Undefined reference error when calling a subroutine from a program - fortran

I have a main program but I want to use it as a subroutine. Therefore, I defined a subroutine inside it
Program main
contains
subroutine ram_cpl
.
.
.
end subroutine ram_cpl
end program main
I am supposed to link it to an executable exe1 and then use further for some external programs. I get exe1 normally but when I call this subroutine in an external program located in a different directory, I get an error
undefined reference to `ram_cpl'
I think the problem is occurring with the linkage as either I should declare this subroutine as public or the linkage should be done properly.
But I can use the PUBLIC statement only inside a module, I also checked my command line used for linkage but I did not get any clue.
/usr/local/bin/mpif90 -frepack-arrays -O3 -ftree-vectorize -ftree-loop-linear -funroll-loops -w -ffree-form -ffree-line-length-none -frecord-marker=4 -fconvert=big-endian -I.. master.o -o exe2 -L.. ../main.o
where main.o is the compiled program containing the subroutine and master is the another program that calls it. exe2 is the executable I am trying to get.
This command line runs properly with other programs and I also tried to replace the program main with module main but it gave me another error.

Your subroutine is internal to the program where it is declared. You cannot call it from anywhere else.
If you want to call a subroutine from multiple locations, place it in a module, do not make it internal. All subroutines in modern Fortran should be placed in a module unless you have a good reason to place them elsewhere.
You must use the module when before you call the subroutine from it.
You can also make it external (after end program), but the module is a better and the modern way to go. External subroutine is like any other, it is just outside of any other program unit. An external statement should be used in the calling code (often not necessary).
Also, you cannot compile two programs at the same time. Only one main program is allowed.

Related

gfortran failing to link program on M1 Mac, architecture arm64 [duplicate]

I am trying to build a Fortran program, but I get errors about an undefined reference or an unresolved external symbol. I've seen another question about these errors, but the answers there are mostly specific to C++.
What are common causes of these errors when writing in Fortran, and how do I fix/prevent them?
This is a canonical question for a whole class of errors when building Fortran programs. If you've been referred here or had your question closed as a duplicate of this one, you may need to read one or more of several answers. Start with this answer which acts as a table of contents for solutions provided.
A link-time error like these messages can be for many of the same reasons as for more general uses of the linker, rather than just having compiled a Fortran program. Some of these are covered in the linked question about C++ linking and in another answer here: failing to specify the library, or providing them in the wrong order.
However, there are common mistakes in writing a Fortran program that can lead to link errors.
Unsupported intrinsics
If a subroutine reference is intended to refer to an intrinsic subroutine then this can lead to a link-time error if that subroutine intrinsic isn't offered by the compiler: it is taken to be an external subroutine.
implicit none
call unsupported_intrinsic
end
With unsupported_intrinsic not provided by the compiler we may see a linking error message like
undefined reference to `unsupported_intrinsic_'
If we are using a non-standard, or not commonly implemented, intrinsic we can help our compiler report this in a couple of ways:
implicit none
intrinsic :: my_intrinsic
call my_intrinsic
end program
If my_intrinsic isn't a supported intrinsic, then the compiler will complain with a helpful message:
Error: ‘my_intrinsic’ declared INTRINSIC at (1) does not exist
We don't have this problem with intrinsic functions because we are using implicit none:
implicit none
print *, my_intrinsic()
end
Error: Function ‘my_intrinsic’ at (1) has no IMPLICIT type
With some compilers we can use the Fortran 2018 implicit statement to do the same for subroutines
implicit none (external)
call my_intrinsic
end
Error: Procedure ‘my_intrinsic’ called at (1) is not explicitly declared
Note that it may be necessary to specify a compiler option when compiling to request the compiler support non-standard intrinsics (such as gfortran's -fdec-math). Equally, if you are requesting conformance to a particular language revision but using an intrinsic introduced in a later revision it may be necessary to change the conformance request. For example, compiling
intrinsic move_alloc
end
with gfortran and -std=f95:
intrinsic move_alloc
1
Error: The intrinsic ‘move_alloc’ declared INTRINSIC at (1) is not available in the current standard settings but new in Fortran 2003. Use an appropriate ‘-std=*’ option or enable ‘-fall-intrinsics’ in order to use it.
External procedure instead of module procedure
Just as we can try to use a module procedure in a program, but forget to give the object defining it to the linker, we can accidentally tell the compiler to use an external procedure (with a different link symbol name) instead of the module procedure:
module mod
implicit none
contains
integer function sub()
sub = 1
end function
end module
use mod, only :
implicit none
integer :: sub
print *, sub()
end
Or we could forget to use the module at all. Equally, we often see this when mistakenly referring to external procedures instead of sibling module procedures.
Using implicit none (external) can help us when we forget to use a module but this won't capture the case here where we explicitly declare the function to be an external one. We have to be careful, but if we see a link error like
undefined reference to `sub_'
then we should think we've referred to an external procedure sub instead of a module procedure: there's the absence of any name mangling for "module namespaces". That's a strong hint where we should be looking.
Mis-specified binding label
If we are interoperating with C then we can specify the link names of symbols incorrectly quite easily. It's so easy when not using the standard interoperability facility that I won't bother pointing this out. If you see link errors relating to what should be C functions, check carefully.
If using the standard facility there are still ways to trip up. Case sensitivity is one way: link symbol names are case sensitive, but your Fortran compiler has to be told the case if it's not all lower:
interface
function F() bind(c)
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
tells the Fortran compiler to ask the linker about a symbol f, even though we've called it F here. If the symbol really is called F, we need to say that explicitly:
interface
function F() bind(c, name='F')
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
If you see link errors which differ by case, check your binding labels.
The same holds for data objects with binding labels, and also make sure that any data object with linkage association has matching name in any C definition and link object.
Equally, forgetting to specify C interoperability with bind(c) means the linker may look for a mangled name with a trailing underscore or two (depending on compiler and its options). If you're trying to link against a C function cfunc but the linker complains about cfunc_, check you've said bind(c).
Not providing a main program
A compiler will often assume, unless told otherwise, that it's compiling a main program in order to generate (with the linker) an executable. If we aren't compiling a main program that's not what we want. That is, if we're compiling a module or external subprogram, for later use:
module mod
implicit none
contains
integer function f()
f = 1
end function f
end module
subroutine s()
end subroutine s
we may get a message like
undefined reference to `main'
This means that we need to tell the compiler that we aren't providing a Fortran main program. This will often be with the -c flag, but there will be a different option if trying to build a library object. The compiler documentation will give the appropriate options in this case.
There are many possible ways you can see an error like this. You may see it when trying to build your program (link error) or when running it (load error). Unfortunately, there's rarely a simple way to see which cause of your error you have.
This answer provides a summary of and links to the other answers to help you navigate. You may need to read all answers to solve your problem.
The most common cause of getting a link error like this is that you haven't correctly specified external dependencies or do not put all parts of your code together correctly.
When trying to run your program you may have a missing or incompatible runtime library.
If building fails and you have specified external dependencies, you may have a programming error which means that the compiler is looking for the wrong thing.
Not linking the library (properly)
The most common reason for the undefined reference/unresolved external symbol error is the failure to link the library that provides the symbol (most often a function or subroutine).
For example, when a subroutine from the BLAS library, like DGEMM is used, the library that provides this subroutine must be used in the linking step.
In the most simple use cases, the linking is combined with compilation:
gfortran my_source.f90 -lblas
The -lblas tells the linker (here invoked by the compiler) to link the libblas library. It can be a dynamic library (.so, .dll) or a static library (.a, .lib).
In many cases, it will be necessary to provide the library object defining the subroutine after the object requesting it. So, the linking above may succeed where switching the command line options (gfortran -lblas my_source.f90) may fail.
Note that the name of the library can be different as there are multiple implementations of BLAS (MKL, OpenBLAS, GotoBLAS,...).
But it will always be shortened from lib... to l... as in liopenblas.so and -lopenblas.
If the library is in a location where the linker does not see it, you can use the -L flag to explicitly add the directory for the linker to consider, e.g.:
gfortran -L/usr/local/lib -lopenblas
You can also try to add the path into some environment variable the linker searches, such as LIBRARY_PATH, e.g.:
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
When linking and compilation are separated, the library is linked in the linking step:
gfortran -c my_source.f90 -o my_source.o
gfortran my_source.o -lblas
Not providing the module object file when linking
We have a module in a separate file module.f90 and the main program program.f90.
If we do
gfortran -c module.f90
gfortran program.f90 -o program
we receive an undefined reference error for the procedures contained in the module.
If we want to keep separate compilation steps, we need to link the compiled module object file
gfortran -c module.f90
gfortran module.o program.f90 -o program
or, when separating the linking step completely
gfortran -c module.f90
gfortran -c program.f90
gfortran module.o program.o -o program
Problems with the compiler's own libraries
Most Fortran compilers need to link your code against their own libraries. This should happen automatically without you needing to intervene, but this can fail for a number of reasons.
If you are compiling with gfortran, this problem will manifest as undefined references to symbols in libgfortran, which are all named _gfortran_.... These error messages will look like
undefined reference to '_gfortran_...'
The solution to this problem depends on its cause:
The compiler library is not installed
The compiler library should have been installed automatically when you installed the compiler. If the compiler did not install correctly, this may not have happened.
This can be solved by correctly installing the library, by correctly installing the compiler. It may be worth uninstalling the incorrectly installed compiler to avoid conflicts.
N.B. proceed with caution when uninstalling a compiler: if you uninstall the system compiler it may uninstall other necessary programs, and may render other programs unusable.
The compiler cannot find the compiler library
If the compiler library is installed in a non-standard location, the compiler may be unable to find it. You can tell the compiler where the library is using LD_LIBRARY_PATH, e.g. as
export LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH"
If you can't find the compiler library yourself, you may need to install a new copy.
The compiler and the compiler library are incompatible
If you have multiple versions of the compiler installed, you probably also have multiple versions of the compiler library installed. These may not be compatible, and the compiler might find the wrong library version.
This can be solved by pointing the compiler to the correct library version, e.g. by using LD_LIBRARY_PATH as above.
The Fortran compiler is not used for linking
If you are linking invoking the linker directly, or indirectly through a C (or other) compiler, then you may need to tell this compiler/linker to include the Fortran compiler's runtime library. For example, if using GCC's C frontend:
gcc -o program fortran_object.o c_object.o -lgfortran

dsyev in fortran 90 [duplicate]

I am trying to build a Fortran program, but I get errors about an undefined reference or an unresolved external symbol. I've seen another question about these errors, but the answers there are mostly specific to C++.
What are common causes of these errors when writing in Fortran, and how do I fix/prevent them?
This is a canonical question for a whole class of errors when building Fortran programs. If you've been referred here or had your question closed as a duplicate of this one, you may need to read one or more of several answers. Start with this answer which acts as a table of contents for solutions provided.
A link-time error like these messages can be for many of the same reasons as for more general uses of the linker, rather than just having compiled a Fortran program. Some of these are covered in the linked question about C++ linking and in another answer here: failing to specify the library, or providing them in the wrong order.
However, there are common mistakes in writing a Fortran program that can lead to link errors.
Unsupported intrinsics
If a subroutine reference is intended to refer to an intrinsic subroutine then this can lead to a link-time error if that subroutine intrinsic isn't offered by the compiler: it is taken to be an external subroutine.
implicit none
call unsupported_intrinsic
end
With unsupported_intrinsic not provided by the compiler we may see a linking error message like
undefined reference to `unsupported_intrinsic_'
If we are using a non-standard, or not commonly implemented, intrinsic we can help our compiler report this in a couple of ways:
implicit none
intrinsic :: my_intrinsic
call my_intrinsic
end program
If my_intrinsic isn't a supported intrinsic, then the compiler will complain with a helpful message:
Error: ‘my_intrinsic’ declared INTRINSIC at (1) does not exist
We don't have this problem with intrinsic functions because we are using implicit none:
implicit none
print *, my_intrinsic()
end
Error: Function ‘my_intrinsic’ at (1) has no IMPLICIT type
With some compilers we can use the Fortran 2018 implicit statement to do the same for subroutines
implicit none (external)
call my_intrinsic
end
Error: Procedure ‘my_intrinsic’ called at (1) is not explicitly declared
Note that it may be necessary to specify a compiler option when compiling to request the compiler support non-standard intrinsics (such as gfortran's -fdec-math). Equally, if you are requesting conformance to a particular language revision but using an intrinsic introduced in a later revision it may be necessary to change the conformance request. For example, compiling
intrinsic move_alloc
end
with gfortran and -std=f95:
intrinsic move_alloc
1
Error: The intrinsic ‘move_alloc’ declared INTRINSIC at (1) is not available in the current standard settings but new in Fortran 2003. Use an appropriate ‘-std=*’ option or enable ‘-fall-intrinsics’ in order to use it.
External procedure instead of module procedure
Just as we can try to use a module procedure in a program, but forget to give the object defining it to the linker, we can accidentally tell the compiler to use an external procedure (with a different link symbol name) instead of the module procedure:
module mod
implicit none
contains
integer function sub()
sub = 1
end function
end module
use mod, only :
implicit none
integer :: sub
print *, sub()
end
Or we could forget to use the module at all. Equally, we often see this when mistakenly referring to external procedures instead of sibling module procedures.
Using implicit none (external) can help us when we forget to use a module but this won't capture the case here where we explicitly declare the function to be an external one. We have to be careful, but if we see a link error like
undefined reference to `sub_'
then we should think we've referred to an external procedure sub instead of a module procedure: there's the absence of any name mangling for "module namespaces". That's a strong hint where we should be looking.
Mis-specified binding label
If we are interoperating with C then we can specify the link names of symbols incorrectly quite easily. It's so easy when not using the standard interoperability facility that I won't bother pointing this out. If you see link errors relating to what should be C functions, check carefully.
If using the standard facility there are still ways to trip up. Case sensitivity is one way: link symbol names are case sensitive, but your Fortran compiler has to be told the case if it's not all lower:
interface
function F() bind(c)
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
tells the Fortran compiler to ask the linker about a symbol f, even though we've called it F here. If the symbol really is called F, we need to say that explicitly:
interface
function F() bind(c, name='F')
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: f
end function f
end interface
print *, F()
end
If you see link errors which differ by case, check your binding labels.
The same holds for data objects with binding labels, and also make sure that any data object with linkage association has matching name in any C definition and link object.
Equally, forgetting to specify C interoperability with bind(c) means the linker may look for a mangled name with a trailing underscore or two (depending on compiler and its options). If you're trying to link against a C function cfunc but the linker complains about cfunc_, check you've said bind(c).
Not providing a main program
A compiler will often assume, unless told otherwise, that it's compiling a main program in order to generate (with the linker) an executable. If we aren't compiling a main program that's not what we want. That is, if we're compiling a module or external subprogram, for later use:
module mod
implicit none
contains
integer function f()
f = 1
end function f
end module
subroutine s()
end subroutine s
we may get a message like
undefined reference to `main'
This means that we need to tell the compiler that we aren't providing a Fortran main program. This will often be with the -c flag, but there will be a different option if trying to build a library object. The compiler documentation will give the appropriate options in this case.
There are many possible ways you can see an error like this. You may see it when trying to build your program (link error) or when running it (load error). Unfortunately, there's rarely a simple way to see which cause of your error you have.
This answer provides a summary of and links to the other answers to help you navigate. You may need to read all answers to solve your problem.
The most common cause of getting a link error like this is that you haven't correctly specified external dependencies or do not put all parts of your code together correctly.
When trying to run your program you may have a missing or incompatible runtime library.
If building fails and you have specified external dependencies, you may have a programming error which means that the compiler is looking for the wrong thing.
Not linking the library (properly)
The most common reason for the undefined reference/unresolved external symbol error is the failure to link the library that provides the symbol (most often a function or subroutine).
For example, when a subroutine from the BLAS library, like DGEMM is used, the library that provides this subroutine must be used in the linking step.
In the most simple use cases, the linking is combined with compilation:
gfortran my_source.f90 -lblas
The -lblas tells the linker (here invoked by the compiler) to link the libblas library. It can be a dynamic library (.so, .dll) or a static library (.a, .lib).
In many cases, it will be necessary to provide the library object defining the subroutine after the object requesting it. So, the linking above may succeed where switching the command line options (gfortran -lblas my_source.f90) may fail.
Note that the name of the library can be different as there are multiple implementations of BLAS (MKL, OpenBLAS, GotoBLAS,...).
But it will always be shortened from lib... to l... as in liopenblas.so and -lopenblas.
If the library is in a location where the linker does not see it, you can use the -L flag to explicitly add the directory for the linker to consider, e.g.:
gfortran -L/usr/local/lib -lopenblas
You can also try to add the path into some environment variable the linker searches, such as LIBRARY_PATH, e.g.:
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/lib
When linking and compilation are separated, the library is linked in the linking step:
gfortran -c my_source.f90 -o my_source.o
gfortran my_source.o -lblas
Not providing the module object file when linking
We have a module in a separate file module.f90 and the main program program.f90.
If we do
gfortran -c module.f90
gfortran program.f90 -o program
we receive an undefined reference error for the procedures contained in the module.
If we want to keep separate compilation steps, we need to link the compiled module object file
gfortran -c module.f90
gfortran module.o program.f90 -o program
or, when separating the linking step completely
gfortran -c module.f90
gfortran -c program.f90
gfortran module.o program.o -o program
Problems with the compiler's own libraries
Most Fortran compilers need to link your code against their own libraries. This should happen automatically without you needing to intervene, but this can fail for a number of reasons.
If you are compiling with gfortran, this problem will manifest as undefined references to symbols in libgfortran, which are all named _gfortran_.... These error messages will look like
undefined reference to '_gfortran_...'
The solution to this problem depends on its cause:
The compiler library is not installed
The compiler library should have been installed automatically when you installed the compiler. If the compiler did not install correctly, this may not have happened.
This can be solved by correctly installing the library, by correctly installing the compiler. It may be worth uninstalling the incorrectly installed compiler to avoid conflicts.
N.B. proceed with caution when uninstalling a compiler: if you uninstall the system compiler it may uninstall other necessary programs, and may render other programs unusable.
The compiler cannot find the compiler library
If the compiler library is installed in a non-standard location, the compiler may be unable to find it. You can tell the compiler where the library is using LD_LIBRARY_PATH, e.g. as
export LD_LIBRARY_PATH="/path/to/library:$LD_LIBRARY_PATH"
If you can't find the compiler library yourself, you may need to install a new copy.
The compiler and the compiler library are incompatible
If you have multiple versions of the compiler installed, you probably also have multiple versions of the compiler library installed. These may not be compatible, and the compiler might find the wrong library version.
This can be solved by pointing the compiler to the correct library version, e.g. by using LD_LIBRARY_PATH as above.
The Fortran compiler is not used for linking
If you are linking invoking the linker directly, or indirectly through a C (or other) compiler, then you may need to tell this compiler/linker to include the Fortran compiler's runtime library. For example, if using GCC's C frontend:
gcc -o program fortran_object.o c_object.o -lgfortran

rstudio calls fortran subroutines - undefined symbol error

My apologies if this is a simple question for some people but I can't find the solution anywhere.
I am an RStudio beginner and I want to call specific routines of an open source fortran77 simulation program (there is also c and c++ code in it) from within RStudio.
The Fortran program is using Makefiles for compiling and it generates many .o object files (by the way, I am using Unix). I wrote a wrapper file in fortran which compiles together with the simulation program and it is supposed to be used by RStudio for calling the fortran routines. I generate the shared object file .so of that wrapper file and all works well if I have simple calculations in that wrapper file. I am following the same process as in this excellent post:
http://www.r-bloggers.com/fortran-and-r-speed-things-up/
I use dyn.load and .Fortran successfully and I get results back as long as I do not call subroutines that are located in another file (and correspond to other object files and other .so files). When I try to call another subroutine from within the wrapper subroutine I get the following error:
Error in dyn.load("rwrapper.so") :
unable to load shared object '/home/adminuser/ESP-rSource/src/esrubps/rwrapper.so':
/home/adminuser/ESP-rSource/src/esrubps/rwrapper.so: undefined symbol: runit_
runit (without underscore) is another subroutine that is located in another file and has another object file. I then tried to make a second shared object file for that runit subroutine and I also load it with dyn.load but it did not fix the problem. I am probably doing something wrong here but I do not know what. Do I need to convert all object files to .so shared object files and then use dyn.load to load each one of them (there are around 100 of .o files) or would the "wrapper/communication" file approach work? Is there a way to establish communication between the fortran program and RStudio? I am pasting my RStudio script here for information only (note that the 2nd dyn.load does not make a difference):
myrwrapper <- function(rrrandom) {
if (!is.loaded('rwrapper')) {
dyn.load("rwrapper.so")
}
if (!is.loaded('esru_lib')) {
dyn.load("./home/adminuser/ESP-rSource/src/lib/esru_lib.so")
}
retvals <- .Fortran("RXCHNGE",icomp = as.integer(2), rCOUPLEVAR = as.numeric(rrrandom))
return(retvals$rCOUPLEVAR)
}
An easy solution would have been to write/read a text file from both programs and exchange data through that file, however my understanding is that this would make the simulations really slow because of the need to open/close a file at almost every time step, and so I am trying to avoid such an approach.
Thank you for your help.
This was actually a lot easier than I thought. It was a novice mistake with the shared .so file. Problem solved when creating the shared file and linking it to two (or more) object files rather than one. For example if you have 1.F which calls 2.F and the respective 1.o and 2.o, you should include both files when creating the shared file as:
gfortran -shared -o 1plus2.so 1.o 2.o

Fortran program won't add into library archive

I have a Fortran library archive (libmy.a) that contains various subroutines.
I then try to add another one with:
ifort -c -O3 ~/mydir/sub.f
ar -rv ~/mydir/libmy.a sub.o
However, while libmy's attributes change, its size does not, so it seems as if sub is not being incorporated (and trying to use the library gives an error message "undefined reference to `sub_'".
The other subroutines in the library were added exactly like this, without any problems.
What reasons could there be for this particular subroutine not being incorporated?

gfortran: multiple definitions of... first defined here

I have code that includes main program and many modules in separate files that I am linking. Currently I have a makefile that creates .o files for each module (one on separate line) and then I put them all together, such as here:
mpif90 - modutils
mpif90 -c modvarsym
mpif90 -c s1_Phi.f90
mpif90 -c s2_Lambda.f90
mpif90 maincode.f90 modutils.o modvarsym.o s1_Phi.o s2_Lambda.o -o maincode
The above compiles fine and runs OK - except tat I suspect that I suspect array bound problems in my variables. So I include -fbounds-check maincode statement such as here:
mpif90 maincode.f90 modutils.o modvarsym.o s1_Phi.o s2_Lambda.o -o -fbounds-check maincode
That's when numerous "multiple definition" errors appear, and the code will no longer compile. I imagine that is because of -fbounds-check: rather than just enabling checking for array bounds, it probably does some additional checks. I also suspect that the error is in the way that I enter files in the make file. However I could not find the way that would work. In these files, both modvarsym and modutils is used by the main code as well as by the other two modules. The main code uses all four modules.
There is no include statement in these files. Maincode is the only file with the program statement, the variables are declared only once in modvarsym. Overall, the code compiles and runs without -fbounds-check. However I really want to use -fbounds-check to make sure the arrays do not overrun. Would anybody be able to put me on the right track? Thank you.
This is the answer #dave_thompson_085 gave in his comments, it seems to solve the problem.
First, I assume your first command is meant to have -c, and your first two are meant to have .f90 (or .f95 or similar) suffix as otherwise the compiler shouldn't do anything for them. Second, -o -fbounds-check maincode (in the absence of -c) means to put the linked output in file -fbounds-check and include maincode (if it exists) among the files linked. Since you have already linked all your routines into maincode, linking those same routines again PLUS maincode produces duplicates.
Move -fbounds-check before the -o at least; even better, it is usual style (though not required) to put options that affect parsing and code generation before the source file(s) as well, and in your example that is maincode.f90. Also note that this generates bound checks only for the routines in maincode; if there are any subscripting errors in the other routines they won't be caught. When you have a bug in a compiled language the place where a problem is detected may not be the actual origin, and it usually best to apply debugging options to everything you can.