This question already has answers here:
What are the basic rules and idioms for operator overloading?
(8 answers)
Closed 6 years ago.
I am getting error while trying to compile the following code. I am beginner. Please help me figuring it out. I am trying to overload the operators _,+,/,*. It shows error while compiling. Should I use "friend" to solve this?
#include<stdio.h>
class complex{
private:
double real; //real part of complex
double imag; // imaginary part of complex
public:
complex(double r=0., double i=0.):real(r),imag(i)
{
} // constructor with initialization
complex(const complex&c):real(c.real),imag(c.imag)
{
} // copy constructor with initialization
~complex()
{
} // destructor
double re() const
{
return real;
} // read real part
double im() const
{
return imag;
} // read imaginary part
const complex& operator=(const complex&c)
{
real=c.real;
imag=c.imag;
return *this;
} //assignment operator
const complex& operator+=(const complex&c)
{
real += c.real;
imag += c.imag;
return *this;
} // addition of current complex
const complex& operator-=(const complex&c)
{
real -= c.real;
imag -= c.imag;
return *this;
} // subtract from current complex
const complex& operator*=(const complex&c)
{
double keepreal = real;
real = real*c.real-imag*c.imag;
imag = keepreal*c.imag+imag*c.real;
return *this;
} // multiply current complex with a complex
const complex& operator/=(double d)
{
real /= d;
imag /= d;
return *this;
} // divide current complex with real
void print(const complex&c)
{
printf("(%f,%f)\n",c.re(),c.im() );
} // printing complex number
friend complex operator !(const complex& c)
{
return complex(c.re(),-c.im());
}
friend double abs2(const complex& c)
{
return c.re()*c.re()+c.im()*c.im();
} // absolute value of complex
const complex& operator/=(const complex&c)
{
return *this *= (!c)/=abs2(c);
} // divide the current complex by a complex
const complex operator-(const complex& c)
{
return complex(-c.re(),-c.im());
} // negative of complex number
const complex operator-(const complex& c,const complex& d)
{
return complex(c.re()-d.re(),c.im()-d.im());
} // difference between complex numbers
const complex operator+(const complex& c,const complex& d)
{
return complex(c.re()+d.re(),c.im()+d.im());
} // addition of complex numbers
const complex operator*(const complex& c,const complex& d)
{
return complex(c)*=d;
} // multiplication of complex numbers
const complex operator/(const complex& c,const complex& d)
{
return complex(c)/=d;
} // division of complex numbers
};
int main(){
complex c(1.,0.),d(3.,4.);
print(c-d);
print(c/d);
return 0;
}
the output I am getting is:
complex_nums.cpp:76:59: error: ‘const complex complex::operator-(const complex&, const complex&)’ must take either zero or one argument
const complex operator-(const complex& c,const complex& d)
^
complex_nums.cpp:80:59: error: ‘const complex complex::operator+(const complex&, const complex&)’ must take either zero or one argument
const complex operator+(const complex& c,const complex& d)
^
complex_nums.cpp:84:59: error: ‘const complex complex::operator*(const complex&, const complex&)’ must take either zero or one argument
const complex operator*(const complex& c,const complex& d)
^
complex_nums.cpp:88:59: error: ‘const complex complex::operator/(const complex&, const complex&)’ must take exactly one argument
const complex operator/(const complex& c,const complex& d)
^
complex_nums.cpp: In function ‘int main()’:
complex_nums.cpp:96:11: error: ‘print’ was not declared in this scope
print(c-d);
^
complex_nums.cpp:97:9: error: no match for ‘operator/’ (operand types are ‘complex’ and ‘complex’)
print(c/d);
All your operators (+,-,*,/) need exactly one or no arguments, unless they are friend functions. Mark all the operator functions as friend, and the code should work. Otherwise, eliminate 1 parameter from each of the operators, and instead of that use the current instance (this). Example for + operator with parameter removed:
const complex operator+(const complex& c)
{
return complex(c.re()+re(),c.im()+im());
}
Reference of friend arithmetic operators: http://www.learncpp.com/cpp-tutorial/92-overloading-the-arithmetic-operators-using-friend-functions/
Next Error
What are you doing with your print() function? It should be in global scope, because it takes a complex as parameter. Move print() out of the class into global scope, like this. If you still want to keep a print() for the object itself, do so, but the one for your class should look like below:
class complex
{
void print(const complex&c)
{
printf("(%f,%f)\n",re(),im() );
} // printing complex number
};
void print(const complex&c)
{
printf("(%f,%f)\n",c.re(),c.im() );
} // printing complex number
Binary operators are either free functions with 2 arguments (preferred) or member functions with one argument (not so good).
You have defined member functions with 2 arguments.
Turning them into free functions by adding friend is one way.
Another is to make them free functions, defined outside the class but written in terms of member functions (as you have done anyway):
struct complex
{
/* ... */
};
// class definition ends
//free function
inline complex operator/(const complex& c,const complex& d)
{
return complex(c)/=d;
} // division of complex numbers
Note, this function can be improved:
inline complex operator/(complex c,const complex& d)
{
c /= d;
return c;
}
Also, unary operators should return complex&, not const complex&. The thing you're returning is mutable, because you just mutated it.
For the errors with the operators must take either zero or one argument, this is because you are implementing the non-member function as a member funciton. These should be free functions to work properly, or should only take one argument and use this as the other.
See this question for clarification:
Operator overloading : member function vs. non-member function?
For the error with print, I guess you are trying to call the print member function. To do that you need to do e.g. the following:
complex(c-d).print();
Related
In order to become more familiar with C++, I'm implementing a class to manipulate complex numbers.
class Complex {
private:
double _real;
double _imag;
public:
Complex();
Complex(double real, double imag);
Complex(const Complex& z);
Complex operator+(const Complex& u) const;
Complex operator+=(const Complex& u);
};
I already overloaded the + operator which works as expected:
Complex Complex::operator+(const Complex& u) const {
Complex z(_real + u._real, _imag + u._imag);
return z;
}
u=1-2i
v=2-1i
u+v=3-3i
In addition, I wanted to overload += as well:
Complex Complex::operator+=(const Complex& u) {
Complex z(_real + u._real, _imag + u._imag);
return z;
}
This however, does not work as expected and the result of u+=v is u=1-2i. Why is that the case?
Your compound assignment operator creates a new object z instead of changing the original object.
Declare the operator within the class definition like
Complex & operator+=(const Complex& u);
and define it the following way
Complex & Complex::operator+=(const Complex& u) {
_real += u._real;
_imag += u._imag;
return *this;
}
The operator can be defined as a non-class friend function. For example
class Complex {
private:
double _real;
double _imag;
public:
Complex();
Complex(double real, double imag);
Complex(const Complex& z);
Complex operator+(const Complex& u) const;
friend Complex & operator+=(Complex &v, const Complex& u);
};
Complex & operator+=(Complex &v, const Complex& u)
{
v._real += u._real;
v._imag += u._imag;
return v;
}
First of all assign like operators should return reference to assigned value.
Secondly your code should change value of current object.
There are couple solutions:
Complex& Complex::operator+=(const Complex& u) {
*this = Complex(_real + u._real, _imag + u._imag);
return *this;
}
Or
Complex& Complex::operator+=(const Complex& u) {
_real += u._real;
_imag += u._imag;
return *this;
}
So, i have a simple class:
class complex{
private:
double a,b;
public:
void setA(double a){ this->a=a; }
void setB(double b){ this->b=b; }
double getA(){ return a; }
double getB(){ return b; }
friend complex operator+(const complex&, const complex&);
};
And i have the actual overloaded operator here:
complex operator+(const complex& x, const complex& y){
complex c;
c.a=x.a+y.a;
c.b=x.b+y.b;
return c;
}
I must have the operator overloaded outside of the function. In order to have access to private variables (those also HAVE to be private) I befriended the class with the function. I don't know if that's correct way to do such things, but at least it works.
I want to be able to add an integer to both members. In main():
complex a;
a.setA(2);
a.setB(3);
a+5;
Would result in having a.a=7 and a.b=8. Such overload inside the class is quite easy to make (Again, don't know if that's good solution, if not please correct me):
complex operator+(int x){
this->a+=x;
this->b+=x;
}
But I have no idea how to make it outside of the class because i can't use "this" pointer.
The usual approach to this sort of problem is to have member functions that define the reflexive version of arithmetic operators and free functions that define the non-reflexive version, implemented with the reflexive version. No friend declarations needed. For example:
class complex {
public:
complex& operator+=(const complex& rhs) {
x += rhs.x;
y += rhs.y;
return *this;
}
private:
double x, y;
};
complex operator+(const complex& lhs, const complex& rhs) {
complex result = lhs;
result += rhs;
return result;
}
Having a+5 change the value of a is unusual, but if that's really wha you want, make operator+(int) a member. However, users would typically expect that a+5 would leave a unchanged, and that a += 5 would modify a.
Is it possible to create an overload for the ostream operator that does an arithmetic operation (addition for example) and then streams out the result? The standard ostream overload that can be found all over the web can only stream from a single variable. I need something that does the following:
std::cout << x+y << std::endl;
or even more complex expressions like:
std::cout << x*y+(3*z)^2 << std::endl;
where x, y, and z are instances of a simple custom-made struct where arithmetic operations are already defined (overloaded).
EDIT:
Here is my code:
struct scalar //complex scalar data structure
{
friend scalar operator^(const scalar&, int); //integer power operator overload
friend scalar exp(const scalar&); //exponential power function
std::ostream& operator<<(std::ostream&, const scalar&)
protected:
double re;
double im;
public:
double real() {return re;} //returns the real part
double imag() {return im;} //returns the imaginary part
scalar(double _re, double _im) {re=_re;im=_im;} //constructor 1
scalar(double _re) {re=_re;im=0.0;} //constructor 2
scalar(const scalar& s): re(s.re), im(s.im) {} //copy constructor
scalar& operator=(const scalar& rhs) //assignment operator overload
{
if (&rhs==this) return *this; //checks for self-assignment
re=rhs.re; //sets real parts equal
im=rhs.im; //sets imaginary parts equal
return *this;
}
scalar& operator+=(const scalar& rhs) //compound addition-assignment operator overload
{
if (&rhs==this) return *this; //checks for self-assignment
re=re+rhs.re; //adds real parts
im=im+rhs.im; //adds imaginary parts
return *this;
}
scalar& operator*=(const scalar& rhs) //compound multiplication-assignment operator overload
{
if (&rhs==this) return *this; //checks for self-assignment
double x1=re; double x2=rhs.re; double y1=im; double y2=rhs.im;
re=x1*x2-y1*y2; //multiplies real parts
im=x1*y2+x2*y1; //multiplies imaginary parts
return *this;
}
scalar& operator-=(const scalar& rhs) //compound subtraction-assignment operator overload
{
if (&rhs==this) return *this; //checks for self-assignment
re=re-rhs.re; //adds real parts
im=im-rhs.im; //adds imaginary parts
return *this;
}
scalar& operator/=(const scalar& rhs) //compound division-assignment operator overload
{
if (&rhs==this) return *this; //checks for self-assignment
double x1=re; double x2=rhs.re; double y1=im; double y2=rhs.im;
double n;
n =pow(x2,2)+pow(y2,2);
if (n==0) throw(1);
re=(x1*x2+y1*y2)/n; //multiplies real parts
im=(x2*y1-x1*y2)/n; //multiplies imaginary parts
return *this;
}
const scalar operator+(const scalar& b) //addition operator overload
{
scalar c = *this;
c+=b;
return c;
}
const scalar operator*(const scalar& b) //addition operator overload
{
scalar c = *this;
c*=b;
return c;
}
const scalar operator-(const scalar& b) //addition operator overload
{
scalar c = *this;
c-=b;
return c;
}
const scalar operator/(const scalar& b) //addition operator overload
{
scalar c = *this;
c/=b;
return c;
}
};
scalar i(0.0,1.0);
scalar j(0.0,1.0);
std::ostream& operator<<(std::ostream& out, const scalar& s)
{
out << s.re << '+' << s.im << 'i';
return out;
}
scalar operator^(scalar a, int b) //integer power operator overload
{
double x=a.real(); double y=a.imag();
if (x==0) throw(1);
int r=sqrt(pow(x,2)+pow(y,2));
int arg=atan2(y,x);
scalar c(r*cos(arg),r*sin(arg));
return c;
}
scalar exp(const scalar& s) //exponential power function
{
double x=s.re; double y=s.im;
scalar c(exp(x)*cos(y),exp(x)*sin(y));
return c;
}
Here is my main function:
int main()
{
scalar x(3,4);
scalar y=2;
cout << x*y << endl;
return 0;
}
This is is the output it is supposed to give:
6+8i
And this is the errors it gives instead:
In function 'std::ostream& operator<<(std::ostream&, const scalar&)':|
error: passing 'const scalar' as 'this' argument of 'double scalar::real()'
discards qualifiers|
And if I remove the const as the compiler says, I will get the following error:
error: no match for 'operator<<' in 'std::cout << scalar::operator*(const scalar&)
(((const scalar&)((const scalar*)(& y))))'|
The << operator can't handle the full expression - and why should it?
You need to implement the separate operators (operator+, operator*, ...) for your struct, which take your structs as parameters, do the corresponding operation on it, and return another of your structs. And only then define a operator<< taking a single one of your structs.
How would you even think of passing in such a complex structure to the operator<<, let alone parse it in there? Implement the separate operators, and leave the parsing to the compiler.
e.g. for a simple struct only encapsulating an int, doing that with + operation would look like this:
struct mystruct
{
int value;
};
then define:
mystruct const operator+(mystruct const & a, mystruct const & b)
{
mystruct result;
result.value = a.value + b.value;
return result;
}
and
std::ostream & operator<<(std::ostream& out, mystruct const & a)
{
out << a.value;
return out;
}
then you can do:
mystruct a, b;
a.value = 1;
b.value = 2;
std::cout << a+b;
Edit: With your updated code, there's exactly one problem:
std::ostream& operator<<(std::ostream&, const scalar&)
should be
friend std::ostream& operator<<(std::ostream&, const scalar&);
i.e. you're missing friend and an ;
Though the error you show suggests some different problem (which jrok's answer would have a solution for) - that doesn't seem to result from compiling the code you show! So please get the shown code and error message in sync.
The error is because functions scalar::real and scalar::imag are not const - you can only call const member functions when you've got a reference to a constant scalar.
double real() const {return re;}
double imag() const {return im;}
Why don't you just write std::cout << (x+y) << std::endl;
and be done?
As long as your overloaded operator takes its argument by value:
ostream& operator<<(ostream&, Thing)
or constant reference:
ostream& operator<<(ostream&, const Thing&)
you can use it for any expression with type Thing.
You should put parentheses around complex expressions, to avoid surprises from operator precedence; in particular, the second expression involving ^ won't be parsed as you expect.
You'll only be restricted to a single variable (or, more accurately, an lvalue expression) if the operator requires a non-constant reference; so don't do that.
UPDATE Now we've seen the code, the main issue is the in-class definition of operator<< as a member function; it can't be a member. Perhaps you want it to be a friend, so it can access im and re; or perhaps you should remove the declaration (making it a non-member, non-friend), and just use the public interface. If you do that, you'll need to add const to real() and imag(), so they can be called on a const object. You should do that anyway.
(Looking at the reported error, it seems you've already changed it to use the public interface, but haven't declared the necessary functions const).
I have written a class for complex numbers in which I have overloaded the operator + and everything works fine, however I need to implement this as a non-member function and I am not sure how, or why there is a benefit of doing so.
Here is my code .h:
class Complex
{
private:
double a;
double b;
public:
Complex();
Complex(double aGiven);
Complex(double aGiven, double bGiven);
double aGetValue();
double bGetValue();
double operator[](bool getB);
Complex add(Complex &secondRational);
Complex operator+(Complex &secondRational);
}
.cpp:
Complex Complex::add(Complex &secondRational)
{
double c = secondRational.aGetValue();
double d = secondRational.bGetValue();
double anew = a+c;
double bnew = b+d;
return Complex(anew,bnew);
}
Complex Complex::operator+(Complex &secondRational)
{
return add(secondRational);
}
Any help on how to make these as non-member functions will be greatly appreciated!
Here is the addition operator outside of the class:
Complex operator+(const Complex& lhs, const Complex& rhs) {
//implement the math to add the two
return Complex(lhs.aGetValue() + rhs.aGetValue(),
lhs.bGetValue() + rhs.bGetValue());
}
Of course you will need to declare aGetValue() and bGetValue() as const:
double aGetValue() const {return a;}
double bGetValue() const {return b;}
The usual approach to arithmetic operations is to define the reflexive versions of the operators as members and the pure versions as non-members, implementing them with the reflexive versions:
class complex {
public:
const complex& operator+=(const complex& rhs) {
real += rhs.real;
imag += rhs.imag;
return *this;
}
};
complex operator+(const complex& lhs, const complex& rhs) {
complex res(lhs);
res += rhs;
return res;
}
How is explained above by pippin1289.
Why is explained below:
Imagine one need to use object of class as
Complex c3 = 5 + c1;// for c3 object c1's real part (a) added with 5
As C++ preserve order of operand. Compiler resolve above addition call as
5.operator+ (const Complex & other);// which is not possible
Hence, overload it via free function.
Your class is exposing necessary information via public interface such as aGetValue() and bGetValue.
Hence, this free overloaded + operator function need not be friend of class.
Additionally, Prefer non friend non member function over member function as it helps reduce degree of encapsulation.
This is explained here ==> http://www.drdobbs.com/cpp/how-non-member-functions-improve-encapsu/184401197?pgno=1
You can declare a friend to your Complex class
class Complex {
// blah....
friend Complex operator+(Complex const& a, Complex const & b);
};
The overloaded operator can access the private members of Complex.
I have a class "complex" that contains a Real and an Imaginary value. I'm trying to overload the + operator so I can add real to real and imaginary to imaginary, but I'm banging my head against a wall here.
In the function, I can get the values easy. Returning them however, is a bitch.
My plan is to overload the '=' operator, too, so I can go
complex a, b, c;
(set a and b)
c = a + b;
then have a+b return a complex, then have complex c equal the complex returned by a+b
Any opinion on whether that's a viable path?
Any opinion on whether it can be done easier?
Return them as a complex! e.g.
const complex operator+(const complex &a, const complex &b)
{
return complex(a.re + b.re, a.im + b.im);
}
You shouldn't need to overload operator=; the compiler will generate one for you that does an element-by-element copy, which will probably suffice for a complex class.
I'm not sure I understand the problem. Do you have a complex class?
struct complex
{
complex(float real, float imag) :
real(real), imag(imag)
{}
// first make the mutating version
complex& operator+=(const complex& rhs)
{
real += rhs.real;
imag += rhs.imag;
return *this;
}
float real, imag;
};
// then use that for the non-mutating version
complex operator+(complex lhs, const complex& rhs)
{
lhs += rhs;
return lhs;
}
This is, of course, just an exercise; we have std::complex.
What's wrong with overloading the + operator:
complex operator+(const complex& a, const complex& b) const {
return complex(a.real + b.real, a.imag + b.imag);
}
And the operator=() similarly? (but the compiler give you this by default)
complex& operator=(const complex& a) {
real = a.real;
imag = a.imag;
return *this;
}
It is viable but there is already complex class in standard library. Reuse it or at least have a look how the operator overloading is done there.