In Clojure, is there a way to make a var constant such that it can be used in case statements?
e.g.
(def a 1)
(def b 2)
(let [x 1]
(case x
a :1
b :2
:none))
=> :none
I understand I can use something like cond or condp to get around this, but it would be nice if I could define something that does not require further evaluation so I could use case.
Related and answer stolen from it:
As the docstring tells you: No you cannot do this. You can use Chas Emericks macro and do this however:
(defmacro case+
"Same as case, but evaluates dispatch values, needed for referring to
class and def'ed constants as well as java.util.Enum instances."
[value & clauses]
(let [clauses (partition 2 2 nil clauses)
default (when (-> clauses last count (== 1))
(last clauses))
clauses (if default (drop-last clauses) clauses)
eval-dispatch (fn [d]
(if (list? d)
(map eval d)
(eval d)))]
`(case ~value
~#(concat (->> clauses
(map #(-> % first eval-dispatch (list (second %))))
(mapcat identity))
default))))
Thus:
(def ^:const a 1)
(def ^:const b 2)
(let [x 1]
(case+ x
a :1
b :2
:none))
=> :1
An alternative (which is nice since it's more powerful) is to use core.match's functionality. Though you can only match against local bindings:
(let [x 2
a a
b b]
(match x
a :1
b :2
:none))
=> :2
You can also use clojure.core/condp for the job:
(def a 1)
(def b 2)
(let [x 1]
(condp = x
a :1
b :2
:none))
#=> :1
Related
I'm running into some limitations of Clojure macros. I wonder how to optimize the following code?
(defmacro ssplit-7-inefficient [x]
(let [t 7]
;; Duplicated computation here!
`(do [(first (split-with #(not (= '~t %)) '~x))
(drop 1 (second (split-with #(not (= '~t %)) '~x)))])))
(ssplit-7-inefficient (foo 7 bar baz))
;; Returns: [(foo) (bar baz)]
Here are some approaches that don't work:
(defmacro ssplit-7-fails [x]
(let [t 7]
`(do ((fn [[a b]] [a (drop 1 b)]) (split-with #(not (= '~t %)) '~x)))))
(ssplit-7-fails (foo 7 bar baz))
;; Error: Call to clojure.core/fn did not conform to spec.
(defmacro ssplit-7-fails-again [x]
(let [t 7]
`(do
(let [data (split-with #(not (= '~t %)) '~x)]
((fn [[a b]] [a (drop 1 b)]) data)))))
(ssplit-7-fails-again (foo 7 bar baz))
;; Error: Call to clojure.core/let did not conform to spec.
Note that split-with splits only once. You can use some destructuring to get what you want:
(defmacro split-by-7 [arg]
`((fn [[x# [_# & z#]]] [x# z#]) (split-with (complement #{7}) '~arg)))
(split-by-7 (foo 7 bar baz))
=> [(foo) (bar baz)]
In other use cases, partition-by can be also useful:
(defmacro split-by-7 [arg]
`(->> (partition-by #{7} '~arg)
(remove #{[7]})))
(split-by-7 (foo 7 bar baz))
=> ((foo) (bar baz))
It is not so easy to reason about macros in Clojure - (in my view macroexpand-1 alienates the code a lot - in contrast to Common Lisp's macroexpand-1 ...).
My way was first to build a helper function.
(defn %split-7 [x]
(let [y 7]
(let [[a b] (split-with #(not= y %) x)]
[a (drop 1 b)])))
This function uses destructuring so that the split-with is "efficient".
It does nearly exactly what the macro should do. Just that one has to quote
the argument - so that it works.
(%split-7 '(a 7 b c))
;;=> [(a) (b c)]
From this step to the macro is not difficult.
The macro should just automatically quote the argument when inserting into the helper function's call.
(defmacro split-7 [x]
`(%split-7 '~x))
So that we can call:
(split-7 (a 7 b c))
;; => [(a) (b c)]
Using this trick, even generalize the function to:
(defn %split-by [x y]able like this
(let [[a b] (split-with #(not= y %) x)]
[a (drop 1 b)]))
(defmacro split-by [x y]
`(%split-by '~x ~y))
(split-by (a 7 b c) 7)
;; => [(a) (b c)]
(split-by (a 7 b c 9 d e) 9)
;; => [(a 7 b c) (d e)]
The use of (helper) functions in the macro body - and even other macros - or recursive functions or recursive macros - macros which call other macros - shows how powerful lisp macros are. Because it shows that you can use the entirety of lisp when formulating/defining macros. Something what most language's macros usually aren't able to do.
(let [a (clojure.core.async/chan)]
(case a
a :foo
:bar))
#=> :bar
I would expect :foo here. What am I doing wrong?
On the other hand (condp = chan ...) does the job.
PS:
Basically I am trying to do following thing:
(require '[clojure.core.async :as a])
(let [chan1 (a/chan 10)
chan2 (a/chan 10)]
(a/>!! chan1 true)
(let [[v c] (a/alts!! [chan1 chan2])]
(case c
chan1 :chan1
chan2 :chan2
:niether)))
#=> :neither
The docs for case have the answer
The test-constants are not evaluated. They must be compile-time
literals, and need not be quoted.
The correct solution is to use cond:
(let [chan1 (ca/chan 10)
chan2 (ca/chan 10)]
(ca/>!! chan1 true)
(let [[v c] (ca/alts!! [chan1 chan2])]
(spyx (cond
(= c chan1) :chan1
(= c chan2) :chan2
:else :neither))))
;=> :chan1
Case uses unevaluated test-constants for the left-hand-side of the clause. Plain symbols, like chan1 here will match only the symbol with the same name, not the value of the local binding with that name; chan1 will match 'chan1
I'm a Java and learning clojure.
What is exactly destructuring in clojure?
I can see this blog saying:
The simplest example of destructuring is assigning the values of a
vector.
user=> (def point [5 7])
#'user/point
user=> (let [[x y] point]
(println "x:" x "y:" y))
x: 5 y: 7
what he meant by assigning the values of a vector? Whats the real use of it?
Thanks in advance
point is a variable that contains a vector of values. [x y] is a vector of variable names.
When you assign point to [x y], destructuring means that the variables each get assigned the corresponding element in the value.
This is just a simpler way of writing:
(let [x (nth point 0) y (nth point 1)]
(println "x:" x "y:" y))
See Clojure let binding forms for another way to use destructuring.
It means making a picture of the structure of some data with symbols
((fn [[d [s [_ _]]]]
(apply str (concat (take 2 (name d)) (butlast (name s)) (drop 7 (name d))) ))
'(describing (structure (of data))))
=> "destructuring"
((fn [[d e _ _ _ _ _ i n g _ _ _ _ _ s t r u c t u r e & etc]]
[d e s t r u c t u r i n g]) "describing the structure of data")
=> [\d \e \s \t \r \u \c \t \u \r \i \n \g]
Paste those ^ examples into a REPL & play around with them to see how it works.
The term "Destructuring" sounds heavier than it is.
It's like visually matching shapes to shapes. For example:
(def nums [1 2 3 4 5 6])
(let [[a b c & others] nums]
;; do something
)
Imagine the effect of the let binding as:
1 2 3 4 5 6
| | | ( )
v v v v
[a b c & others]
;; Now we can use a, b, c, others, and of course nums,
;; inside the let binding:
user=> (let [[a b c & others] nums]
(println a)
(println b)
(println c)
(println others)
(println nums))
1
2
3
(4 5 6)
[1 2 3 4 5 6]
The goal is to concisely name items of a collection, for use inside the scope of a let binding or function (i.e. within a "lexical scope").
Why "concise"? Well, without destructuring, the let binding would look like this:
(let [a (nth nums 0) ;; or (first nums)
b (nth nums 1) ;; or (second nums)
c (nth nums 2)
others (drop 3 nums)]
;; do something
)
This illustrates the basic idea. There are many details (ifs and buts, and dos and don'ts), and it's worth reading further, in depth. Here are a few resources that explain more, with examples:
My personal favourite: Jay Fields's post on Clojure Destructuring:
http://blog.jayfields.com/2010/07/clojure-destructuring.html
A gentle introduction to destructuring, from Braveclojure:
http://www.braveclojure.com/do-things/#3_3_3__Destructuring
its used to name components of a data structure, and get their values.
Say you want to have a "person" structure. In java, you would go all the way to create a class with constructors, getters and setters for the various fields, such as name, age, height etc.
In Clojure you could skip the "ceremony" and simply have a vector with 3 slots, first for name, than for age and last for height. Now you could simply name these "components" and get their values, like so:
(def person ["Fred" 30 180])
(let [[name age height] person]
(println name age height)) ;; will print: Fred 30 180
p.s - there are better ways to make a "person" in clojure (such as records etc), this is just an example to understand what destructuring does.
Destructuring is a convenience feature which allows local bindings (not variables!) to be created easily by taking apart complex data structures (seq-ables like vectors, or associatives like hash-maps), as it is described here.
Take the following example:
(let [v [1 2 3 4 5 6]
v_0 (first v)
v_1 (nth v 1)
v_rest (drop 2 v)
m {:a 1 :b 2}
m_a (get m :a)
m_b (get m :b)
m_default (get m :c "DEFAULT")]
(println v, v_0, v_1, v_rest, m, m_a, m_b, m_default))
Then the above code can be simplified using destructuring bindings like the following:
(let [[v_0 v_1 & v_rest :as v]
[1 2 3 4 5 6]
{m_a :a m_b :b m_default :c :or {m_default "DEFAULT"} :as m}
{:a 1 :b 2}]
(println v, v_0, v_1, v_rest, m, m_a, m_b, m_default))
Destructuring patterns can be used in let bindings and function parameters (fn, defn, letfn, etc.), and also in macros to return let bindings containing such destructuring patterns.
One important usage to note is with the if-letand when-let macros. The if statement is always evaluated on the whole form, even if the destructured bindings themselves evaluate to nil:
(if-let [{:keys [a b]}
{:c 1 :d 2}]
(println a b)
(println "Not this one"))
Destructuring binds a pattern of names to a complex object by binding each name to the corresponding part of the object.
To bind to a sequence, you present a vector of names. For example ...
(let [[x y] (list 5 7)] ... )
... is equivalent to
(let [x 5, y 7] ... )
To bind to a map or to a vector by index lookup, you present a map of name-to-key pairs. For example ...
(let [{x 0, y 1} [5 7]] ... )
... is equivalent to both of the above.
As others have mentioned, you can find a full description of this powerful mechanism here.
Say I have a map of this form:
(def m {:a "A" :b "B"})
and I want to do something if :a and :b are both not nil, I can do:
(if-let [a (:a m)]
(if-let [b (:b m)]
... etc ))
or
(if (and (:a m) (:b m))
(let [{a :a b :b} m]
... etc ))
or even
(if (every? m [:a :b])
(let [{a :a b :b} m]
... etc ))
Is there a neater (ie one-line) way to achieve this?
I think a macro may be necessary here to create the behavior you want. I have never written one (yet) but the following representation suggests to me that this might be fairly straightforward:
(let [{:keys [a b]} m]
(when (every? identity [a b])
(println (str "Processing " a " and " b))))
Using the :keys form of destructuring binding and every? enables a single specification of a vector of keys to destructure and check, and the bound locals are available in a following code block.
This could be used to make a macro such as (when-every? [keys coll] code-with-bindings)
I may update this answer with the macro code if I can take the time to work out how to do it.
You could use map destructuring -- a useful feature of Clojure. This also exploits the facts that and is short-circuiting, and any key in the first map not found in the second map gets nil, a falsy value:
(let [{a :a b :b} {:a 1 :b "blah"}]
(and a b (op a b)))
Okay, so it's two lines instead of one .... also this doesn't distinguish between nil and other falsy values.
not-any? is a nice shortcut for this:
user> (not-any? nil? [(m :a) (m :b)])
true
user> (not-any? nil? [(m :a) (m :b) (m :d)])
false
user>
I am not quite sure what you want to do if the keys have non-nil values or whether you want non-nil keys or values returned. So, I just solved it for non-nil keys being returned.
You'd use the following as an intermediate step as part of a final solution.
I'm showing all the steps I used, not to be pedantic, but to provide a complete answer. The namespace is repl-test. It has a main associated with it.
repl-test.core=> (def m {:a "A" :b "B" :c nil})
#'repl-test.core/m
repl-test.core=> (keys m)
(:a :c :b)
and then finally:
; Check key's value to determine what is filtered through.
repl-test.core=> (filter #(if-not (nil? (%1 m)) (%1 m)) (keys m) )
(:a :b)
By the way I found an ugly one-liner, which works because and returns the last thing in its argument list if they're all true:
(if-let [[a b] (and (:a m) (:b m) [(:a m)(:b m)])]
(println "neither " a " nor " b " is falsey")
(println "at least one of " a " or " b " is falsey"))
I am trying to delay various calculations. I have functions of the following form,
(defn a-fn [a b]
(let [a (if (fn? a)
a
#(identity a))
b (if (fn? b)
b
#(identity b))]
(+ (a) (b))))
this allows me to pass a-fn, a value or a function that returns the value,
(a-fn 1 2)
(defn x [] 1)
(defn y [] 2)
(a-fn x y)
(a-fn x 2)
what I do is build a list of functions (like the one above) to operate on some data, fns may use other fns to retrieve their arguments or in some cases things don't change and they are assigned values as arguments. I was wondering is there a better way to achive this kind of behavior?
You can use delay and force:
user=> (defn a-fn [a b] (+ (force a) (force b)))
#'user/a-fn
user=> (a-fn 1 2)
3
user=> (def x (delay 1))
#'user/x
user=> (def y (delay 2))
#'user/y
user=> (a-fn x y)
3
user=> (a-fn x 2)
3
If you try something like (delay (prn :hello) 1) to test when the computation is done, note that printing the Delay object forces it; so (def x (delay ...)) is safe, but typing a plain (delay ...) in the REPL prompt is not.
There might be a more elegant way to do what you want, but here's at least a more generic version of it:
(defn delayed [reducer & fs]
(apply reducer (for [f fs] (if (fn? f) (f) f))))
(def a-fn (partial delayed +))
So delayed takes an arbitrary function and a list of function/values. If expands all the args and then applies the function to them. Then we use partial to define your a-fn using +:
user=> (a-fn 1 2)
3
user=> (a-fn (constantly 1) 2)
3
user=> (a-fn (constantly 1) 2 4)
7
Alternatively, it might make sense for delayed to return a function rather than using partial. Note sure which is better.
A better name than "delayed" is welcome :)