 values before stopping.
Clojure's printing is smarter than System.out.println; it can be customized for different types. In the case of sequences, it walks through element-by-element, printing each one as it goes - we don't have to wait until the entire sequence is evaluated to start printing things.
By contrast, System.out.println, which calls toString before printing, behaves more like you might expect. It hangs forever, not printing anything because toString needs to evaluate the entire sequence - or, at least, it would hang forever if it didn't run out of memory trying to build the string.
That said, the entire expression is indeed stuck - if you were waiting for it to stop printing, you'd wait forever:
(do
(println (iterate inc 0))
(println "Never reached!"))

OutOfMemoryError when using seque function

I have this function that reproduces my problem:
(defn my-problem
[preprocess count print-freq]
(doseq [x (preprocess (range 0 count))]
(when (= 0 (mod x print-freq))
(println x))))
Everything works fine when I call it with identity function like this :
(my-problem identity 10000000 200000)
;it prints 200000,400000 ... 9800000 just as it should
When I call it with seque function I get OutOfMemoryError :
(my-problem #(seque 5 %) 10000000 200000)
;it prints numbers up to 2000000 and then it throws OutOfMemoryException
My understanding is that seque function should just split the processing into two threads using ConcurrentBlockingQueue with max size 5 (in this case). I don't understand where the memory leak is.
The way seque is implemented, if you consume elements much more quickly than you can produce them, a large number of agent tasks will pile up in the queue used internally by seque (up to one task per element in the sequence). In theory what you're doing should be fine, but in practice it doesn't really work out. You should be able to see the same effect just by running (dorun (seque (range))).
You can also use the function sequeue in flatland/useful, which makes tradeoffs that are different from the ones in clojure.core. Read the docstring carefully, but I think it would work well for your situation.