Using initialized variable after placement new from the constructor tripping UB? - c++

Disregarding whether the following can be achieved through other, more safe constructs - I'm simply interested in whether or not the following results in a well-defined output.
Assume you have a struct A:
struct A {
Foo* foo;
}
And a struct B inheriting from it:
struct B : A {
B() {
foo->some_function(); // UB
}
}
Sure enough if you were creating a B instance the normal way you'd trip UB, however...
template<typename R>
R make_A() { // This acts like a constructor for As
static_assert(std::is_base_of<A, R>::value, "R must derive from A");
char r[sizeof(R)];
((R*)r)->foo = returns_some_valid_foo();
new (r) R;
return *((R*)r);
}
B b1; // Blows up (Could you somehow prevent this from compiling without changing B?)
B b2 = make_A<B>(); // Works fine?
Sheepishly assuming that C++ works like C somewhere under the hood, I'm guessing that this would be similar to having a struct instance in C, initializing it by hand, and then calling some method (in this case B's constructor) on the finished product.
Again, I'm not interested in whether you should do this or not, it's just a technical question.
EDIT:
If you wonder what this could be useful for, I could use it to pull out values into a plain struct from, say, a configuration file in a really terse manner. Yes it does use macros but call it a stub until C++ gets compile time reflection:
#define config_key($x, $def) $x = foo->get<decltype($x)>(#$x, ($def))
struct Record : A {
int config_key(a, 3); // Second parameter is default value
string config_key(b, "something");
}
auto record = make_A<Record>();
(Using A and foo here to stay consistent with what I wrote above, make_A is actually part of a class that does config)

This:
((R*)r)->foo = returns_some_valid_foo();
is undefined behavior. There is no object of type R at r. Full stop. If you flip the two lines so that you create the R first, then you're fine (modulo r being insufficiently aligned).
Or really, just:
R r;
r.foo = returns_some_valid_foo();
return r;

Related

auto type deduction coercion for templated class?

I have 2 issues in a template class I'm building. I've included example code below. First question is whether I can coerce the auto type deducted for a templated class. i.e.:
auto p = myvar;
where myvar is T<...>, could I force auto to detect Q<...>? This is simplified. Read on for a more clear explanation.
Edited for clarity: Let me explain what I'm doing. And I'd also like to indicate that this style code is working on a large-scale project perfectly well. I am trying to add some features and functions and in addition to smooth out some of the more awkward behaviors.
The code uses templates to perform work on n-dimensional arrays. The template has a top-level class, and a storage class underneath. Passing the storage class into the top level class allows for a top level class which inherits the storage class. So I start with NDimVar, and I have NDimStor. I end up with
NDimVar<NDimStor>
The class contains NO DATA except for the buffer of data:
class NDimStor<size_t... dimensions> {
int buffer[Size<dimensions...>()]
}
This makes the address of the class == the address of the buffer. This is key to the whole implementation. Is this an incorrect assumption? (I can see this works on my system without any issues, but perhaps this isn't always the case.)
When I create NDimVar<NDimStor<10,10>> I end up with a 10x10 array.
I have functions for getting pieces of the array, for example:
NDimVar<NDimStor<dimensions...>>::RemoveDim & get(int index);
This creates a new 1d array of 10 elements out of the 2d 10x10 array:
NDimVar<NdimStor<10>>
In order to return this as a reference, I use a reinterpret_cast at the location of the data I want. So in this example, get(3) would perform:
return reinterpret_cast<NDimVar≤NDimStor<dimensions...>>::RemoveDim&>(buffer[index * DimensionSumBelow<0>()]);
DimensionSumBelow<0> returns the sum of elements at dimensions 1+, i.e. 10. So &buffer[30] is the address of the referenced 1d NDimVar.
All of this works very well.
The only issue I have is that I would like to add on overlays. For example, be able to return a reference to a new class:
NDimVar<NDimPermute<NDimStor<10,10>,1,0>>
that points to the same original location along with a permutation behavior (swapping dimensions). This also works well. But I would like for:
auto p = myvar.Permute<1,0>()
to create a new copy of myvar with permuted data. This would work if I said:
NDimVar<NDimStor<10,10>> p = myvar.Permute<1,0>().
I feel that there is some auto type deduction stuff I could do in order to coerce the auto type returned, but I'm not sure. I haven't been able to figure it out.
Thanks again,
Nachum
What I want is:
1. Create temporary overlay classes on my storage, e.g. A_top<A_storage> can return a type called A_top<A_overlay<A_storage>> without creating a new object, it just returns a reference to this type. This changes the way the storage is accessed. The problem is upon a call to auto. I don't want this type to be instantiated directly. Can I modify the return to auto to be an original A_top?
#include <iostream>
using namespace std;
class A_storage {
public:
float arr[10];
A_storage () {
}
float & el (int index) {
return arr[index];
}
};
template <typename T> class A_overlay : T {
private:
A_overlay () {
cout << "A_overlay ()" << endl;
}
A_overlay (const A_overlay &) {
cout << "A_overlay (&)" << endl;
}
public:
using T::arr;
float & el (int index) {
return arr[10 - index];
}
};
template <typename T> class A_top;
template <typename T> class A_top : public T {
public:
A_top () {
}
A_top<A_overlay<A_storage>> & get () {
return reinterpret_cast<A_top<A_overlay<A_storage>>&>(*this);
}
};
using A = A_top<A_storage>;
int main (void) {
A a;
auto c = a.get(); // illegal - can i auto type deduce to A_top<A_storage>?
return 0;
}
If a function accepts (A_top<A_storage> &) as a parameter, how can I create a conversion function that can cast A_top<A_overlay<A_storage>>& to A_top<A_storage>& ?
Thanks,
Nachum
First, your design doesn't look right to me, and I'm not sure if the behaviour is actually well-defined or not. (Probably not.)
In any case, the problem is not with auto. The error is caused by the fact that the copy constructor of A_overlay is private, while you need it to copy A_top<A_overlay<A_storage>> returned by a.get() to auto c.
(Note that the auto in this case obviously gets deduced to A_top<A_overlay<A_storage>>, I assume you made a typo when said that it's A_top<A_storage>.)
Also note that A_storage in A_top::get() should be replaced with T, even if it doesn't change anything in your snippet because you only have T == A_storage.
If a function accepts (A_top &) as a parameter, how can I create a conversion function that can cast A_top> to A_top& ?
Ehm, isn't it just this:
return reinterpret_cast<A_top<A_storage>&>(obj);
reinterpret_cast should almost never be used. It essentially remove any compiler validation that the types are related. And doing unrelated cast is essentially undefined behavior as it essentially assume that derived classes are always at offset 0...
It does not make any sense to write such code. It is not maintainable and hard to understand what you are trying to achieve. It look like you want to pretend that your A_top<A_storage> object is a A_top<A_overlay<A_storage>> object instead. If this is what you want to do, then declare A alias as that type.
In your code, it look like you want to invert the indexing so that item at position 10 is returned when you ask item at position 0 and vice versa. Do you really think, that it is obvious from your obfuscated code? Never write such bad code.
Something like
class A_overlay {
public:
float & el (int index) { return arr[10 - index]; }
private:
A_storage arr;
};
would make much more sense than your current code.
No cast needed.
Easy to understand.
Well defined behavior.
You might keep your job.
And obviously, you would update the following line as appropriate:
using A = A_top<A_storage>;
Also, if A_top has no useful purpose, then why not using A_overlay directly? And why are you using template if A_storage is not a template? Do you really want to reuse such mess elsewhere in your code base.
Obviously, your code inheritance does not respect IS-A relationship if your write such code. So it is clearly a bad design!

Is there a way to use an union in GLSL?

I was wondering if there is a way to use an union in GLSL. I haven't seen any documentation about this. If not, is there a clean workaround to using a union.
I basically want an array of something. And that something might be either of 2 things, therefore I would like to use a union to define it.
Thanks!
P.S. There might be some weird casting trick to do this that I don't know about, feel free to suggest a better method.
Edit:
Code example(would not compile because union is not available):
struct A{
bool isA;
float value;
};
struct B{
bool isA;
int value;
};
/* union */
union AandB {
A a;
B b;
}
void main()
{
AandB foo;
if(foo.a.isA)
/* process on A */
else
/* process on B */
}
Also, imagine A and B are huge, you wouldn't want to duplicate them.
Edit 2:
Here's some more information, hope it helps:
This data would come from "outside" and be vertex specific. It would have to be treated differently depending on the type(A or B). They'd probably be accessed from a VBO.
Since we are talking about vertex attributes, you can do this:
layout(location = 0) vec4 floatVal;
layout(location = 0) ivec4 intVal;
OpenGL refers to this as attribute aliasing, and it is explicitly allowed, with the following caveat. Either only one of the aliased attributes is accessed, or each code path through the shader only accesses one of the attributes. So if you guard the access and value computation with a boolean condition, you'll be fine:
//Don't use either variable yet
if(isFloat)
{
//Do something with `floatVal`
}
else
{
//Do something with `intVal`
}
//Don't use either variable again.
Well, you'll be fine theoretically. Attribute aliasing is a very odd corner-case, and it's highly unlikely that any major programs that use OpenGL actually do this. Which means that implementation support will likely be buggy (code that isn't used is code that hasn't been tested). So I would advise you to switch programs if you want to make sure your code actually works across platforms.
According to GLSL specification, the keyword union is reserved for future use and will indeed result in a compilation error.
One way around that would be supported by GLSL, since they encourage you to go with straightforward data structures (no evil pointer allocation or weird casting tricks), would be to use an array of struct with a flag.
struct AandB {
A a;
B b;
bool isA;
};
Then, you can use it has intended with something like this:
AandB foo;
if (a.isA) {
/* a process */
}
else {
/* b process */
}
However, if an item has the possibility of containing neither of the types, you should be careful with the fact that the flag will be initially false and assume type B. In that case, a workaround would be to use two flags and set the correct one.
UPDATE:
If memory usage is an issue, there is still a way around, but it needs a funnier data structure. One way that comes in mind is having an array of item definitions that will hold an index and a flag. Let's imagine this data structure:
struct Item {
bool isA;
int index;
};
Item items[5];
A a[5];
B b[5];
Item firstAItem;
firstItem.isA = true;
firstItem.index = 0;
items[0] = firstAItem;
Item firstBItem;
firstBItem.isA = false;
firstBItem.index = 0;
items[1] = firstBItem;
When iterating, you could check the flag and go to the associated index, like this, assuming that N_items is the number of items you have:
for (int i=0; i<N_items; i++) {
Item currentItem = items[i];
if (currentItem.isA) {
A foo = a[currentItem.index];
/* do some stuff with foo */
} else {
B bar = b[currentItem.index];
/* do some stuff with bar */
}
}

get int Id for each class, called using Class name & its object

I have many classes, B1 B2 ... derived from the same class named A.
I want to create a function
getId<B1>() , getId<B2>() , ...
that return unique int for each class and have result that consistent with
get_id(new B1()) , get_id(new B2()) ....
In other words,
getId<Bi>() == get_id(new Bi()) .... for every i (1)
getId<Bi>() != getId<Bj>() .... when i!=j (2)
The B1 B2 is just a notation, they are longer names without integer in real life.
How to implements both functions?
Requirements :
1. I don't have to edit all Bi.h (B1 B2 ... class), because there are a lot of them.
2. Assignment integer for each class manually is not allowed, because it is tedious.
3. typeid or dynamic_cast can't be used, because it is slow (I tried.)
4. template is ok
5. non deterministic is ok
6. (bonus) If the generated integer is low-value (Ex. B1=1, B2=2 ...) , it would be nice.
The result (integer) will be used for a hash function.
I have searched, but not find any solution that meet both (1)&(2).
For example, Efficient way to generate id unique to class? is not helpful enough.
My answer is not a fancy template thing, because I thought that was already provided in the other thread you linked, saying it is not good enough. But I do have a way around your dilemma, even if I am bending some of the requirements.
You have a base class, and many many virtual subclasses. I will assume that virtual int get_id() const=0; is a possibility, since it is already a virtual base. That's what most people would immediately do, but you are retrofitting this on a large existing system, and can't manually assign all those id's.
It's too tedous, if only we had a computer ... oh wait.
You can get all the class names by searching your headers for something like grep ": public class A", or if they are too spread out and inconsistently written to get them easily from the headers, then just make get_id pure, and grep the compiler error messages to get all those class names. Dump the output to a file. Now, write a quick and dirty python script to read each line from that output, and write
print "int {}::get_id() const {{ return {}; }}".format(classname, linenumber)
I omitted the details of pulling the classname out with re, because you can do that in grep or the script or write a short c++ helper. The point is, you can output this to a new cpp file, and (with the right includes), you now have automatically assigned id's to each class.
It does not assign id's to new classes, but at least it won't be too tedious from now on, especially if you keep get_id pure.
It's not entirely clear how you want this to work, but the following fulfills all your requirements:
#include <tuple>
struct A {};
struct B0 : A {};
struct B1 : A {};
struct B2 : A {};
struct B3 : A {};
void get_id(...) {}
// Just register your types here:
using types = std::tuple<B0, B1, B2, B3>;
template <int N>
void getId() {
using T = typename std::tuple_element<N, types>::type;
get_id(new T()); // This is leaking memory since there is no delete anywhere
}
int main() {
getId<0>(); // equivalent to get_id(new B0());
getId<1>(); // equivalent to get_id(new B1());
getId<2>(); // equivalent to get_id(new B2());
getId<3>(); // equivalent to get_id(new B3());
}
If you want to know what the index is for a given type there are ways of doing that.

Struct composition with mixin and templates

I can compose an AB struct that has all the members of structs A and B:
template AFields() {int a;}
struct A { mixin AFields; }
template BFields() {int b;}
struct B { mixin BFields; }
struct AB { mixin AFields; mixin BFields; }
A a; a.a = 1;
B b; b.b = 2;
AB ab; ab.a = 3; ab.b = 4;
But how can I construct AB, if I don't have control over A and B and I don't have AFields and BFields? I.e. how to write the CatStruct template so the code below compiles?
struct A { int a; }
struct B { int b; }
mixin CatStruct!("AB", A, B);
AB ab;
ab.a = 1; ab.b = 2;
The standard library has a few hidden jewels that I didn't actually even know about myself until I peeked at the source to answer this question:
http://dlang.org/phobos/std_traits.html#Fields
and the ones right under it too. With these, we can make your CatStruct fairly succinctly. Behold:
mixin template CatStruct(string name, T...) {
static import std.traits, std.conv;
private string _code_generator() {
string code = "struct " ~ name ~ " {";
foreach(oidx, t; T) {
foreach(idx, field; std.traits.FieldTypeTuple!t)
// this line is a monster, see the end of this answer
code ~= "std.traits.FieldTypeTuple!(T["~std.conv.to!string(oidx)~"])["~std.conv.to!string(idx)~"] "~ std.traits.FieldNameTuple!t[idx] ~ ";";
}
code ~= "}";
return code;
}
mixin(_code_generator());
}
This uses a string mixin though... and while string mixins can do basically anything, they also basically suck. This is liable to be brittle but I think it will basically work while basically sucking.
It also won't do struct methods, but I think that's too hard to realistically do with any of these magical things, except perhaps opDispatch, as seen in the other answer (which is pretty nice btw, don't take my answer as a repudiation of that one, just another idea).
If there's clashing names between the two structs too, they will break this, and you will get a hideously ugly error message out of the compiler. With a real template mixin, there's an easy fix for that - a named template mixin, which allows you to disambiguate. But no such thing here. I guess you could hack one in if you needed it.
But anyway, there might be a way to use those FieldTypeTuple and FieldNameTuple from the stdlib to do this even nicer, but I think it is more-or-less what you're asking for now.
BTW, I'd say just do ordinary composition if you at all can, it is going to work the best in general. (Don't forget about alias this too which can do automatic forwarding to member variables.)
If you haven't done a lot of mixins, you probably want to ask my why I used that crazy string in the code ~= part instead of the more straightforward. code ~= field.stringof ~ " "~ FieldNameTuple!t[idx] ~ ";";
tl;dr: just trust me, ALWAYS use local names available to the scope where you run the mixin() itself in the code you generate. Long explanation follows/
It has to do with name clashes and symbol lookups. I used static imports and fully qualified names in the mixed in code - including using the local symbol for the FieldTypeTuple rather than field.stringof - to keep this as namespace-tidy as possible.
Consider the case where struct A imports some other module internally and defines a field with it.
// using my color.d just cuz I have it easily available
// but it could be anything, so don't worry about downloading it
struct A { import arsd.color; Color a; }
AB ab;
import arsd.color;
ab.a = Color.white; ab.b = 2; // we expect this work, should be the same type
Since that's a local import inside struct A, the name is meaningless at the point of the mixin.
Go ahead and adjust the mixin so it compiles using the simple line
// comment fancy line
// code ~= "std.traits.FieldTypeTuple!(T["~std.conv.to!string(oidx)~"])["~std.conv.to!string(idx)~"] "~ std.traits.FieldNameTuple!t[idx] ~ ";";
// paste in simple line
code ~= field.stringof ~ " "~ std.traits.FieldNameTuple!t[idx] ~ ";";
And compile:
$ dmd f.d ~/arsd/color.d
f.d-mixin-31(31): Error: undefined identifier 'Color'
f.d(4): Error: mixin f.CatStruct!("AB", A, B) error instantiating
Zoinks! It had no idea what the string "Color" was supposed to refer to. If we imported some other kind of struct Color in the local module, it would compile.... but then it would refer to a different type:
struct A { import arsd.color; Color a; }
struct B { int b; }
struct Color { static Color white() { return Color.init; } }
mixin CatStruct!("AB", A, B);
AB ab;
import arsd.color;
ab.a = Color.white; ab.b = 2;
Compile it and see a silly sounding error:
$ dmd f.d ~/arsd/color.d
f.d(12): Error: cannot implicitly convert expression (white()) of type Color to Color
BTW: remember this if you ever see it in the wild - the compiler error message sounds absurd, "cannot implicitly convert Color to Color", but it actually does have a logical meaning: there's just two different types with the same name in different modules.
Anyway, it sounds silly, but makes sense because the two scopes imported different structs.
With the long-form FieldTypeTuple used with a local static import, it always refers to the actual type passed in. Indirectly, sure, but also unambiguously.
I apologize to those reading this who already know about the pitfalls of string mixins, but anyone finding this on a search might not know why I used that convoluted code. It is complex due to real world experience with actual problems, I swear! :) It is a lot easier to do it right the first time than try to debug the weird nonsense down the road it can bring doing it the other way.
There's a lot of ground to cover here (members, functions, templates, ect.).
However, here's an idea to get you started:
import std.typecons;
struct A { int a; }
struct B { int b; }
struct AB
{
mixin MultiProxy!(A, B);
}
mixin template MultiProxy(A, B) {
private A _a;
private B _b;
mixin Proxy!_a aProxy;
mixin Proxy!_b bProxy;
template opDispatch(string op) {
static if (is(typeof(aProxy.opDispatch!op))) {
alias opDispatch = aProxy.opDispatch!op;
}
else {
alias opDispatch = bProxy.opDispatch!op;
}
}
}
unittest
{
AB ab;
ab.a = 4;
ab.b = 5;
assert(ab.a == 4);
assert(ab.b == 5);
}
I haven't had time to thoroughly test this, so I wouldn't be suprised if there are a number of areas where it falls over (just look at the implementation of Proxy to see all the things it has to take into account).
However, the general idea is to create two proxies, each explicitly named (aProxy,bProxy) so we can explicitly call the opDispatch of either one depending on which will compile.
In the interest of completeness, here's a solution that uses named tuples:
import std.meta, std.traits, std.typecons;
// helper template to interleave 2 alias lists
template Interleave(A...)
{
static if(A.length == 0)
alias A Interleave;
else
alias AliasSeq!(A[0], A[A.length/2],
Interleave!(A[1..A.length/2], A[A.length/2+1..$])) Interleave;
}
// helper template to produce tuple template parameters
template FieldTypeNameTuple(A)
{
alias Interleave!(Fields!A, FieldNameTuple!A) FieldTypeNameTuple;
}
template CatStruct(A...)
{
alias Tuple!(staticMap!(FieldTypeNameTuple, A)) CatStruct;
}
// usage
struct A { int a; }
struct B { int b; }
struct C { int c; }
alias CatStruct!(A, B, C) ABC;

Accomplish this task in C++; Migration from AS3.0

I've got way too much information to work with, so for now I'll consider this question answered until I can sort it all out and decide on the final implementation! Thanks a ton gf and Simon Buchan. I wish I could accept both of your answers, since they're both definite possibilities!
Additional / Revised Conceptual Information as suggested:
What I am aiming to do;
I am making a game. In this game every object used is an instance of the DOBJ class. The TUR class extends the DOBJ class. The SHO class extends the TUR class.
Each TUR class has an array of SHO's stored in it's SHOARR array. Each SHO instance needs to be given a set of instructions.
I know for a fact I could make 1000's of different SHO classes that have their instructions set during construction.
However, considering I will have so many different acting SHO instances, I was interested in another way to pass a set of instructions. Through the contruction of the SHO would be the ideal.
The instructions I am attempting to pass to each SHO are simple if statements;
if(frame > 64) { rotation += 4; };
if(state == 0 && frame < 32) { xs = 12; ys = 12; state = 1; };
Original question
Migration from ActionScript3.0 to C++ is proving to be a trial indeed. Thanks to those who have answered my questions thus far and also to those who opened stackoverflow in the first place. Onto the question... (TL;DR near the bottom to get straight to the question)
I'm attempting to apply the same logic that I could apply in AS3.0 to my project in C++ and it's just not going very well.
In AS3.0 I was used to slapping any and every datatype into an Array. It made things pretty simple. Now that I've run into C++ dev, I realized that I can't exactly do that anymore.
So now I'm stuck with this problem of rewriting a little AI system in a new language, where the driving point of the system isn't even compatible!
Here's an example of a piece of the code I was writing in AS3.0;
AI[NUM][1]( OBJ, AI[NUM][2], AI[NUM][3] );
AI being an array, NUM being an integer, OBJ being an instance of a class.
This line obviously called the function in the second element of the first array in the main array with the arguments being a class in which to perform the function on, whatever was in the third element of the first array of the main array, and likewise the fourth element.
In this case;
AI[NUM][1] would be a function
AI[NUM][2] would be a variable
AI[NUM][3] would be a number
Generally, my AI was run on calling a function to change or compare the variable with a number.
An example would be;
CompareST( someObject, "x", 500 );
and return true if someObject's x variable was smaller than (ST) 500.
The AI array itself was just filled with arrays of calls similar to this.
Quite new to C++ I had no idea how to go about this, so I did a bit of searching and reading of many different websites and came to the conclusion that I should look into function pointers.
However, after reading a bit into them, I've come to the conclusion that it won't help me realize my goal. While it did help me call functions like I wanted to call them, it doesn't help me stack different datatypes into one large array of arrays.
TL;DR
EDIT++:
What I need for each object is a set of instructions to be checked every frame. However, for each instance of the class, the instructions have to be different.
I plan on having a LOT of different instances, so making a class for each one is unreasonable.
Thus, I needed a way to pass a set of instructions to each one through it's constructor and read + execute them at any time their think() function is called.
My ultimate goal (aside from finding out about a better way to go about this) would be to be able to have an array of function calls, like;
A[n][0]( O, A[n][1], A[n][2] );
Where;
O is the instance the function is altering
A[n][0] is a function (Equality or Comparison)
A[n][1] is the variable, eg; "x", O["x"] (or a pointer to that variable in the case of C++)
A[n][2] is the value to alter the variable by, or compare it to.
And I'm not sure how I would rewrite this into C++, or alter it to work in another way.
Aftermath / Additional Information
What I'm actually aiming to do is be able to give an object a set of instructions at the time of it's creation, through the constructor. For example upon creation give an object instructions to wait 64 frames, and then rotate in the opposite direction, would have been something like this;
t.AI = [ [ 1, AIF.CompareET, "STATE", 0, AIF.CompareGT, "FRAME", 64, 0, AIF.EqualityAT, "baseRotation", 180, AIF.EqualityET, "STATE", 1 ] ];
In pseudocode;
(The 1 in the array denotes how to read the rest of the array, in this case everything before the odd 0 [ The one that comes after 64 ] is a comparison. If any of those fail, anything after the 0 will not be looked at )
Compare STATE is equal to (ET) 0, if true
Compare FRAME is greather than (GT) 64, if true
Add 180 to (AT) baseRotation, Set STATE equal to 1
Sorry that this turned out really long. I hope it's understandable, and I'm not asking something stupidly difficult to explain.
You can store functions using function pointers or functors. Variant types though are not natively supported by C++, you have to use custom solutions there.
One possibility would be to use Boost.Any (or better, Boost.Variant if you only use a fixed set of types):
typedef void (*Function)(Object*, const std::string&, boost::any&);
std::vector<Function> functions;
Given some function:
void f(Object* obj, const std::string& name, boost::any& value) {
// ...
}
you could store and call it similar to your example:
functions.push_back(&f);
functions[0](obj, "x", boost::any(500));
To utilize a declarative syntax, there are three options that come to my mind:
you use a similar approach and have central "interpreter" function, e.g. based on a switch (don't forget to switch to integers or pointers-to-members instead of strings if you need performance)
you invent your own language and generate C++ code from description files
you compose function objects in a declarative way
To do composition, you could use Boost.Bind or something like custom objects that represent operations:
struct Operation {
virtual ~Operation() {}
virtual bool operator()(Object&) = 0;
};
template<class T>
struct GreaterThen : Operation {
typedef T Object::*Member;
Member member;
const T value;
CompareGT(Member member, const T& value) : member(member), value(value) {}
bool operator()(Object& obj) { return (obj.*member > value); }
};
template<class T>
struct SetTo : Operation {
typedef T Object::*member;
Member member;
const T value;
SetTo(Member member, const T& value) : member(member), value(value) {}
bool operator()(Object& obj) { obj.*member = value; return true; }
};
Now we can build operation lists:
typedef std::vector<Operation*> OpList;
OpList operation;
operations.push_back(new GreaterThen<int>(&Object::Frame, 64));
operations.push_back(new SetTo<int>(&Object::State, 1));
We can use helper functions to avoid having to specify the template types:
template<class T>
Operation* opGreaterThen(T Object::*mem, const T& val) {
return new GreaterThen<T>(mem, val);
}
Assuming a similar helper for SetTo and using Boost.Assign the above becomes:
OpList operations = boost::assign::list_of
(opGreaterThen(&Object::Frame, 64))
(opSetTo (&Object::State, 1));
Executing the operations becomes the following then:
OpList::iterator it = operation.begin();
for( ; it != operations.end(); ++it) {
Operation& op = *it; // just for readability
if(!op(someObject)) break; // stop if operation returns false
}
Wow.
Reading through that slowly suggests what you're trying to end up with is an array of function calls and you can choose a different function with the same parameters (but different implementation) for different actions and choose the correct one for the correct case.
If that is the case, you're looking for function pointers. Try this tutorial.
You should be able to use a function pointer with an argument set and point it to the correct function based on your needs. You won't need an array of function pointers for this either - any function that matches the definition should do. From the tutorial, declare a function pointer like this:
int (TMyClass::*functptr)(classname, int, int) = NULL; // C++
Then assign it later:
this.functptr = &TMyClass::doitthisway;
While it is possible (although a pain) to have an array of arbitrary types, you pretty much never need it, since you have to know something about what is where to do anything interesting with it: for example, your 'TL;DR' example seems to look something like:
struct AIRule {
// Can only handle comparing ints, see later for more general solution.
typedef bool compare_type(AIObject*, AIObject::*int, int);
compare_type* compare;
AIObject* object;
AIObject::int* member;
int comparand;
};
So now you can do something like:
bool ai_equal(AIObject* object, AIObject::int* member, int comparand) {
return object->*member == comparand;
}
...
ai[n].compare = &ai_equal;
ai[n].object = some_object;
ai[n].member = &AIObject::some_member;
ai[n].comparand = 50;
...
if (ai[n].compare(ai[n].object, ai[n].member, ai[n].comparand)) {
...
}
This just moves the any type problem from the rules array to member though. C++ needs to know at least how many bytes a member is, and a string (for example) can be much bigger than an int. You can get around this by using pointers: which essentially is C++'s version of any, but you then need to delete it yourself (or you will leak memory!), at which point the interface method below becomes simpler.
If I was doing what you seem to want, I would use inheritance:
struct Sprite {
int frame;
double rotation;
Sprite() {
frame = 0;
rotation = 0.0;
}
virtual ~Sprite() {}
virtual void think() {
++frame;
}
virtual void draw() {
...
}
};
struct RotatingSprite : public Sprite {
int state;
MyShape() {
state = 0;
}
void think() {
Sprite::think();
if (state == 0 && frame > 64) {
state = 1;
rotation += 180.0;
}
}
};
Or a function pointer:
struct Sprite {
int frame;
double rotation;
void (*think)(Sprite*);
Sprite() {
frame = 0;
rotation = 0.0;
}
};
void rotate_think(Sprite* sprite) {
if (sprite->state == 0 && sprite->frame > 64) {
sprite->state = 1;
sprite->rotation += 180.0;
}
}
...
sprite->think = &rotate_think;
If you really need to do it dynamically I would recommend using the ++ part of C++. For the predicates (a predicate is just something that returns a boolean, like isLowerCase()) create an AIPredicate interface, and the actions an AIAction interface:
struct AIPredicate {
// "When you delete an AIPredicate, delete the full type, not just this interface."
virtual ~AIPredicate() {}
// "You can treat this as a function (operator()) but I'm not providing an implementation here ( = 0)"
virtual bool operator()(AIObject* object) = 0;
};
struct AIAction {
virtual ~AIAction() {}
virtual void operator()(AIObject* object) = 0;
};
struct AIRule {
// std::auto_ptr (or std::unique_ptr if you can use C++0x) will delete predicate for you.
// Add "#include <memory>" to your includes if it complains (most std headers will include it already)
std::auto_ptr<AIPredicate> predicate;
std::auto_ptr<AIAction> action;
};
Now you can make types like:
struct AIFrame : public AIPredicate {
// Implement the operator() member AICondition promises.
bool operator()(AIObject* object) {
return object->foo < 100;
}
};
...
// Use .reset() instead of = if you use std::unique_ptr.
ai[n].predicate = new AIFooIsLow();
If you want to have a very general predicate type, you can use the very powerful (and complicated) templates feature:
// The naming convention I'm using here is 'T'TitleCase for template parameters, TitleCase for types,
// lower_case for arguments and variables and '_'lower_case for members.
template<typename TMemberType, AIObject::TMemberType* TMember>
struct AIMemberEquals : public AIPredicate {
// Constructor: Initializes a new instance after it is created.
AIMemberEquals(TMemberType comparand) {
// Save comparand argument so we can use it in operator().
_comparand = comparand;
}
bool operator()(AIObject* object) {
return object->*TMember == comparand;
}
// Stores the value to compare.
TMemberType _comparand;
};
Unfortunately, creating templates looks a bit crazy:
ai[n].predicate = new AIMemberEquals<int, &AIObject::some_member>(100);
Read it as "create a new instance of (the type that AIMemberEquals applied to int and (the some_member member of AIObject) creates), with the argument 100".
When you have multiple predicates memory management becomes a bit more difficult without C++0x's unique_ptr or shared_ptr, types that will delete the object for you, since std::auto_ptr doesn't work in containers:
#include <vector>
struct AIData {
// vector is fairly close to AS3's Array type, it is a good default for
// arrays of changing or unknown size.
std::vector<AIPredicate*> predicates;
// Destructor: will be run before the memory for this object is freed.
~AIData() {
for (int i = 0; i != predicates.size(); ++i) {
delete predicates[i];
}
}
};
...
ai[n].predicates.push_back(new AIFooIsLow());
...
for (int i = 0; i != ai[n].predicates.size(); ++i) {
(*ai[n].predicates[i])(ai[n].object);
}
In C++0x:
struct AIData {
// unique_ptr will delete it for you, so no ~AIData() needed.
std::vector<unique_ptr<AIPredicate>> predicates;
};
Your final example could in C++ look something like:
std::auto_ptr<Shape> shape(new Shape());
...
std::auto_ptr<AIRule> rule(new AIRule());
rule->predicates.push(new AIMemberEquals<int, &Shape::state>(0));
rule->predicates.push(new AIMemberGreater<int, &Shape::frame>(64));
rule->actions.push(new AIAddMember<double, &Shape::rotation>(180.0));
rule->actions.push(new AISetMember<int, &Shape::state>(1));
shape->ai.push(rule); // .push(std::move(rule)); if you are using unique_ptr
Certainly not as pretty, but it works and is fairly flexible.