using BOOST ASIO Buffer - c++

I am following the example from http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio/example/serialization/connection.hpp. I have modified the connection.hpp header to insert to more operations called aynchronous_read and asynchronous_write.The code is attached here...
//
// connection.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2012 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef SERIALIZATION_CONNECTION_HPP
#define SERIALIZATION_CONNECTION_HPP
#include <boost/asio.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/tuple/tuple.hpp>
#include <iomanip>
#include <string>
#include <sstream>
#include <vector>
namespace s11n_example {
/// The connection class provides serialization primitives on top of a socket.
/**
* Each message sent using this class consists of:
* #li An 8-byte header containing the length of the serialized data in
* hexadecimal.
* #li The serialized data.
*/
class connection
{
public:
/// Constructor.
connection(boost::asio::io_service& io_service)
: socket_(io_service)
{
}
/// Get the underlying socket. Used for making a connection or for accepting
/// an incoming connection.
boost::asio::ip::tcp::socket& socket()
{
return socket_;
}
/// Asynchronously write a data structure to the socket.
template <typename T, typename Handler>
void async_write(const T& t, Handler handler)
{
// Serialize the data first so we know how large it is.
std::ostringstream archive_stream;
boost::archive::text_oarchive archive(archive_stream);
archive << t;
outbound_data_ = archive_stream.str();
// Format the header.
std::ostringstream header_stream;
header_stream << std::setw(header_length)
<< std::hex << outbound_data_.size();
if (!header_stream || header_stream.str().size() != header_length)
{
// Something went wrong, inform the caller.
boost::system::error_code error(boost::asio::error::invalid_argument);
socket_.get_io_service().post(boost::bind(handler, error));
return;
}
outbound_header_ = header_stream.str();
// Write the serialized data to the socket. We use "gather-write" to send
// both the header and the data in a single write operation.
std::vector<boost::asio::const_buffer> buffers;
buffers.push_back(boost::asio::buffer(outbound_header_));
buffers.push_back(boost::asio::buffer(outbound_data_));
boost::asio::async_write(socket_, buffers, handler);
}
///Asynchronously write a string to the socket.
template <typename T, typename Handler>
void asyncronous_write(const T& t, Handler handler)
{
std::ostringstream archive_stream;
boost::archive::text_oarchive archive(archive_stream);
archive << t;
outbound_str_ = archive_stream.str();
//boost::asio::buffer buffer1(outbound_str_);
boost::asio::async_write(socket_,boost::asio::buffer(outbound_str_), handler);
}
/// Asynchronously read a string from the socket.
template <typename T, typename Handler>
void asyncronous_read(T& t, Handler handler)
{
// Issue a read operation to read exactly the number of bytes in a header.
void (connection::*f)(
const boost::system::error_code&,
T&, boost::tuple<Handler>)
= &connection::handle_read_str<T, Handler>;
boost::asio::async_read(socket_, boost::asio::buffer(inbound_str_),
boost::bind(f,
this, boost::asio::placeholders::error, boost::ref(t),
boost::make_tuple(handler)));
}
/// Handle a completed read of message data.
template <typename T, typename Handler>
void handle_read_str(const boost::system::error_code& e,
T& t, boost::tuple<Handler> handler)
{
if (e)
{
boost::get<0>(handler)(e);
}
else
{
// Extract the data structure from the data just received.
try
{
std::string archive_data(&inbound_str_[0], inbound_str_.size());
std::istringstream archive_stream(archive_data);
boost::archive::text_iarchive archive(archive_stream);
archive >> t;
}
catch (std::exception& e)
{
// Unable to decode data.
boost::system::error_code error(boost::asio::error::invalid_argument);
boost::get<0>(handler)(error);
return;
}
// Inform caller that data has been received ok.
boost::get<0>(handler)(e);
}
}
/// Asynchronously read a data structure from the socket.
template <typename T, typename Handler>
void async_read(T& t, Handler handler)
{
// Issue a read operation to read exactly the number of bytes in a header.
void (connection::*f)(
const boost::system::error_code&,
T&, boost::tuple<Handler>)
= &connection::handle_read_header<T, Handler>;
boost::asio::async_read(socket_, boost::asio::buffer(inbound_header_),
boost::bind(f,
this, boost::asio::placeholders::error, boost::ref(t),
boost::make_tuple(handler)));
}
/// Handle a completed read of a message header. The handler is passed using
/// a tuple since boost::bind seems to have trouble binding a function object
/// created using boost::bind as a parameter.
template <typename T, typename Handler>
void handle_read_header(const boost::system::error_code& e,
T& t, boost::tuple<Handler> handler)
{
if (e)
{
boost::get<0>(handler)(e);
}
else
{
// Determine the length of the serialized data.
std::istringstream is(std::string(inbound_header_, header_length));
std::size_t inbound_data_size = 0;
if (!(is >> std::hex >> inbound_data_size))
{
// Header doesn't seem to be valid. Inform the caller.
boost::system::error_code error(boost::asio::error::invalid_argument);
boost::get<0>(handler)(error);
return;
}
// Start an asynchronous call to receive the data.
inbound_data_.resize(inbound_data_size);
void (connection::*f)(
const boost::system::error_code&,
T&, boost::tuple<Handler>)
= &connection::handle_read_data<T, Handler>;
boost::asio::async_read(socket_, boost::asio::buffer(inbound_data_),
boost::bind(f, this,
boost::asio::placeholders::error, boost::ref(t), handler));
}
}
/// Handle a completed read of message data.
template <typename T, typename Handler>
void handle_read_data(const boost::system::error_code& e,
T& t, boost::tuple<Handler> handler)
{
if (e)
{
boost::get<0>(handler)(e);
}
else
{
// Extract the data structure from the data just received.
try
{
std::string archive_data(&inbound_data_[0], inbound_data_.size());
std::istringstream archive_stream(archive_data);
boost::archive::text_iarchive archive(archive_stream);
archive >> t;
}
catch (std::exception& e)
{
// Unable to decode data.
boost::system::error_code error(boost::asio::error::invalid_argument);
boost::get<0>(handler)(error);
return;
}
// Inform caller that data has been received ok.
boost::get<0>(handler)(e);
}
}
private:
/// The underlying socket.
boost::asio::ip::tcp::socket socket_;
/// The size of a fixed length header.
enum { header_length = 8 };
/// Holds an outbound header.
std::string outbound_header_;
/// Holds the outbound data.
std::string outbound_data_;
std::string outbound_str_;
/// Holds an inbound header.
char inbound_header_[header_length];
/// Holds the inbound data.
std::vector<char> inbound_data_;
std::vector<char>inbound_str_;
//char* inbound_str_=new char[1024];
};
typedef boost::shared_ptr<connection> connection_ptr;
} // namespace s11n_example
#endif // SERIALIZATION_CONNECTION_HPP
The server and client codes are ---
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <fstream>
#include <vector>
#include "connection.hpp" // Must come before boost/serialization headers.
#include <boost/serialization/vector.hpp>
#include "structsample.hpp"
namespace s11n_example {
/// Serves stock quote information to any client that connects to it.
class server
{
public:
/// Constructor opens the acceptor and starts waiting for the first incoming
/// connection.
server(boost::asio::io_service& io_service, unsigned short port)
: acceptor_(io_service,
boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), port))
{
// Create the data to be sent to each client.
std::string str;
std::ifstream in;
stock s;
in.open("aces.clf");
if(!in)
{
std::cout<<"Error in Opening a file"<<std::endl;
exit(1);
}
for(int i=0;i<13;i++)
{
getline(in,str);
}
while(!in.eof())
{
getline(in,str);
s.data.append(str);
getline(in,str);
s.data.append(str);
s.d_size=s.data.size();
stocks_.push_back(s);
s.data.clear();
}
// Start an accept operation for a new connection.
connection_ptr new_conn(new connection(acceptor_.get_io_service()));
acceptor_.async_accept(new_conn->socket(),
boost::bind(&server::handle_accept, this,
boost::asio::placeholders::error, new_conn));
}
/// Handle completion of a accept operation.
void handle_accept(const boost::system::error_code& e, connection_ptr conn)
{
std::string buf1;
if (!e)
{
// Successfully accepted a new connection. Send the list of stocks to the
// client. The connection::async_write() function will automatically
// serialize the data structure for us.
for(int i=0;i<5;i++)
{
conn->async_write(stocks_[i],
boost::bind(&server::handle_write, this,
boost::asio::placeholders::error, conn));
usleep(500000);
conn->async_read(buf1,
boost::bind(&server::handle_read, this,
boost::asio::placeholders::error, conn));
std::cout<<buf1<<"\n"<<std::endl;
}
// Start an accept operation for a new connection.
connection_ptr new_conn(new connection(acceptor_.get_io_service()));
acceptor_.async_accept(new_conn->socket(),
boost::bind(&server::handle_accept, this,
boost::asio::placeholders::error, new_conn));
}
else
{
// An error occurred. Log it and return. Since we are not starting a new
// accept operation the io_service will run out of work to do and the
// server will exit.
std::cerr << e.message() << std::endl;
}
}
/// Handle completion of a write operation.
void handle_write(const boost::system::error_code& e, connection_ptr conn)
{
//conn->async_read(buf1,
//boost::bind(&server::handle_read, this,
// boost::asio::placeholders::error, conn));
// std::cout<<buf1<<"\n"<<std::endl;
}
///handle completion of read operation.
void handle_read(const boost::system::error_code& e,connection_ptr conn)
{
//if(!e)
//{
//std::cout<<"\n"<<stocks_1.data<<std::endl;
//stocks_1.data.clear();
//}
//{
//if (buf1.compare("data received and processed")==0)
//{
// buf1.clear();
//std::cout<<buf1<<"\n"<<std::endl;
//}
//else
//{
//std::cout<<"Error occurred"<<std::endl;
//exit(1);
// }
//}
}
private:
/// The acceptor object used to accept incoming socket connections.
boost::asio::ip::tcp::acceptor acceptor_;
/// The data to be sent to each client.
std::vector<stock> stocks_;
};
} // namespace s11n_example
int main(int argc, char* argv[])
{
try
{
// Check command line arguments.
if (argc != 2)
{
std::cerr << "Usage: server <port>" << std::endl;
return 1;
}
unsigned short port = boost::lexical_cast<unsigned short>(argv[1]);
boost::asio::io_service io_service;
s11n_example::server server(io_service, port);
io_service.run();
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return 0;
}
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <iostream>
#include <fstream>
#include <vector>
#include "connection.hpp" // Must come before boost/serialization headers.
#include <boost/serialization/vector.hpp>
#include "structsample.hpp"
struct stock1
{
std::string data;
int d_size;
template <typename Archive>
void serialize(Archive& ar, const unsigned int version)
{
ar & data;
ar & d_size;
}
} stocks_1;
namespace s11n_example {
/// Downloads stock quote information from a server.
class client
{
public:
/// Constructor starts the asynchronous connect operation.
client(boost::asio::io_service& io_service,
const std::string& host, const std::string& service)
: connection_(io_service)
{
// Resolve the host name into an IP address.
boost::asio::ip::tcp::resolver resolver(io_service);
boost::asio::ip::tcp::resolver::query query(host, service);
boost::asio::ip::tcp::resolver::iterator endpoint_iterator =
resolver.resolve(query);
boost::asio::ip::tcp::endpoint endpoint = *endpoint_iterator;
// Start an asynchronous connect operation.
connection_.socket().async_connect(endpoint,
boost::bind(&client::handle_connect, this,
boost::asio::placeholders::error, ++endpoint_iterator));
}
/// Handle completion of a connect operation.
void handle_connect(const boost::system::error_code& e,
boost::asio::ip::tcp::resolver::iterator endpoint_iterator)
{
if (!e)
{
// Successfully established connection. Start operation to read the list
// of stocks. The connection::async_read() function will automatically
// decode the data that is read from the underlying socket.
connection_.async_read(stocks_1,
boost::bind(&client::handle_read, this,
boost::asio::placeholders::error));
}
else if (endpoint_iterator != boost::asio::ip::tcp::resolver::iterator())
{
// Try the next endpoint.
connection_.socket().close();
boost::asio::ip::tcp::endpoint endpoint = *endpoint_iterator;
connection_.socket().async_connect(endpoint,
boost::bind(&client::handle_connect, this,
boost::asio::placeholders::error, ++endpoint_iterator));
}
else
{
// An error occurred. Log it and return. Since we are not starting a new
// operation the io_service will run out of work to do and the client will
// exit.
std::cerr << e.message() << std::endl;
}
}
/// Handle completion of a read operation.
void handle_read(const boost::system::error_code& e)
{
std::string buf2;
if (!e)
{
std::cout << " data: " << stocks_1.data << "\n";
std::cout << " size: " << stocks_1.d_size << "\n";
usleep(500000);
if(!e)
{
//stocks_1.data="data received and processed";
//tocks_1.d_size=stocks_1.data.size();
connection_.async_write(buf2,
boost::bind(&client::handle_write, this,
boost::asio::placeholders::error));
std::cout<<buf2<<std::endl;
//buf2.clear();
// connection_.async_write(stocks_1,
//boost::bind(&client::handle_write, this,
//boost::asio::placeholders::error));
//stocks_1.data.clear();
}
}
else
{
// An error occurred.
std::cerr << e.message() << std::endl;
}
// Since we are not starting a new operation the io_service will run out of
// work to do and the client will exit.
}
void handle_write(const boost::system::error_code& e)
{
if(!e)
{
connection_.async_read(stocks_1,
boost::bind(&client::handle_read, this,
boost::asio::placeholders::error));
}
else
//std::cout<<"Error is there"<<std::endl;
exit(1);
}
private:
/// The connection to the server.
connection connection_;
/// The data received from the server.
std::vector<stock> stocks_;
};
} // namespace s11n_example
int main(int argc, char* argv[])
{
try
{
// Check command line arguments.
if (argc != 3)
{
std::cerr << "Usage: client <host> <port>" << std::endl;
return 1;
}
boost::asio::io_service io_service;
s11n_example::client client(io_service, argv[1], argv[2]);
io_service.run();
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return 0;
}
structsample.hpp----
#ifndef SERIALIZATION_STOCK_HPP
#define SERIALIZATION_STOCK_HPP
#include <string>
namespace s11n_example {
/// Structure to hold information about a single stock.
struct stock
{
public:
std::string data;
int d_size;
template <typename Archive>
void serialize(Archive& ar, const unsigned int version)
{
ar & data;
ar & d_size;
}
};
} // namespace s11n_example
#endif // SERIALIZATION_STOCK_HPP
Here the data is reaching from server to client but the response from client is not sent back.

What ASIO really transfers is bytes of data. A string is not a suitable container for storing arbitrary data (which may contain null characters and will cause confusing results if contained in the string).
To transfer a string using boost::asio, it is better to use a buffer based on std::vector or std::array, and then analyze the data in this buffer to obtain your string.

Related

Boost beast service returns "body limit exceeded" when receiving a json payload

I'm working on a project which implement a boost beast service.This part of code was written by a person who left the company and I do not master boot.
Until now it worked well but the size of the payload has increased and it no longer works. The payload is about 2.4MB.
The service is implemented using 3 classes ServerService, Listener and Session.
ServerService:
void ServerService::startServer(const std::string& address, const unsigned short& port,
const std::string& baseRessourceName, const unsigned short& threadNumber)
{
try
{
const auto srvAddress = boost::asio::ip::make_address(address);
// The io_context is required for all I/O
auto const nbThreads = std::max<int>(1, threadNumber);
boost::asio::io_context ioContext(nbThreads);
// Create listener and launch a listening port
std::shared_ptr<Listener> listener = std::make_shared<Listener>(ioContext, tcp::endpoint{ srvAddress, port }, baseRessourceName);
listener->run();
// Run the I/O service on the requested number of threads
std::vector<std::thread> threads;
threads.reserve(nbThreads - 1);
for (auto i = nbThreads - 1; i > 0; --i)
{
threads.emplace_back([&ioContext] { ioContext.run(); });
}
ioContext.run();
}
catch (std::exception const& e)
{
LBC_ERROR("{}", e.what());
}
}
Listener:
// Used namespace
using tcp = boost::asio::ip::tcp; // from <boost/asio/ip/tcp.hpp>
namespace Http
{
class Listener : public std::enable_shared_from_this<Listener>
{
private:
tcp::acceptor m_acceptor;
tcp::socket m_socket;
std::string const& m_baseResourceName;
// Report a failure
void logError(boost::system::error_code errorCode, char const* what)
{
LBC_ERROR("{}: {}", what, errorCode.message());
}
public:
Listener(boost::asio::io_context& ioContext, tcp::endpoint endpoint, std::string const& docRoot)
: m_acceptor(ioContext)
, m_socket(ioContext)
, m_baseResourceName(docRoot)
{
boost::system::error_code errorCode;
// Open the acceptor
m_acceptor.open(endpoint.protocol(), errorCode);
if (errorCode)
{
logError(errorCode, "open");
return;
}
// Allow address reuse
m_acceptor.set_option(boost::asio::socket_base::reuse_address(true));
if (errorCode)
{
logError(errorCode, "set_option");
return;
}
// Bind to the server address
m_acceptor.bind(endpoint, errorCode);
if (errorCode)
{
logError(errorCode, "bind");
return;
}
// Start listening for connections
m_acceptor.listen(boost::asio::socket_base::max_listen_connections, errorCode);
if (errorCode)
{
logError(errorCode, "listen");
return;
}
}
// Start accepting incoming connections
void run()
{
if (!m_acceptor.is_open()) {
return;
}
doAccept();
}
void doAccept()
{
m_acceptor.async_accept(m_socket,
std::bind(
&Listener::onAccept,
shared_from_this(),
std::placeholders::_1));
}
void onAccept(boost::system::error_code errorCode)
{
if (errorCode)
{
logError(errorCode, "accept");
}
else
{
// Create the session and run it
std::make_shared<Session>(
std::move(m_socket),
m_baseResourceName)->run();
}
// Accept another connection
doAccept();
}
};
} // namespace Http
Session:
// Used namespaces
using tcp = boost::asio::ip::tcp; // from <boost/asio/ip/tcp.hpp>
namespace boostHttp = boost::beast::http; // from <boost/beast/http.hpp>
namespace Http
{
class Session : public std::enable_shared_from_this<Session>
{
private:
// This is the C++11 equivalent of a generic lambda.
// The function object is used to send an HTTP message.
struct send_lambda
{
Session& self_;
explicit send_lambda(Session& self) : self_(self) {}
template<bool isRequest, class Body, class Fields>
void operator()(boostHttp::message<isRequest, Body, Fields>&& msg) const
{
// The lifetime of the message has to extend
// for the duration of the async operation so
// we use a shared_ptr to manage it.
auto sp = std::make_shared<boostHttp::message<isRequest, Body, Fields>>(std::move(msg));
// Store a type-erased version of the shared
// pointer in the class to keep it alive.
self_.res_ = sp;
// Write the response
boostHttp::async_write(self_.socket_, *sp,
boost::asio::bind_executor(
self_.strand_, std::bind(
&Session::onWrite,
self_.shared_from_this(),
std::placeholders::_1,
std::placeholders::_2,
sp->need_eof())));
}
};
// Report a failure
void logError(boost::system::error_code errorCode, char const* what)
{
LBC_ERROR("{}: {}", what, errorCode.message());
}
tcp::socket socket_;
boost::asio::strand<boost::asio::any_io_executor> strand_;
boost::beast::flat_buffer buffer_;
std::string const& baseResourceName_;
boostHttp::request<boostHttp::string_body> req_;
std::shared_ptr<void> res_;
send_lambda lambda_;
public:
// Take ownership of the socket
explicit Session(tcp::socket socket, std::string const& docRoot)
: socket_(std::move(socket))
, strand_(socket_.get_executor())
, baseResourceName_(docRoot)
, lambda_(*this)
{}
// Start the asynchronous operation
void run()
{
doRead();
}
void doRead()
{
// Make the request empty before reading,
// otherwise the operation behavior is undefined.
req_ = {};
// Read a request
boostHttp::async_read(socket_, buffer_, req_,
boost::asio::bind_executor(
strand_, std::bind(
&Session::onRead,
shared_from_this(),
std::placeholders::_1,
std::placeholders::_2)));
}
void onRead(boost::system::error_code errorCode, std::size_t transferredBytes)
{
boost::ignore_unused(transferredBytes);
// This means they closed the connection
if (errorCode == boostHttp::error::end_of_stream)
{
return doClose();
}
if (errorCode) {
return logError(errorCode, "*** read"); // Error is here
}
// Some stuff here to manage request
}
void onWrite(boost::system::error_code ec, std::size_t transferredBytes, bool close)
{
boost::ignore_unused(transferredBytes);
if (ec)
{
return logError(ec, "write");
}
if (close)
{
// This means we should close the connection, usually because
// the response indicated the "Connection: close" semantic.
return doClose();
}
// We're done with the response so delete it
res_ = nullptr;
// Read another request
doRead();
}
void doClose()
{
// Send a TCP shutdown
boost::system::error_code ec;
socket_.shutdown(tcp::socket::shutdown_send, ec);
// At this point the connection is closed gracefully
}
};
} // namespace Http
The service is launched as follow:
Service::ServerService serverService;
serverService.startServer("127.0.0.1", 8080, "service_name", 5);
I saw in the boost documentation that the default limit is 1MB. I tried some examples found on the internet to implement a parser and change the body limit but when I send a payload I get the following error "Unknown HTTP request" !
I hope someone can help me solve this problem. Thank you in advance for your answers.
First I made your code self-contained, more modern, simpler and stripped unused code. I chose libfmt to implement the logging requirements, showing how to use source location instead of tediously providing manual context.
Live On Coliru
#include <boost/asio.hpp>
#include <boost/beast.hpp>
#include <iostream>
namespace beast = boost::beast;
namespace http = beast::http;
namespace net = boost::asio;
using boost::system::error_code;
using net::ip::tcp;
#include <fmt/ranges.h>
#include <fmt/ostream.h>
template <> struct fmt::formatter<boost::source_location> : fmt::ostream_formatter {};
#define LBC_ERROR(FMTSTR, ...) fmt::print(stderr, FMTSTR "\n", __VA_ARGS__)
// Report a failure
static void inline logError(error_code ec, char const* what) {
LBC_ERROR("{}: {} from {}", what, ec.message(), ec.location());
}
static void inline logError(std::exception const& e) { logError({}, e.what()); }
namespace Http {
using namespace std::placeholders;
using Executor = net::any_io_executor;
class Session : public std::enable_shared_from_this<Session> {
private:
tcp::socket socket_;
std::string baseResourceName_; // TODO FIXME unused
boost::beast::flat_buffer buffer_;
http::request<http::string_body> req_;
public:
// Take ownership of the socket
explicit Session(tcp::socket socket, std::string docRoot)
: socket_(std::move(socket))
, baseResourceName_(std::move(docRoot)) {}
void run() {
std::cerr << "Started session for " << socket_.remote_endpoint() << std::endl;
doRead();
}
~Session() {
error_code ec;
auto ep = socket_.remote_endpoint(ec);
std::cerr << "Close session for " << ep << std::endl;
}
private:
void doRead() {
// Make the request empty before reading, otherwise the operation
// behavior is undefined.
req_.clear();
// Read a request
http::async_read(socket_, buffer_, req_,
std::bind(&Session::onRead, shared_from_this(), _1, _2));
}
void onRead(error_code ec, size_t transferredBytes) {
boost::ignore_unused(transferredBytes);
// This means they closed the connection
if (ec == http::error::end_of_stream) {
return doClose();
}
if (ec) {
return logError(ec, "*** read"); // Error is here
}
// Some stuff here to manage request
}
void onWrite(error_code ec, size_t transferredBytes, bool close) {
boost::ignore_unused(transferredBytes);
if (ec) {
return logError(ec, "write");
}
if (close) {
// This means we should close the connection, usually because
// the response indicated the "Connection: close" semantic.
return doClose();
}
// Read another request
doRead();
}
void doClose() {
// Send a TCP shutdown
error_code ec;
socket_.shutdown(tcp::socket::shutdown_send, ec);
// At this point the connection is closed gracefully
}
};
} // namespace Http
namespace Http {
class Listener : public std::enable_shared_from_this<Listener> {
private:
tcp::acceptor m_acceptor;
std::string m_baseResourceName;
public:
Listener(Executor ex, tcp::endpoint endpoint, std::string docRoot) try
: m_acceptor(ex)
, m_baseResourceName(std::move(docRoot)) //
{
m_acceptor.open(endpoint.protocol());
m_acceptor.set_option(tcp::acceptor::reuse_address(true));
m_acceptor.bind(endpoint);
m_acceptor.listen(tcp::socket::max_listen_connections);
} catch (boost::system::system_error const& se) {
logError(se.code(), "Listener");
throw;
}
// Start accepting incoming connections
void run() {
if (m_acceptor.is_open())
doAccept();
}
void doAccept() {
m_acceptor.async_accept(make_strand(m_acceptor.get_executor()),
std::bind(&Listener::onAccept, shared_from_this(), _1, _2));
}
void onAccept(error_code ec, tcp::socket sock) {
if (ec)
return logError(ec, "accept");
// Accept another connection / Create the session and run it
doAccept();
std::make_shared<Session>(std::move(sock), m_baseResourceName)->run();
}
};
void startServer(std::string address, uint16_t port, std::string docRoot, unsigned threads) {
try {
net::thread_pool ioc(std::max(1u, threads));
// Create listener and launch a listening port
tcp::endpoint ep{net::ip::make_address(address), port};
std::make_shared<Listener>( //
ioc.get_executor(), ep, std::move(docRoot))
->run();
// Run the I/O service on the requested number of threads
ioc.join();
} catch (std::exception const& e) {
logError(e);
}
}
} // namespace Http
int main() {
//Service::ServerService serverService;
/*serverService.*/ Http::startServer("127.0.0.1", 8989, "service_name", 5);
}
Particularly the send_lambda is not outdated (besides being unused), see message_generator instead
Reproducing
I can reproduce the error by replacing the data with something large enough:
Live On Coliru
dd of=test.bin seek=3 bs=1M count=0 status=none
curl -s http://127.0.0.1:8989/blrub -d #test.bin
Prints
Started session for 127.0.0.1:48884
*** read: body limit exceeded from (unknown source location)
Close session for 127.0.0.1:48884
Fixing
Indeed, you can set options on request_parser. Three lines of code changed:
http::request_parser<http::string_body> req_;
And
req_.get().clear();
req_.body_limit(8*1024*1024); // raised to 8Mb
Live On Coliru
With no further changes:
Prints
Started session for 127.0.0.1:48886
Close session for 127.0.0.1:48886

Server crashing while being interrupted sending large chunk of data

My server crashes when I gracefully close a client that is connected to it, while the client is receiving a large chunk of data. I am thinking of a possible lifetime bug as with the most bugs in boost ASIO, however I was not able to point out my mistake myself.
Each client establishes 2 connection with the server, one of them is for syncing, the other connection is long-lived one to receive continuous updates. In the "syncing phase" client receives large data to sync with the server state ("state" is basically DB data in JSON format). After syncing, sync connection is closed. Client receives updates to the DB as it happens (these are of course very small data compared to "syncing data") via the other connection.
These are the relevant files:
connection.h
#pragma once
#include <array>
#include <memory>
#include <string>
#include <boost/asio.hpp>
class ConnectionManager;
/// Represents a single connection from a client.
class Connection : public std::enable_shared_from_this<Connection>
{
public:
Connection(const Connection&) = delete;
Connection& operator=(const Connection&) = delete;
/// Construct a connection with the given socket.
explicit Connection(boost::asio::ip::tcp::socket socket, ConnectionManager& manager);
/// Start the first asynchronous operation for the connection.
void start();
/// Stop all asynchronous operations associated with the connection.
void stop();
/// Perform an asynchronous write operation.
void do_write(const std::string& buffer);
int getNativeHandle();
~Connection();
private:
/// Perform an asynchronous read operation.
void do_read();
/// Socket for the connection.
boost::asio::ip::tcp::socket socket_;
/// The manager for this connection.
ConnectionManager& connection_manager_;
/// Buffer for incoming data.
std::array<char, 8192> buffer_;
std::string outgoing_buffer_;
};
typedef std::shared_ptr<Connection> connection_ptr;
connection.cpp
#include "connection.h"
#include <utility>
#include <vector>
#include <iostream>
#include <thread>
#include "connection_manager.h"
Connection::Connection(boost::asio::ip::tcp::socket socket, ConnectionManager& manager)
: socket_(std::move(socket))
, connection_manager_(manager)
{
}
void Connection::start()
{
do_read();
}
void Connection::stop()
{
socket_.close();
}
Connection::~Connection()
{
}
void Connection::do_read()
{
auto self(shared_from_this());
socket_.async_read_some(boost::asio::buffer(buffer_), [this, self](boost::system::error_code ec, std::size_t bytes_transferred) {
if (!ec) {
std::string buff_str = std::string(buffer_.data(), bytes_transferred);
const auto& tokenized_buffer = split(buff_str, ' ');
if(!tokenized_buffer.empty() && tokenized_buffer[0] == "sync") {
/// "syncing connection" sends a specific text
/// hence I can separate between sycing and long-lived connections here and act accordingly.
const auto& exec_json_strs = getExecutionJsons();
const auto& order_json_strs = getOrdersAsJsons();
const auto& position_json_strs = getPositionsAsJsons();
const auto& all_json_strs = exec_json_strs + order_json_strs + position_json_strs + createSyncDoneJson();
/// this is potentially a very large data.
do_write(all_json_strs);
}
do_read();
} else {
connection_manager_.stop(shared_from_this());
}
});
}
void Connection::do_write(const std::string& write_buffer)
{
outgoing_buffer_ = write_buffer;
auto self(shared_from_this());
boost::asio::async_write(socket_, boost::asio::buffer(outgoing_buffer_, outgoing_buffer_.size()), [this, self](boost::system::error_code ec, std::size_t transfer_size) {
if (!ec) {
/// everything is fine.
} else {
/// what to do here?
/// server crashes once I get error code 32 (EPIPE) here.
}
});
}
connection_manager.h
#pragma once
#include <set>
#include "connection.h"
/// Manages open connections so that they may be cleanly stopped when the server
/// needs to shut down.
class ConnectionManager
{
public:
ConnectionManager(const ConnectionManager&) = delete;
ConnectionManager& operator=(const ConnectionManager&) = delete;
/// Construct a connection manager.
ConnectionManager();
/// Add the specified connection to the manager and start it.
void start(connection_ptr c);
/// Stop the specified connection.
void stop(connection_ptr c);
/// Stop all connections.
void stop_all();
void sendAllConnections(const std::string& buffer);
private:
/// The managed connections.
std::set<connection_ptr> connections_;
};
connection_manager.cpp
#include "connection_manager.h"
ConnectionManager::ConnectionManager()
{
}
void ConnectionManager::start(connection_ptr c)
{
connections_.insert(c);
c->start();
}
void ConnectionManager::stop(connection_ptr c)
{
connections_.erase(c);
c->stop();
}
void ConnectionManager::stop_all()
{
for (auto c: connections_)
c->stop();
connections_.clear();
}
/// this function is used to keep clients up to date with the changes, not used during syncing phase.
void ConnectionManager::sendAllConnections(const std::string& buffer)
{
for (auto c: connections_)
c->do_write(buffer);
}
server.h
#pragma once
#include <boost/asio.hpp>
#include <string>
#include "connection.h"
#include "connection_manager.h"
class Server
{
public:
Server(const Server&) = delete;
Server& operator=(const Server&) = delete;
/// Construct the server to listen on the specified TCP address and port, and
/// serve up files from the given directory.
explicit Server(const std::string& address, const std::string& port);
/// Run the server's io_service loop.
void run();
void deliver(const std::string& buffer);
private:
/// Perform an asynchronous accept operation.
void do_accept();
/// Wait for a request to stop the server.
void do_await_stop();
/// The io_service used to perform asynchronous operations.
boost::asio::io_service io_service_;
/// The signal_set is used to register for process termination notifications.
boost::asio::signal_set signals_;
/// Acceptor used to listen for incoming connections.
boost::asio::ip::tcp::acceptor acceptor_;
/// The connection manager which owns all live connections.
ConnectionManager connection_manager_;
/// The *NEXT* socket to be accepted.
boost::asio::ip::tcp::socket socket_;
};
server.cpp
#include "server.h"
#include <signal.h>
#include <utility>
Server::Server(const std::string& address, const std::string& port)
: io_service_()
, signals_(io_service_)
, acceptor_(io_service_)
, connection_manager_()
, socket_(io_service_)
{
// Register to handle the signals that indicate when the server should exit.
// It is safe to register for the same signal multiple times in a program,
// provided all registration for the specified signal is made through Asio.
signals_.add(SIGINT);
signals_.add(SIGTERM);
#if defined(SIGQUIT)
signals_.add(SIGQUIT);
#endif // defined(SIGQUIT)
do_await_stop();
// Open the acceptor with the option to reuse the address (i.e. SO_REUSEADDR).
boost::asio::ip::tcp::resolver resolver(io_service_);
boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve({address, port});
acceptor_.open(endpoint.protocol());
acceptor_.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor_.bind(endpoint);
acceptor_.listen();
do_accept();
}
void Server::run()
{
// The io_service::run() call will block until all asynchronous operations
// have finished. While the server is running, there is always at least one
// asynchronous operation outstanding: the asynchronous accept call waiting
// for new incoming connections.
io_service_.run();
}
void Server::do_accept()
{
acceptor_.async_accept(socket_,
[this](boost::system::error_code ec)
{
// Check whether the server was stopped by a signal before this
// completion handler had a chance to run.
if (!acceptor_.is_open())
{
return;
}
if (!ec)
{
connection_manager_.start(std::make_shared<Connection>(
std::move(socket_), connection_manager_));
}
do_accept();
});
}
void Server::do_await_stop()
{
signals_.async_wait(
[this](boost::system::error_code /*ec*/, int /*signo*/)
{
// The server is stopped by cancelling all outstanding asynchronous
// operations. Once all operations have finished the io_service::run()
// call will exit.
acceptor_.close();
connection_manager_.stop_all();
});
}
/// this function is used to keep clients up to date with the changes, not used during syncing phase.
void Server::deliver(const std::string& buffer)
{
connection_manager_.sendAllConnections(buffer);
}
So, I am repeating my question: My server crashes when I gracefully close a client that is connected to it, while the client is receiving a large chunk of data and I do not know why.
Edit: Crash happens in async_write function, as soon as I receive EPIPE error. The application is multithreaded. There are 4 threads that call Server::deliver with their own data as it is produced. deliver() is used for keeping clients up to date, it has nothing to do with the initial syncing: syncing is done with persistent data fetched from db.
I had a single io_service, so I thought that I would not need strands. io_service::run is called on main thread, so the main thread is blocking.
Reviewing, adding some missing code bits:
namespace /*missing code stubs*/ {
auto split(std::string_view input, char delim) {
std::vector<std::string_view> result;
boost::algorithm::split(result, input,
boost::algorithm::is_from_range(delim, delim));
return result;
}
std::string getExecutionJsons() { return ""; }
std::string getOrdersAsJsons() { return ""; }
std::string getPositionsAsJsons() { return ""; }
std::string createSyncDoneJson() { return ""; }
}
Now the things I notice are:
you have a single io_service, so a single thread. Okay, so no strands should be required unless you have threads in your other code (main, e.g.?).
A particular reason to suspect that threads are at play is that nobody could possibly call Server::deliver because run() is blocking. This means that whenever you call deliver() now it causes a data race, which leads to Undefined Behaviour
The casual comment
/// this function is used to keep clients up to date with the changes,
/// not used during syncing phase.
does not do much to remove this concern. The code needs to defend against misuse. Comments do not get executed. Make it better:
void Server::deliver(const std::string& buffer) {
post(io_context_,
[this, buffer] { connection_manager_.broadcast(std::move(buffer)); });
}
you do not check that previous writes are completed before accepting a "new" one. This means that calling Connection::do_write results in Undefined Behaviour for two reasons:
modifying outgoing_buffer_ during an ongoing async operation that uses that buffer is UB
having two overlapped async_write on the same IO object is UB (see docs
The typical way to fix that is to have a queue of outgoing messages instead.
using async_read_some is rarely what you want, especially since the reads don't accumulate into a dynamic buffer. This means that if your packets get separated at unexpected boundaries, you may not detect commands at all, or incorrectly.
Instead consider asio::async_read_until with a dynamic buffer (e.g.
read directly into std::string so you don't have to copy the buffer into a string
read into streambuf so you can use std::istream(&sbuf_) to parse instead of tokenizing
Concatenating all_json_strs which clearly have to be owning text containers is wasteful. Instead, use a const-buffer-sequence to combine them all without copying.
Better yet, consider a streaming approach to JSON serialization so not all the JSON needs to be serialized in memory at any given time.
Don't declare empty destructors (~Connection). They're pessimizations
Likewise for empty constructors (ConnectionManager). If you must, consider
ConnectionManager::ConnectionManager() = default;
The getNativeHandle gives me more questions about other code that may interfere. E.g. it may indicate other libraries doing operations, which again can lead to overlapped reads/writes, or it could be a sign of more code living on threads (as Server::run() is by definition blocking)
Connection manager should probably hold weak_ptr, so Connections could eventually terminate. Now, the last reference is by defintion held in the connection manager, meaning nothing ever gets destructed when the peer disconnects or the session fails for some other reason.
This is not idiomatic:
// Check whether the server was stopped by a signal before this
// completion handler had a chance to run.
if (!acceptor_.is_open()) {
return;
}
If you closed the acceptor, the completion handler is called with error::operation_aborted anyways. Simply handle that, e.g. in the final version I'll post later:
// separate strand for each connection - just in case you ever add threads
acceptor_.async_accept(
make_strand(io_context_), [this](error_code ec, tcp::socket sock) {
if (!ec) {
connection_manager_.register_and_start(
std::make_shared<Connection>(std::move(sock),
connection_manager_));
do_accept();
}
});
I notice this comment:
// The server is stopped by cancelling all outstanding asynchronous
// operations. Once all operations have finished the io_service::run()
// call will exit.
In fact you never cancel() any operation on any IO object in your code. Again, comments aren't executed. It's better to indeed do as you say, and let the destructors close the resources. This prevents spurious errors when objects are used-after-close, and also prevents very annoying race conditions when e.g. you closed the handle, some other thread re-opened a new stream on the same filedescriptor and you had given out the handle to a third party (using getNativeHandle)... you see where this leads?
Reproducing The Problem?
Having reviewed this way, I tried to repro the issue, so I created fake data:
std::string getExecutionJsons() { return std::string(1024, 'E'); }
std::string getOrdersAsJsons() { return std::string(13312, 'O'); }
std::string getPositionsAsJsons() { return std::string(8192, 'P'); }
std::string createSyncDoneJson() { return std::string(24576, 'C'); }
With some minor tweaks to the Connection class:
std::string buff_str =
std::string(buffer_.data(), bytes_transferred);
const auto& tokenized_buffer = split(buff_str, ' ');
if (!tokenized_buffer.empty() &&
tokenized_buffer[0] == "sync") {
std::cerr << "sync detected on " << socket_.remote_endpoint() << std::endl;
/// "syncing connection" sends a specific text
/// hence I can separate between sycing and long-lived
/// connections here and act accordingly.
const auto& exec_json_strs = getExecutionJsons();
const auto& order_json_strs = getOrdersAsJsons();
const auto& position_json_strs = getPositionsAsJsons();
const auto& all_json_strs = exec_json_strs +
order_json_strs + position_json_strs +
createSyncDoneJson();
std::cerr << "All json length: " << all_json_strs.length() << std::endl;
/// this is potentially a very large data.
do_write(all_json_strs); // already on strand!
}
We get the server outputting
sync detected on 127.0.0.1:43012
All json length: 47104
sync detected on 127.0.0.1:43044
All json length: 47104
And clients faked with netcat:
$ netcat localhost 8989 <<< 'sync me' > expected
^C
$ wc -c expected
47104 expected
Good. Now let's cause premature disconnect:
netcat localhost 8989 -w0 <<< 'sync me' > truncated
$ wc -c truncated
0 truncated
So, it does lead to early close, but server still says
sync detected on 127.0.0.1:44176
All json length: 47104
Let's instrument do_write as well:
async_write( //
socket_, boost::asio::buffer(outgoing_buffer_, outgoing_buffer_.size()),
[/*this,*/ self](error_code ec, size_t transfer_size) {
std::cerr << "do_write completion: " << transfer_size << " bytes ("
<< ec.message() << ")" << std::endl;
if (!ec) {
/// everything is fine.
} else {
/// what to do here?
// FIXME: probably cancel the read loop so the connection
// closes?
}
});
Now we see:
sync detected on 127.0.0.1:44494
All json length: 47104
do_write completion: 47104 bytes (Success)
sync detected on 127.0.0.1:44512
All json length: 47104
do_write completion: 32768 bytes (Operation canceled)
For one disconnected and one "okay" connection.
No sign of crashes/undefined behaviour. Let's check with -fsanitize=address,undefined: clean record, even adding a heartbeat:
int main() {
Server s("127.0.0.1", "8989");
std::thread yolo([&s] {
using namespace std::literals;
int i = 1;
do {
std::this_thread::sleep_for(5s);
} while (s.deliver("HEARTBEAT DEMO " + std::to_string(i++)));
});
s.run();
yolo.join();
}
Conclusion
The only problem highlighted above that weren't addressed were:
additional threading issues not shown (perhaps via getNativeHandle)
the fact that you can have overlapping writes in the Connection do_write. Fixing that:
void Connection::write(std::string msg) { // public, might not be on the strand
post(socket_.get_executor(),
[self = shared_from_this(), msg = std::move(msg)]() mutable {
self->do_write(std::move(msg));
});
}
void Connection::do_write(std::string msg) { // assumed on the strand
outgoing_.push_back(std::move(msg));
if (outgoing_.size() == 1)
do_write_loop();
}
void Connection::do_write_loop() {
if (outgoing_.size() == 0)
return;
auto self(shared_from_this());
async_write( //
socket_, boost::asio::buffer(outgoing_.front()),
[this, self](error_code ec, size_t transfer_size) {
std::cerr << "write completion: " << transfer_size << " bytes ("
<< ec.message() << ")" << std::endl;
if (!ec) {
outgoing_.pop_front();
do_write_loop();
} else {
socket_.cancel();
// This would ideally be enough to free the connection, but
// since `ConnectionManager` doesn't use `weak_ptr` you need to
// force the issue using kind of an "umbillical cord reflux":
connection_manager_.stop(self);
}
});
}
As you can see I also split write/do_write to prevent off-strand invocation. Same with stop.
Full Listing
A full listing with all the remarks/fixes from above:
File connection.h
#pragma once
#include <boost/asio.hpp>
#include <array>
#include <deque>
#include <memory>
#include <string>
using boost::asio::ip::tcp;
class ConnectionManager;
/// Represents a single connection from a client.
class Connection : public std::enable_shared_from_this<Connection> {
public:
Connection(const Connection&) = delete;
Connection& operator=(const Connection&) = delete;
/// Construct a connection with the given socket.
explicit Connection(tcp::socket socket, ConnectionManager& manager);
void start();
void stop();
void write(std::string msg);
private:
void do_stop();
void do_write(std::string msg);
void do_write_loop();
/// Perform an asynchronous read operation.
void do_read();
/// Socket for the connection.
tcp::socket socket_;
/// The manager for this connection.
ConnectionManager& connection_manager_;
/// Buffer for incoming data.
std::array<char, 8192> buffer_;
std::deque<std::string> outgoing_;
};
using connection_ptr = std::shared_ptr<Connection>;
File connection_manager.h
#pragma once
#include <list>
#include "connection.h"
/// Manages open connections so that they may be cleanly stopped when the server
/// needs to shut down.
class ConnectionManager {
public:
ConnectionManager(const ConnectionManager&) = delete;
ConnectionManager& operator=(const ConnectionManager&) = delete;
ConnectionManager() = default; // could be split across h/cpp if you wanted
void register_and_start(connection_ptr c);
void stop(connection_ptr c);
void stop_all();
void broadcast(const std::string& buffer);
// purge defunct connections, returns remaining active connections
size_t garbage_collect();
private:
using handle = std::weak_ptr<connection_ptr::element_type>;
std::list<handle> connections_;
};
File server.h
#pragma once
#include <boost/asio.hpp>
#include <string>
#include "connection.h"
#include "connection_manager.h"
class Server {
public:
Server(const Server&) = delete;
Server& operator=(const Server&) = delete;
/// Construct the server to listen on the specified TCP address and port,
/// and serve up files from the given directory.
explicit Server(const std::string& address, const std::string& port);
/// Run the server's io_service loop.
void run();
bool deliver(const std::string& buffer);
private:
void do_accept();
void do_await_signal();
boost::asio::io_context io_context_;
boost::asio::any_io_executor strand_{io_context_.get_executor()};
boost::asio::signal_set signals_{strand_};
tcp::acceptor acceptor_{strand_};
ConnectionManager connection_manager_;
};
File connection.cpp
#include "connection.h"
#include <boost/algorithm/string.hpp>
#include <iostream>
#include <thread>
#include <utility>
#include <vector>
#include "connection_manager.h"
using boost::system::error_code;
Connection::Connection(tcp::socket socket, ConnectionManager& manager)
: socket_(std::move(socket))
, connection_manager_(manager) {}
void Connection::start() { // always assumed on the strand (since connection
// just constructed)
do_read();
}
void Connection::stop() { // public, might not be on the strand
post(socket_.get_executor(),
[self = shared_from_this()]() mutable {
self->do_stop();
});
}
void Connection::do_stop() { // assumed on the strand
socket_.cancel(); // trust shared pointer to destruct
}
namespace /*missing code stubs*/ {
auto split(std::string_view input, char delim) {
std::vector<std::string_view> result;
boost::algorithm::split(result, input,
boost::algorithm::is_from_range(delim, delim));
return result;
}
std::string getExecutionJsons() { return std::string(1024, 'E'); }
std::string getOrdersAsJsons() { return std::string(13312, 'O'); }
std::string getPositionsAsJsons() { return std::string(8192, 'P'); }
std::string createSyncDoneJson() { return std::string(24576, 'C'); }
} // namespace
void Connection::do_read() {
auto self(shared_from_this());
socket_.async_read_some(
boost::asio::buffer(buffer_),
[this, self](error_code ec, size_t bytes_transferred) {
if (!ec) {
std::string buff_str =
std::string(buffer_.data(), bytes_transferred);
const auto& tokenized_buffer = split(buff_str, ' ');
if (!tokenized_buffer.empty() &&
tokenized_buffer[0] == "sync") {
std::cerr << "sync detected on " << socket_.remote_endpoint() << std::endl;
/// "syncing connection" sends a specific text
/// hence I can separate between sycing and long-lived
/// connections here and act accordingly.
const auto& exec_json_strs = getExecutionJsons();
const auto& order_json_strs = getOrdersAsJsons();
const auto& position_json_strs = getPositionsAsJsons();
const auto& all_json_strs = exec_json_strs +
order_json_strs + position_json_strs +
createSyncDoneJson();
std::cerr << "All json length: " << all_json_strs.length() << std::endl;
/// this is potentially a very large data.
do_write(all_json_strs); // already on strand!
}
do_read();
} else {
std::cerr << "do_read terminating: " << ec.message() << std::endl;
connection_manager_.stop(shared_from_this());
}
});
}
void Connection::write(std::string msg) { // public, might not be on the strand
post(socket_.get_executor(),
[self = shared_from_this(), msg = std::move(msg)]() mutable {
self->do_write(std::move(msg));
});
}
void Connection::do_write(std::string msg) { // assumed on the strand
outgoing_.push_back(std::move(msg));
if (outgoing_.size() == 1)
do_write_loop();
}
void Connection::do_write_loop() {
if (outgoing_.size() == 0)
return;
auto self(shared_from_this());
async_write( //
socket_, boost::asio::buffer(outgoing_.front()),
[this, self](error_code ec, size_t transfer_size) {
std::cerr << "write completion: " << transfer_size << " bytes ("
<< ec.message() << ")" << std::endl;
if (!ec) {
outgoing_.pop_front();
do_write_loop();
} else {
socket_.cancel();
// This would ideally be enough to free the connection, but
// since `ConnectionManager` doesn't use `weak_ptr` you need to
// force the issue using kind of an "umbellical cord reflux":
connection_manager_.stop(self);
}
});
}
File connection_manager.cpp
#include "connection_manager.h"
void ConnectionManager::register_and_start(connection_ptr c) {
connections_.emplace_back(c);
c->start();
}
void ConnectionManager::stop(connection_ptr c) {
c->stop();
}
void ConnectionManager::stop_all() {
for (auto h : connections_)
if (auto c = h.lock())
c->stop();
}
/// this function is used to keep clients up to date with the changes, not used
/// during syncing phase.
void ConnectionManager::broadcast(const std::string& buffer) {
for (auto h : connections_)
if (auto c = h.lock())
c->write(buffer);
}
size_t ConnectionManager::garbage_collect() {
connections_.remove_if(std::mem_fn(&handle::expired));
return connections_.size();
}
File server.cpp
#include "server.h"
#include <signal.h>
#include <utility>
using boost::system::error_code;
Server::Server(const std::string& address, const std::string& port)
: io_context_(1) // THREAD HINT: single threaded
, connection_manager_()
{
// Register to handle the signals that indicate when the server should exit.
// It is safe to register for the same signal multiple times in a program,
// provided all registration for the specified signal is made through Asio.
signals_.add(SIGINT);
signals_.add(SIGTERM);
#if defined(SIGQUIT)
signals_.add(SIGQUIT);
#endif // defined(SIGQUIT)
do_await_signal();
// Open the acceptor with the option to reuse the address (i.e. SO_REUSEADDR).
tcp::resolver resolver(io_context_);
tcp::endpoint endpoint = *resolver.resolve({address, port});
acceptor_.open(endpoint.protocol());
acceptor_.set_option(tcp::acceptor::reuse_address(true));
acceptor_.bind(endpoint);
acceptor_.listen();
do_accept();
}
void Server::run() {
// The io_service::run() call will block until all asynchronous operations
// have finished. While the server is running, there is always at least one
// asynchronous operation outstanding: the asynchronous accept call waiting
// for new incoming connections.
io_context_.run();
}
void Server::do_accept() {
// separate strand for each connection - just in case you ever add threads
acceptor_.async_accept(
make_strand(io_context_), [this](error_code ec, tcp::socket sock) {
if (!ec) {
connection_manager_.register_and_start(
std::make_shared<Connection>(std::move(sock),
connection_manager_));
do_accept();
}
});
}
void Server::do_await_signal() {
signals_.async_wait([this](error_code /*ec*/, int /*signo*/) {
// handler on the strand_ because of the executor on signals_
// The server is stopped by cancelling all outstanding asynchronous
// operations. Once all operations have finished the io_service::run()
// call will exit.
acceptor_.cancel();
connection_manager_.stop_all();
});
}
bool Server::deliver(const std::string& buffer) {
if (io_context_.stopped()) {
return false;
}
post(io_context_,
[this, buffer] { connection_manager_.broadcast(std::move(buffer)); });
return true;
}
File test.cpp
#include "server.h"
int main() {
Server s("127.0.0.1", "8989");
std::thread yolo([&s] {
using namespace std::literals;
int i = 1;
do {
std::this_thread::sleep_for(5s);
} while (s.deliver("HEARTBEAT DEMO " + std::to_string(i++)));
});
s.run();
yolo.join();
}

boost::asio::async_write - ensure only one outstanding call

According to the documentation:
"The program must ensure that the stream performs no other write operations (such as async_write, the stream's async_write_some function, or any other composed operations that perform writes) until this operation completes."
Does this mean, I cannot call boost::asio::async_write a second time until the handler for the first is called? How does one achieve this and still be asynchronous?
If I have a method Send:
//--------------------------------------------------------------------
void Connection::Send(const std::vector<char> & data)
{
auto callback = boost::bind(&Connection::OnSend, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred);
boost::asio::async_write(m_socket, boost::asio::buffer(data), callback);
}
Do I have to change it to something like:
//--------------------------------------------------------------------
void Connection::Send(const std::vector<char> & data)
{
// Issue a send
std::lock_guard<std::mutex> lock(m_numPostedSocketIOMutex);
++m_numPostedSocketIO;
m_numPostedSocketIOConditionVariable.wait(lock, [this]() {return m_numPostedSocketIO == 0; });
auto callback = boost::bind(&Connection::OnSend, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred);
boost::asio::async_write(m_socket, boost::asio::buffer(data), callback);
}
and if so, then aren't I blocking after the first call again?
The async in async_write() refers to the fact that the function returns immediately while the writing happens in background. There should still be only one outstanding write at any given time.
You need to use a buffer if you have an asynchronous producer to set aside the new chunk of data until the currently active write completes, then issue a new async_write in the completion handler.
That is, Connection::Send must only call async_write once to kick off the process, in subsequent calls it should instead buffer its data, which will be picked up in the completion handler of the currently executing async_write.
For performance reasons you want to avoid copying the data into the buffer, and instead append the new chunk to a list of buffers and use the scatter-gather overload of async_write that accepts a ConstBufferSequence. It is also possible to use one large streambuf as a buffer and append directly into it.
Of course the buffer needs to be synchronized unless both Connection::Send and the io_service run in the same thread. An empty buffer can be reused as an indication that no async_write is in progress.
Here's some code to illustrate what I mean:
struct Connection
{
void Connection::Send(std::vector<char>&& data)
{
std::lock_guard<std::mutex> lock(buffer_mtx);
buffers[active_buffer ^ 1].push_back(std::move(data)); // move input data to the inactive buffer
doWrite();
}
private:
void Connection::doWrite()
{
if (buffer_seq.empty()) { // empty buffer sequence == no writing in progress
active_buffer ^= 1; // switch buffers
for (const auto& data : buffers[active_buffer]) {
buffer_seq.push_back(boost::asio::buffer(data));
}
boost::asio::async_write(m_socket, buffer_seq, [this] (const boost::system::error_code& ec, size_t bytes_transferred) {
std::lock_guard<std::mutex> lock(buffer_mtx);
buffers[active_buffer].clear();
buffer_seq.clear();
if (!ec) {
if (!buffers[active_buffer ^ 1].empty()) { // have more work
doWrite();
}
}
});
}
}
std::mutex buffer_mtx;
std::vector<std::vector<char>> buffers[2]; // a double buffer
std::vector<boost::asio::const_buffer> buffer_seq;
int active_buffer = 0;
. . .
};
The complete working source can be found in this answer.
Yes you need to wait for completion handler before calling async_write again. Are you sure you'll be blocked? Of course it depends on how fast you generate your data, but even if yes there's no way to send it faster than your network can handle it. If it's really an issue consider sending bigger chunks.
Here is a complete, compilable, and tested, example, that I researched and got to work through trial and error after reading the answer and subsequent edits from RustyX.
Connection.h
#pragma once
#include <boost/asio.hpp>
#include <atomic>
#include <condition_variable>
#include <memory>
#include <mutex>
//--------------------------------------------------------------------
class ConnectionManager;
//--------------------------------------------------------------------
class Connection : public std::enable_shared_from_this<Connection>
{
public:
typedef std::shared_ptr<Connection> SharedPtr;
// Ensure all instances are created as shared_ptr in order to fulfill requirements for shared_from_this
static Connection::SharedPtr Create(ConnectionManager * connectionManager, boost::asio::ip::tcp::socket & socket);
//
static std::string ErrorCodeToString(const boost::system::error_code & errorCode);
Connection(const Connection &) = delete;
Connection(Connection &&) = delete;
Connection & operator = (const Connection &) = delete;
Connection & operator = (Connection &&) = delete;
~Connection();
// We have to defer the start until we are fully constructed because we share_from_this()
void Start();
void Stop();
void Send(const std::vector<char> & data);
private:
static size_t m_nextClientId;
size_t m_clientId;
ConnectionManager * m_owner;
boost::asio::ip::tcp::socket m_socket;
std::atomic<bool> m_stopped;
boost::asio::streambuf m_receiveBuffer;
mutable std::mutex m_sendMutex;
std::vector<char> m_sendBuffers[2]; // Double buffer
int m_activeSendBufferIndex;
bool m_sending;
std::vector<char> m_allReadData; // Strictly for test purposes
Connection(ConnectionManager * connectionManager, boost::asio::ip::tcp::socket socket);
void DoReceive();
void DoSend();
};
//--------------------------------------------------------------------
Connection.cpp
#include "Connection.h"
#include "ConnectionManager.h"
#include <boost/bind.hpp>
#include <algorithm>
#include <cstdlib>
//--------------------------------------------------------------------
size_t Connection::m_nextClientId(0);
//--------------------------------------------------------------------
Connection::SharedPtr Connection::Create(ConnectionManager * connectionManager, boost::asio::ip::tcp::socket & socket)
{
return Connection::SharedPtr(new Connection(connectionManager, std::move(socket)));
}
//--------------------------------------------------------------------------------------------------
std::string Connection::ErrorCodeToString(const boost::system::error_code & errorCode)
{
std::ostringstream debugMsg;
debugMsg << " Error Category: " << errorCode.category().name() << ". "
<< " Error Message: " << errorCode.message() << ". ";
// IMPORTANT - These comparisons only work if you dynamically link boost libraries
// Because boost chose to implement boost::system::error_category::operator == by comparing addresses
// The addresses are different in one library and the other when statically linking.
//
// We use make_error_code macro to make the correct category as well as error code value.
// Error code value is not unique and can be duplicated in more than one category.
if (errorCode == boost::asio::error::make_error_code(boost::asio::error::connection_refused))
{
debugMsg << " (Connection Refused)";
}
else if (errorCode == boost::asio::error::make_error_code(boost::asio::error::eof))
{
debugMsg << " (Remote host has disconnected)";
}
else
{
debugMsg << " (boost::system::error_code has not been mapped to a meaningful message)";
}
return debugMsg.str();
}
//--------------------------------------------------------------------
Connection::Connection(ConnectionManager * connectionManager, boost::asio::ip::tcp::socket socket)
:
m_clientId (m_nextClientId++)
, m_owner (connectionManager)
, m_socket (std::move(socket))
, m_stopped (false)
, m_receiveBuffer ()
, m_sendMutex ()
, m_sendBuffers ()
, m_activeSendBufferIndex (0)
, m_sending (false)
, m_allReadData ()
{
printf("Client connection with id %zd has been created.", m_clientId);
}
//--------------------------------------------------------------------
Connection::~Connection()
{
// Boost uses RAII, so we don't have anything to do. Let thier destructors take care of business
printf("Client connection with id %zd has been destroyed.", m_clientId);
}
//--------------------------------------------------------------------
void Connection::Start()
{
DoReceive();
}
//--------------------------------------------------------------------
void Connection::Stop()
{
// The entire connection class is only kept alive, because it is a shared pointer and always has a ref count
// as a consequence of the outstanding async receive call that gets posted every time we receive.
// Once we stop posting another receive in the receive handler and once our owner release any references to
// us, we will get destroyed.
m_stopped = true;
m_owner->OnConnectionClosed(shared_from_this());
}
//--------------------------------------------------------------------
void Connection::Send(const std::vector<char> & data)
{
std::lock_guard<std::mutex> lock(m_sendMutex);
// Append to the inactive buffer
std::vector<char> & inactiveBuffer = m_sendBuffers[m_activeSendBufferIndex ^ 1];
inactiveBuffer.insert(inactiveBuffer.end(), data.begin(), data.end());
//
DoSend();
}
//--------------------------------------------------------------------
void Connection::DoSend()
{
// Check if there is an async send in progress
// An empty active buffer indicates there is no outstanding send
if (m_sendBuffers[m_activeSendBufferIndex].empty())
{
m_activeSendBufferIndex ^= 1;
std::vector<char> & activeBuffer = m_sendBuffers[m_activeSendBufferIndex];
auto self(shared_from_this());
boost::asio::async_write(m_socket, boost::asio::buffer(activeBuffer),
[self](const boost::system::error_code & errorCode, size_t bytesTransferred)
{
std::lock_guard<std::mutex> lock(self->m_sendMutex);
self->m_sendBuffers[self->m_activeSendBufferIndex].clear();
if (errorCode)
{
printf("An error occured while attemping to send data to client id %zd. %s", self->m_clientId, ErrorCodeToString(errorCode).c_str());
// An error occurred
// We do not stop or close on sends, but instead let the receive error out and then close
return;
}
// Check if there is more to send that has been queued up on the inactive buffer,
// while we were sending what was on the active buffer
if (!self->m_sendBuffers[self->m_activeSendBufferIndex ^ 1].empty())
{
self->DoSend();
}
});
}
}
//--------------------------------------------------------------------
void Connection::DoReceive()
{
auto self(shared_from_this());
boost::asio::async_read_until(m_socket, m_receiveBuffer, '#',
[self](const boost::system::error_code & errorCode, size_t bytesRead)
{
if (errorCode)
{
// Check if the other side hung up
if (errorCode == boost::asio::error::make_error_code(boost::asio::error::eof))
{
// This is not really an error. The client is free to hang up whenever they like
printf("Client %zd has disconnected.", self->m_clientId);
}
else
{
printf("An error occured while attemping to receive data from client id %zd. Error Code: %s", self->m_clientId, ErrorCodeToString(errorCode).c_str());
}
// Notify our masters that we are ready to be destroyed
self->m_owner->OnConnectionClosed(self);
// An error occured
return;
}
// Grab the read data
std::istream stream(&self->m_receiveBuffer);
std::string data;
std::getline(stream, data, '#');
data += "#";
printf("Received data from client %zd: %s", self->m_clientId, data.c_str());
// Issue the next receive
if (!self->m_stopped)
{
self->DoReceive();
}
});
}
//--------------------------------------------------------------------
ConnectionManager.h
#pragma once
#include "Connection.h"
// Boost Includes
#include <boost/asio.hpp>
// Standard Includes
#include <thread>
#include <vector>
//--------------------------------------------------------------------
class ConnectionManager
{
public:
ConnectionManager(unsigned port, size_t numThreads);
ConnectionManager(const ConnectionManager &) = delete;
ConnectionManager(ConnectionManager &&) = delete;
ConnectionManager & operator = (const ConnectionManager &) = delete;
ConnectionManager & operator = (ConnectionManager &&) = delete;
~ConnectionManager();
void Start();
void Stop();
void OnConnectionClosed(Connection::SharedPtr connection);
protected:
boost::asio::io_service m_io_service;
boost::asio::ip::tcp::acceptor m_acceptor;
boost::asio::ip::tcp::socket m_listenSocket;
std::vector<std::thread> m_threads;
mutable std::mutex m_connectionsMutex;
std::vector<Connection::SharedPtr> m_connections;
boost::asio::deadline_timer m_timer;
void IoServiceThreadProc();
void DoAccept();
void DoTimer();
};
//--------------------------------------------------------------------
ConnectionManager.cpp
#include "ConnectionManager.h"
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <system_error>
#include <cstdio>
//------------------------------------------------------------------------------
ConnectionManager::ConnectionManager(unsigned port, size_t numThreads)
:
m_io_service ()
, m_acceptor (m_io_service, boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), port))
, m_listenSocket(m_io_service)
, m_threads (numThreads)
, m_timer (m_io_service)
{
}
//------------------------------------------------------------------------------
ConnectionManager::~ConnectionManager()
{
Stop();
}
//------------------------------------------------------------------------------
void ConnectionManager::Start()
{
if (m_io_service.stopped())
{
m_io_service.reset();
}
DoAccept();
for (auto & thread : m_threads)
{
if (!thread.joinable())
{
thread.swap(std::thread(&ConnectionManager::IoServiceThreadProc, this));
}
}
DoTimer();
}
//------------------------------------------------------------------------------
void ConnectionManager::Stop()
{
{
std::lock_guard<std::mutex> lock(m_connectionsMutex);
m_connections.clear();
}
// TODO - Will the stopping of the io_service be enough to kill all the connections and ultimately have them get destroyed?
// Because remember they have outstanding ref count to thier shared_ptr in the async handlers
m_io_service.stop();
for (auto & thread : m_threads)
{
if (thread.joinable())
{
thread.join();
}
}
}
//------------------------------------------------------------------------------
void ConnectionManager::IoServiceThreadProc()
{
try
{
// Log that we are starting the io_service thread
{
printf("io_service socket thread starting.");
}
// Run the asynchronous callbacks from the socket on this thread
// Until the io_service is stopped from another thread
m_io_service.run();
}
catch (std::system_error & e)
{
printf("System error caught in io_service socket thread. Error Code: %d", e.code().value());
}
catch (std::exception & e)
{
printf("Standard exception caught in io_service socket thread. Exception: %s", e.what());
}
catch (...)
{
printf("Unhandled exception caught in io_service socket thread.");
}
{
printf("io_service socket thread exiting.");
}
}
//------------------------------------------------------------------------------
void ConnectionManager::DoAccept()
{
m_acceptor.async_accept(m_listenSocket,
[this](const boost::system::error_code errorCode)
{
if (errorCode)
{
printf("An error occured while attemping to accept connections. Error Code: %s", Connection::ErrorCodeToString(errorCode).c_str());
return;
}
// Create the connection from the connected socket
std::lock_guard<std::mutex> lock(m_connectionsMutex);
Connection::SharedPtr connection = Connection::Create(this, m_listenSocket);
m_connections.push_back(connection);
connection->Start();
DoAccept();
});
}
//------------------------------------------------------------------------------
void ConnectionManager::OnConnectionClosed(Connection::SharedPtr connection)
{
std::lock_guard<std::mutex> lock(m_connectionsMutex);
auto itConnection = std::find(m_connections.begin(), m_connections.end(), connection);
if (itConnection != m_connections.end())
{
m_connections.erase(itConnection);
}
}
//------------------------------------------------------------------------------
void ConnectionManager::DoTimer()
{
if (!m_io_service.stopped())
{
// Send messages every second
m_timer.expires_from_now(boost::posix_time::seconds(30));
m_timer.async_wait(
[this](const boost::system::error_code & errorCode)
{
std::lock_guard<std::mutex> lock(m_connectionsMutex);
for (auto connection : m_connections)
{
connection->Send(std::vector<char>{'b', 'e', 'e', 'p', '#'});
}
DoTimer();
});
}
}
main.cpp
#include "ConnectionManager.h"
#include <cstring>
#include <iostream>
#include <string>
int main()
{
// Start up the server
ConnectionManager connectionManager(5000, 2);
connectionManager.Start();
// Pretend we are doing other things or just waiting for shutdown
std::this_thread::sleep_for(std::chrono::minutes(5));
// Stop the server
connectionManager.Stop();
return 0;
}
Could we use 2 strands for this question by posting write(...) as an asynchronous operation to strand1 and handler(...) to strand2?
Your advices on the code would be highly appreciated.
boost::asio::strand<boost::asio::io_context::executor_type> strand1, strand2;
std::vector<char> empty_vector(0);
void Connection::Send(const std::vector<char> & data)
{
boost::asio::post(boost::asio::bind_executor(strand1, std::bind(&Connection::write, this, true, data)));
}
void Connection::write(bool has_data, const std::vector<char> & data)
{
// Append to the inactive buffer
std::vector<char> & inactiveBuffer = m_sendBuffers[m_activeSendBufferIndex ^ 1];
if (has_data)
{
inactiveBuffer.insert(inactiveBuffer.end(), data.begin(), data.end());
}
//
if (!inactiveBuffer.empty() && m_sendBuffers[m_activeSendBufferIndex].empty())
{
m_activeSendBufferIndex ^= 1;
std::vector<char> & activeBuffer = m_sendBuffers[m_activeSendBufferIndex];
boost::asio::async_write(m_socket, boost::asio::buffer(activeBuffer), boost::asio::bind_executor(strand2, std::bind(&Connection::handler, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)));
}
}
void Connection::handler(const boost::system::error_code & errorCode, size_t bytesTransferred)
{
self->m_sendBuffers[self->m_activeSendBufferIndex].clear();
if (errorCode)
{
printf("An error occured while attemping to send data to client id %zd. %s", self->m_clientId, ErrorCodeToString(errorCode).c_str());
// An error occurred
// We do not stop or close on sends, but instead let the receive error out and then close
return;
}
boost::asio::post(boost::asio::bind_executor(strand1, std::bind(&Connection::write, this, false, empty_vector)));
}
}

boost::async_write skips parts of the string

I am working on a chat. For some reason, at the point of distributing user's message between other clients, string put together by Server::msgHandler is butchered by async_write in Connection::write, making it appear as only the part of that string has actually been read. Example:
Constructed message: "Hello people by Jack"
Appears as: "by Jack"
that is the string str=Hello people is not printed out. At first I thought it was to do with the implicit \0 at its end, but that wouldn't make any sense, moreover, as I tried various positions of string in message I noticed that if str is preceded with other text, the text will be shown either emitting str entirely, or placing it in unexpected places. E.g.
writeMsg("It was said: \n"+str+" by \"name\"\n");
will appear as:
It was said
by "name"Hello People
Full, minimal, compilable example:
#include <boost/asio.hpp>
#include <boost/bind/bind.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <iostream>
#include <vector>
#include <deque>
typedef boost::asio::io_service io_service;
typedef boost::asio::ip::tcp tcp;
class Server;
class Connection : public boost::enable_shared_from_this<Connection> {
io_service::strand strand;
tcp::socket soc;
std::deque<std::string> msgBuff;
boost::asio::streambuf buf;
Server* server;
void(Server::*serverHandler)(std::string);
private:
Connection(io_service& service) :soc(service), strand(service){
}
void writeStranded(std::string msg){
msgBuff.push_back(msg);
if (msgBuff.size() > 1)return;
write();
}
void write(){
std::string& tmpMsg = msgBuff[0];
boost::asio::async_write(
soc,
boost::asio::buffer(tmpMsg.c_str(), tmpMsg.size()),
strand.wrap(
boost::bind(&Connection::handleWrite,
this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred)
)
);
}
void handleWrite(const boost::system::error_code&, size_t s){
msgBuff.pop_front();
if (!msgBuff.empty())write();
}
void handleRead(const boost::system::error_code&, size_t s){
std::istream is(&buf);
std::string tmpMsg;
std::getline(is, tmpMsg);
(server->*serverHandler)(tmpMsg);
readMsg();
}
public:
typedef boost::shared_ptr<Connection> pointer;
static pointer createInstance(io_service& service){
return pointer(new Connection(service));
}
void init(Server* server, void(Server::*serverHandler)(std::string)){
this->server = server;
this->serverHandler = serverHandler;
writeMsg("hello\n");
readMsg();
}
void writeMsg(std::string msg){
strand.dispatch(boost::bind(&Connection::writeStranded, this, msg));
}
void readMsg(){
const char delim = '\n';
boost::asio::async_read_until(soc, buf, delim,
boost::bind(&Connection::handleRead, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred));
}
tcp::socket& getSocket(){
return soc;
}
};
class Server{
tcp::acceptor accept;
std::vector<Connection::pointer> connections;
public:
Server(io_service& io_service, int port = 23) :accept(io_service, tcp::endpoint(tcp::v4(), port)){
awaitConnection();
};
private:
void awaitConnection(){
Connection::pointer con = Connection::createInstance(accept .get_io_service());
accept.async_accept(con->getSocket(), boost::bind(&Server::conAcceptor, this, con, boost::asio::placeholders::error));
}
void conAcceptor(Connection::pointer con, const boost::system::error_code& err){
if (err)return;
con->init(this, &Server::msgHandler);
awaitConnection();
connections.push_back(con);
}
void msgHandler(std::string str){
for (Connection::pointer ptr : connections){
ptr->writeMsg(str+" by \"name\"\n");
}
}
};
int main(){
io_service io_service;
Server s(io_service);
io_service.run();
system("pause");
}
Upd
Turns out the async_read was appending the string with carriage return, which was stored as it was added before the delimeter in the name string, and each time I tried make the name appear, everything preceding it would get overwritten by all that followed. Sometimes that carriage return would get wild and skip some characters preceding the name, which further complicated the search of this bug.
I got it running. I had to write a client for it...
Before this goes into production you'll want to look at the lifetime handling. The normal way is that the connection object holds a shared_ptr to itself in its bound handlers.
I have use c++14 lambdas as I find them less onerous that boost::bind.
#include <boost/asio.hpp>
#include <boost/bind/bind.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <iostream>
#include <vector>
#include <deque>
#include <iterator>
typedef boost::asio::io_service io_service;
typedef boost::asio::ip::tcp tcp;
class Server;
class Connection
: public boost::enable_shared_from_this<Connection>
{
io_service::strand strand;
tcp::socket soc;
// use double-buffering for the message sending
std::deque<std::string> sending, to_send;
boost::asio::streambuf buf;
Server *server;
void (Server::*serverHandler)(std::string);
private:
Connection(io_service& service)
: strand(service)
, soc(service)
{
}
void writeStranded(std::string msg)
{
assert(strand.running_in_this_thread()); // sanity check
to_send.push_back(std::move(msg));
maybe_write();
}
void maybe_write()
{
assert(strand.running_in_this_thread()); // sanity check
if (sending.empty() and not to_send.empty()) {
sending.swap(to_send);
// make a buffer sequence
auto buffers = std::vector<boost::asio::const_buffers_1>();
buffers.reserve(sending.size());
for (auto& data : sending) {
buffers.push_back(boost::asio::buffer(data));
}
boost::asio::async_write(soc, buffers,
strand.wrap([this](auto&& ec, size_t size)
{
this->sending.clear();
if (not ec) maybe_write();
}));
}
}
void handleRead(const boost::system::error_code&, size_t s)
{
std::istream is(&buf);
std::string tmpMsg;
std::getline(is, tmpMsg);
(server->*serverHandler)(tmpMsg);
readMsg();
}
public:
typedef boost::shared_ptr<Connection> pointer;
static pointer createInstance(io_service& service)
{
return pointer(new Connection(service));
}
void init(Server *server, void(Server::*serverHandler)(std::string))
{
this->server = server;
this->serverHandler = serverHandler;
writeMsg("hello\n");
readMsg();
}
void writeMsg(std::string msg)
{
strand.dispatch(boost::bind(&Connection::writeStranded, this, msg));
}
void readMsg()
{
const char delim = '\n';
boost::asio::async_read_until(soc, buf, delim,
boost::bind(&Connection::handleRead, this, boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
tcp::socket& getSocket()
{
return soc;
}
};
class Server
{
tcp::acceptor accept;
std::vector<Connection::pointer> connections;
public:
Server(io_service& io_service, int port = 2333)
: accept(io_service, tcp::endpoint(tcp::v4(), port))
{
awaitConnection();
};
private:
void awaitConnection()
{
Connection::pointer con = Connection::createInstance(accept.get_io_service());
accept.async_accept(con->getSocket(),
boost::bind(&Server::conAcceptor, this, con, boost::asio::placeholders::error));
}
void conAcceptor(Connection::pointer con, const boost::system::error_code& err)
{
if (err)return;
con->init(this, &Server::msgHandler);
awaitConnection();
connections.push_back(con);
}
void msgHandler(std::string str)
{
for (Connection::pointer ptr : connections) {
ptr->writeMsg(str + " by \"name\"\n");
}
}
};
struct Client
{
using protocol = boost::asio::ip::tcp;
Client(boost::asio::io_service& exec)
: executor_(exec) {}
void run(int port)
{
resolver_.async_resolve(protocol::resolver::query("localhost", std::to_string(port)),
strand_.wrap([this](auto&& ec, auto iter)
{
std::cout << "resolve: " << ec.message() << std::endl;
if (not ec) start_connect(iter);
}));
}
void start_connect(protocol::resolver::iterator iter)
{
boost::asio::async_connect(socket_, iter,
strand_.wrap([this](auto&& ec, auto iter)
{
std::cout << "connect: " << ec.message() << std::endl;
if (not ec) {
this->start_reading();
auto data = std::make_shared<std::string>(
"The quick brown fox jumps over the lazy dog\n"
"Farmer bob has a cool tractor\n");
boost::asio::async_write(socket_, boost::asio::buffer(*data),
strand_
.wrap([data](auto&& ec, auto size)
{
std::cout << "written: "
<< size
<< std::endl;
}));
}
}));
}
void start_reading()
{
auto buffer = read_buffer_.prepare(1024);
socket_.async_read_some(read_buffer_.prepare(1024), [this](auto&& ec, auto size)
{
read_buffer_.commit(size);
std::istream is(std::addressof(read_buffer_));
std::string s;
while(std::getline(is, s)) {
std::cout << s << std::endl;
}
start_reading();
});
}
boost::asio::io_service& executor_;
boost::asio::io_service::strand strand_{executor_};
protocol::resolver resolver_{executor_};
protocol::socket socket_{executor_};
boost::asio::streambuf read_buffer_;
};
int main()
{
io_service io_service;
Server s(io_service);
Client c(io_service);
c.run(2333);
io_service.run();
system("pause");
}
output (program does not terminate):
resolve: Undefined error: 0
connect: Undefined error: 0
written: 74
hello
The quick brown fox jumps over the lazy dog by "name"
Farmer bob has a cool tractor by "name"
Notice that in void readMsg() delim is set to be '\n'. As innocuous as it might look it doesn't take into account the fact that in Windows a newline is represented as CR + LF which is: "\r\n". So each time you read something from socket using read_until(delim) everything besides delimeter will stay in the buffer, including \r (carriage return). If string like that is later appended it is expected that everything after \r will overlay the original text.

boost::asio, why does my socket immediately run callback function after calling async_receive_from?

I'm trying to do an async connection establishment using 3 way handshake. At the bottom of the code there is a main method that takes in an argument to determine whether it's acting as client or server.
If it's acting as server it creates a socket and is supposed to wait till it receives data then call the callback function multiplex to figure out how to handle the data it received.
If it's acting as client I will also create a socket that is asynchronously waiting to receive data but it will also send an syn packet via udp to the server using the create_connection method.
In the constructor for Socket I execute the method start_receive which should call async_receive_from on the udp socket. The problem is that it immediately called the callback function multiplex using an endpoint for 0.0.0.0:0 instead of just waiting to receive data.
#include <iostream>
#include <string>
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/cstdint.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <unordered_map>
#include "packed_message.h"
#include "segment.pb.h"
#include "rtp.hpp"
#define DEBUG true
#define BUFFER_SIZE 10000
using boost::asio::ip::udp;
typedef boost::shared_ptr<rtp::Segment> SegmentPtr;
typedef std::vector<uint8_t> data_buffer;
// constructor for socket
rtp::Socket::Socket(boost::asio::io_service& io_service_, std::string source_ip, std::string source_port):
io_service_(io_service_),
socket_(io_service_, udp::endpoint(boost::asio::ip::address::from_string(source_ip), std::stoi(source_port))),
source_port(source_port),
source_ip(source_ip)
{
// accept incoming rtp segments
std::cout << rtp::get_endpoint_str(socket_.local_endpoint()) << std::endl;
start_receive();
}
/**
* Accept incoming rtp segments
*/
void rtp::Socket::start_receive()
{
data_buffer tmp_buf;
socket_.async_receive_from(boost::asio::buffer(tmp_buf), remote_endpoint_,
boost::bind(&rtp::Socket::multiplex, this,
tmp_buf,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
void rtp::Socket::multiplex(data_buffer& tmp_buf,
const boost::system::error_code& error,
std::size_t /*bytes_transferred*/)
{
std::string identifier = rtp::get_endpoint_str(remote_endpoint_);
if (connections.count(identifier) == 0 )
{
boost::shared_ptr<Connection> connection(new Connection(remote_endpoint_));
connections.insert({rtp::get_endpoint_str(remote_endpoint_), connection});
std::cout << rtp::get_endpoint_str(remote_endpoint_) << std::endl;
connection_establishment(tmp_buf, connections.at(identifier));
}
else if(!(connections.at(identifier)->is_valid())) // connection not in list of connections
{
connection_establishment(tmp_buf, connections.at(identifier));
}
boost::shared_ptr<rtp::Connection> rtp::Socket::create_connection(std::string ip, std::string port)
{
udp::resolver resolver_(io_service_);
udp::resolver::query query_(ip, port);
udp::endpoint remote_endpoint_ = *resolver_.resolve(query_);
boost::shared_ptr<Connection> connection(new Connection(remote_endpoint_));
connections.insert({rtp::get_endpoint_str(remote_endpoint_), connection});
PackedMessage<rtp::Segment> m_packed_segment(SegmentPtr(new rtp::Segment()));
boost::shared_ptr<data_buffer> message(new data_buffer);
SegmentPtr ackseg(new rtp::Segment());
ackseg->set_ack(true);
PackedMessage<rtp::Segment> initialack(ackseg);
initialack.pack(*message);
socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&rtp::Socket::handle_send, this, message,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
return connection;
}
void rtp::Socket::connection_establishment(data_buffer& m_readbuf, boost::shared_ptr<Connection> connection)
{
int buffer_position(0);
PackedMessage<rtp::Segment> m_packed_segment(boost::shared_ptr<rtp::Segment>(new rtp::Segment()));
boost::shared_ptr<data_buffer> message(new data_buffer);
unsigned msg_len = m_packed_segment.decode_header(m_readbuf, buffer_position);
buffer_position += HEADER_SIZE;
m_packed_segment.unpack(m_readbuf, msg_len, buffer_position);
buffer_position += msg_len;
SegmentPtr synackseg = m_packed_segment.get_msg();
if (synackseg->syn() && synackseg->ack())
{
SegmentPtr ackseg(new rtp::Segment());
ackseg->set_ack(true);
PackedMessage<rtp::Segment> finalack(ackseg);
finalack.pack(*message);
connection->set_valid(true);
socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&rtp::Socket::handle_send, this,
message,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
else if (synackseg->syn() )
{
SegmentPtr synackseg(new rtp::Segment());
synackseg->set_ack(true);
synackseg->set_syn(true);
PackedMessage<rtp::Segment> synack(synackseg);
synack.pack(*message);
socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&rtp::Socket::handle_send, this,
message,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
else if (synackseg->ack())
{
connection->set_valid(true);
}
start_receive();
}
void rtp::Socket::handle_send(boost::shared_ptr<data_buffer> /*message*/,
const boost::system::error_code& /*error*/,
std::size_t /*bytes_transferred*/)
{
}
/**
* Get remote peer ip and port in string "<ip>:<port>"
*/
std::string rtp::get_endpoint_str(udp::endpoint remote_endpoint_)
{
std::string ip = remote_endpoint_.address().to_string();
std::string port = std::to_string(remote_endpoint_.port());
return ip + ":" + port;
}
rtp::Connection::Connection(udp::endpoint remote_endpoint_):
remote_endpoint_(remote_endpoint_),
dest_ip(remote_endpoint_.address().to_string()),
dest_port(std::to_string(remote_endpoint_.port())),
valid(false)
{
}
bool rtp::Connection::is_valid()
{
return valid;
}
void rtp::Connection::set_valid(bool val)
{
if(DEBUG) std::cerr << "Connection Created" << std::endl;
valid = val;
}
int main(int argc, char* argv[])
{
if (argc == 1)
{
std::cerr << "Not enough args" << std::endl;
return 1;
}
boost::asio::io_service io_service_;
if (std::string(argv[1]) == u8"server")
{
rtp::Socket socket(io_service_, u8"127.0.0.1", u8"4545");
}
else if (std::string(argv[1]) == u8"client")
{
rtp::Socket socket(io_service_, u8"127.0.0.1", u8"4546");
socket.create_connection(u8"127.0.0.1", u8"4545");
}
io_service_.run();
return 0;
}
The problem is most likely these lines:
if (std::string(argv[1]) == u8"server")
{
rtp::Socket socket(io_service_, u8"127.0.0.1", u8"4545");
}
else if (std::string(argv[1]) == u8"client")
{
rtp::Socket socket(io_service_, u8"127.0.0.1", u8"4546");
socket.create_connection(u8"127.0.0.1", u8"4545");
}
Here in each of the if statement bodies you declare a variable socket, but that is local only within the scope of the if statement body. Once that scope end the variable will be destructed and exist no more.
The behavior you see it probably related to that issue, that the objects you create in those scopes gets destructed.
You need to create a socket whose lifetime is longer than any inner scope, and will last until io_service_.run() returns.