Comparing a float and an int - c++

Due to safety reasons, I need to perform the same computation twice, one time with only integer (int32) variables and another time with only float (float32) variables. At the end of the computation a comparison between the two results is taking place.
I read the article about comparing floating point numbers.
There are few things I don't understand:
I haven't the following compression for float number: Assuming a and b are floats, is this way of comparison correct:
if !(a > b) && !(a < b) is true, then _a_ and _b_ are probably identical otherwise not.
If I cast a float number to integer, I get the integer part of the number, why by using an union object and there defining the same memory as int32 and float32 I get different solution? Doesn't it cast the float number to int32 as well?

why by using an union object and there defining the same memory as int32 and float32 i get different solution?
The only reason the float/int union even makes sense is by virtue of the fact that both float and int share a storage size of 32-bits. What you are missing is an understanding that floats (in fact all floating point numbers) are stored in IEEE-754 Floating Point Format (floats are single-precision, doubles are double-precision, etc..)
When you use the float/int union trick, you see the integer value that is the integer equivalent to the IEEE-754 Single-Precision Floating Point Format for the float. The two values have nothing to do with representing the same numeric value. You can just look at the memory they occupy as either a float or as an integer by virtue of them both occupying 32-bits of memory. If you look through the float window, you see what those 32-bits mean as a float. If on the other hand, you look at the same 32-bits as an integer, you see nothing more that what those same 32-bits would be if taken as an integer. An example looking at the binary representation usually helps.
Take for example, the float value 123.456. If you look at the 32-bits in memory you see:
The float value entered : 123.456001
binary value in memory : 01000010-11110110-11101001-01111001
As unsigned integer : 1123477881
The IEEE-754 Single Precision Floating Point Representation is a specific floating point format in memory comprised of the following 3-components:
0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
|s| exp | mantissa |
Where s is the sign-bit, exp is the biased exponent with the remaining 23-bits called the mantissa.There is no way you can expect to cast the float 123.456 and get anything close to integer 123, you are off by about 7 orders of magnitude
Doesn't it cast the float number to int32 as well?
Answer: No

False. For instance, a and b are both nan, in which case a < b, a > b, a == b are all false.
Because integers and floating point numbers are represented differently. When you cast a float to int (e.g, 1.0f to 1), their memory are not the same.

False
Comparison in floating-point types works the same as in integer types for normal types. a == b always return true if the value of a is exactly equal to b, i.e 12.345 == 12.345 but 12.345 < 12.346. If you need to compare that the value are close enough to each other, use an epsilon like instead of ==. However for special numbers like NaN or Inf then things are different. Comparisons with NaN returns false for all operators except !=
Because one works with values and the other works with object representation
A simple cast to int like (int)some_double_value will return the value of some_double_value. However if you store it into a union and read out the integer like that, it'll return the representation in memory of the float
For example (int)2.5 == 2 but the binary representation of 2.5 in IEEE-754 double precision is 0x4004000000000000

Related

When Will static_casting the Result of ceil Compromise the Result?

static_casting from a floating point to an integer simply strips the fractional point of the number. For example static_cast<int>(13.9999999) yields 13.
Not all integers are representable as floating point numbers. For example internally the closest float to 13,000,000 may be: 12999999.999999.
In this hypothetical case, I'd expect to get an unexpected result from:
const auto foo = 12'999'999.5F;
const auto bar = static_cast<long long>(ceil(foo));
My assumption is that such a breakdown does occur at some point, if not necessarily at 13,000,000. I'd just like to know the range over which I can trust static_cast<long long>(ceif(foo))?
For example internally the closest float to 13,000,000 may be: 12999999.999999.
That is not possible in any normal floating-point format. The floating-point representation of numbers is equivalent to M•be, where b is a fixed base (e.g., 2 for binary floating-point) and M and e are integers with some restrictions on their values. In order for a value like 13,000,000-x to be represented, where x is some positive value less than 1, e must be negative (because M•be for a non-negative e is an integer). If so, then M•b0 is an integer larger than M•be, so it is larger than 13,000,000, and so 13,000,000 can be represented as M'•b0, where M' is a positive integer less than M and hence fits in the range of allowed values for M (in any normal floating-point format). (Perhaps some bizarre floating-point format might impose a strange range on M or e that prevents this, but no normal format does.)
Regarding your code:
auto test = 0LL;
const auto floater = 0.5F;
for(auto i = 0LL; i == test; i = std::ceil(i + floater)) ++test;
cout << test << endl;
When i was 8,388,608, the mathematical result of 8,388,608 + .5 is 8,388,608.5. This is not representable in the float format on your system, so it was rounded to 8,388,608. The ceil of this is 8,388,608. At this point, test was 8,388,609, so the loop stopped. So this code does not demonstrate that 8,388,608.5 is representable and 8,388,609 is not.
Behavior seems to return to normal if I do: ceil(8'388'609.5F) which will correctly return 8,388,610.
8,388,609.5 is not representable in the float format on your system, so it was rounded by the rule “round to nearest, ties to even.” The two nearest representable values are 8,388,609, and 8,388,610. Since they are equally far apart, the result was 8,388,610. That value was passed to ceil, which of course returned 8,388,610.
On Visual Studio 2015 I got 8,388,609 which is a horrifying small safe range.
In the IEEE-754 basic 32-bit binary format, all integers from -16,777,216 to +16,777,216 are representable, because the format has a 24-bit significand.
Floating point numbers are represented by 3 integers, cbq where:
c is the mantissa (so for the number: 12,999,999.999999 c would be 12,999,999,999,999)
q is the exponent (so for the number: 12,999,999.999999 q would be -6)
b is the base (IEEE-754 requires b to be either 10 or 2; in the representation above b is 10)
From this it's easy to see that a floating point with the capability of representing 12,999,999.999999 also has the capability of representing 13,000,000.000000 using a c of 1,300,000,000,000 and a q of -5.
This example is a bit contrived in that the chosen b is 10, where in almost all implementations the chosen base is 2. But it's worth pointing out that even with a b of 2 the q functions as a shift left or right of the mantissa.
Next let's talk about a range here. Obviously a 32-bit floating point cannot represent all the integers represented by a 32-bit integer, as the floating point must also represent so many much larger or smaller numbers. Since the exponent is simply shifting the mantissa, a floating point number can always exactly represent every integer that can be represented by it's mantissa. Given the traditional IEEE-754 binary base floating point numbers:
A 32-bit (float) has a 24-bit mantissa so it can represent all integers in the range [-16,777,215, 16,777,215]
A 64-bit (double) has a 53-bit mantissa so it can represent all integers in the range [-9,007,199,254,740,991, 9,007,199,254,740,991]
A 128-bit (long double depending upon implementation) has a 113-bit mantissa so it can represent all integers in the range [-103,845,937,170,696,552,570,609,926,584,40,191, 103,845,937,170,696,552,570,609,926,584,40,191]
[source]
c++ provides digits as a method of finding this number for a given floating point type. (Though admittedly even a long long is too small to represent a 113-bit mantissa.) For example a float's maximum mantissa could be found by:
(1LL << numeric_limits<float>::digits) - 1LL
Having thoroughly explained the mantissa, let's revisit the exponent section to talk about how a floating point is actually stored. Take 13,000,000.0 that could be represented as:
c = 13, q = 6, b = 10
c = 130, q = 5, b = 10
c = 1,300, q = 4, b = 10
And so on. For the traditional binary format IEEE-754 requires:
The representation is made unique by choosing the smallest representable exponent that retains the most significant bit (MSB) within the selected word size and format. Further, the exponent is not represented directly, but a bias is added so that the smallest representable exponent is represented as 1, with 0 used for subnormal numbers
To explain this in the more familiar base-10 if our mantissa has 14 decimal places, the implementation would look like this:
c = 13,000,000,000,000 so the MSB will be used in the represented number
q = 6 This is a little confusing, it's cause of the bias introduced here; logically q = -6 but the bias is set so that when q = 0 only the MSB of c is immediately to the left of the decimal point, meaning that c = 13,000,000,000,000, q = 0, b = 10 will represent 1.3
b = 10 again the above rules are really only required for base-2 but I've shown them as they would apply to base-10 for the purpose of explaination
Translated back to base-2 this means that a q of numeric_limits<T>::digits - 1 has only zeros after the decimal place. ceil only has an effect if there is a fractional part of the number.
A final point of explanation here, is the range over which ceil will have an effect. After the exponent of a floating point is larger than numeric_limits<T>::digits continuing to increase it only introduces trailing zeros to the resulting number, thus calling ceil when q is greater than or equal to numeric_limits<T>::digits - 2LL. And since we know the MSB of c will be used in the number this means that c must be smaller than (1LL << numeric_limits<T>::digits - 1LL) - 1LL Thus for ceil to have an effect on the traditional binary IEEE-754 floating point:
A 32-bit (float) must be smaller than 8,388,607
A 64-bit (double) must be smaller than 4,503,599,627,370,495
A 128-bit (long double depending upon implementation) must be smaller than 5,192,296,858,534,827,628,530,496,329,220,095

How to calculate the range of data type float in c++?

As we can see int has 4 byte in memory, that are 32bits, after applying range formula , we can see range of int -2147483648 to 2147483647. I have calculated the ranges of all datatypes besides float and double and long double.
I dont know how they calculated the range of float mentioned below.
Floating point numbers are stored as an exponent and a fraction within the space available.
For some systems where float is implemented as an IEEE 754 value, the results would looks as below.
sign : 1 bit
exponent : 8 bits
fraction : 23 bits
The exponent allows numbers from 2 ^ (-127) (2 to the power -127) to 2 ^ 128 ( 2 to the power 128).
Allowing a range of numbers from
5.87747E-39
3.40282E+38
the fraction point gives a fraction such as .12313
Thus with 23 bits of values, the accuracy of a number is about 7 decimal digits or 1.19 E-7
For more details see wikipedia : IEEE 754-1985
On a given system, the <cfloat> / <float.h> will give the limits. For non IEEE 754 based representations, you would have to understand how the numbers are stored to calculate the limits.
-2^(n-1) to (2^(n-1)-1) is the formula to calculate the range of data types.
Where n = no.of.bits of the primitive data type.
For example: for the byte data type, n = 8 bits
-2^(8-1) to (2^(8-1)-1)
The above calculation will give you -128 to 127. Now, coming to the question of why it’s not 255. The reason is that byte, int, short, and double are signed data types meaning it has half the range below 0 (negative) and half the range above 0 (positive). The first bit represents a sign (+ or -). The remaining bits are 7. That’s why 2^(8-1) = 128. We take 0 as a positive sign, so the range is 2^(8-1) - 1 for positive numbers.

0 + 0 + 0... + 0 != 0

I have a program that is finding paths in a graph and outputting the cumulative weight. All of the edges in the graph have an individual weight of 0 to 100 in the form of a float with at most 2 decimal places.
On Windows/Visual Studio 2010, for a particular path consisting of edges with 0 weight, it outputs the correct total weight of 0. However on Linux/GCC the program is saying the path has a weight of 2.35503e-38. I have had plenty of experiences with crazy bugs caused by floats, but when would 0 + 0 ever equal anything other than 0?
The only thing I can think of that is causing this is the program does treat some of the weights as integers and uses implicit coercion to add them to the total. But 0 + 0.0f still equals 0.0f!
As a quick fix I reduce the total to 0 when less then 0.00001 and that is sufficient for my needs, for now. But what vodoo causes this?
NOTE: I am 100% confident that none of the weights in the graph exceed the range I mentioned and that all of the weights in this particular path are all 0.
EDIT: To elaborate, I have tried both reading the weights from a file and setting them in the code manually as equal to 0.0f No other operation is being performed on them other than adding them to the total.
Because it's an IEEE floating point number, and it's not exactly equal to zero.
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
[...] in the form of a float with at most 2 decimal places.
There is no such thing as a float with at most 2 decimal places. Floats are almost always represented as a binary floating point number (fractional binary mantissa and integer exponent). So many (most) numbers with 2 decimal places cannot be represented exactly.
For example, 0.20f may look as an innocent and round fraction, but
printf("%.40f\n", 0.20f);
will print: 0.2000000029802322387695312500000000000000.
See, it does not have 2 decimal places, it has 26!!!
Naturally, for most practical uses the difference in negligible. But if you do some calculations you may end up increasing the rounding error and making it visible, particularly around 0.
It may be that your floats containing values of "0.0f" aren't actually 0.0f (bit representation 0x00000000), but a very, very small number that evaluates to about 0.0. Because of the way IEEE754 spec defines float representations, if you have, for example, a very small mantissa and a 0 exponent, while it's not equal to absolute 0, it will round to 0. However, if you add these numbers together a sufficiently number of times, the very small amount will accumulate into a value that eventually will become non-zero.
Here is an example case which gives the illusion of 0 being non-zero:
float f = 0.1f / 1000000000;
printf("%f, %08x\n", f, *(unsigned int *)&f);
float f2 = f * 10000;
printf("%f, %08x\n", f2, *(unsigned int *)&f2);
If you are assigning literals to your variables and adding them, though, it is possible that either the compiler is not translating 0 into 0x0 in memory. If it is, and this still is happening, then it's also possible that your CPU hardware has a bug relating to turning 0s into non-zero when doing ALU operations that may have squeaked by their validation efforts.
However, it is good to remember that IEEE floating point is only an approximation, and not an exact representation of any particular float value. So any floating-point operations are bound to have some amount of error.

Detecting precision loss when converting from double to float

I am writing a piece of code in which i have to convert from double to float values. I am using boost::numeric_cast to do this conversion which will alert me of any overflow/underflow. However i am also interested in knowing if that conversion resulted in some precision loss or not.
For example
double source = 1988.1012;
float dest = numeric_cast<float>(source);
Produces dest which has value 1988.1
Is there any way available in which i can detect this kind of precision loss/rounding
You could cast the float back to a double and compare this double to the original - that should give you a fair indication as to whether there was a loss of precision.
float dest = numeric_cast<float>(source);
double residual = source - numeric_cast<double>(dest);
Hence, residual contains the "loss" you're looking for.
Look at these articles for single precision and double precision floats. First of all, floats have 8 bits for the exponent vs. 11 for a double. So anything bigger than 10^127 or smaller than 10^-126 in magnitude is going to be the overflow as you mentioned. For the float, you have 23 bits for the actual digits of the number, vs 52 bits for the double. So obviously, you have a lot more digits of precision for the double than float.
Say you have a number like: 1.1123. This number may not actually be encoded as 1.1123 because the digits in a floating point number are used to actually add up as fractions. For example, if your bits in the mantissa were 11001, then the value would be formed by 1 (implicit) + 1 * 1/2 + 1 * 1/4 + 0 * 1/8 + 0 * 1/16 + 1 * 1/32 + 0 * (64 + 128 + ...). So the exact value cannot be encoded unless you can add up these fractions in such a way that it's the exact number. This is rare. Therefore, there will almost always be a precision loss.
You're going to have a certain level of precision loss, as per Dave's answer. If, however, you want to focus on quantifying it and raising an exception when it exceeds a certain number, you will have to open up the floating point number itself and parse out the mantissa & exponent, then do some analysis to determine if you've exceeded your tolerance.
But, the good news, its usually the standard IEEE floating-point float. :-)

Heuristic to identify if a series of 4 bytes chunks of data are integers or floats

What's the best heuristic I can use to identify whether a chunk of X 4-bytes are integers or floats? A human can do this easily, but I wanted to do it programmatically.
I realize that since every combination of bits will result in a valid integer and (almost?) all of them will also result in a valid float, there is no way to know for sure. But I still would like to identify the most likely candidate (which will virtually always be correct; or at least, a human can do it).
For example, let's take a series of 4-bytes raw data and print them as integers first and then as floats:
1 1.4013e-45
10 1.4013e-44
44 6.16571e-44
5000 7.00649e-42
1024 1.43493e-42
0 0
0 0
-5 -nan
11 1.54143e-44
Obviously they will be integers.
Now, another example:
1065353216 1
1084227584 5
1085276160 5.5
1068149391 1.33333
1083179008 4.5
1120403456 100
0 0
-1110651699 -0.1
1195593728 50000
These will obviously be floats.
PS: I'm using C++ but you can answer in any language, pseudo code or just in english.
The "common sense" heuristic from your example seems to basically amount to a range check. If one interpretation is very large (or a tiny fraction, close to zero), that is probably wrong. Check the exponent of the float interpretation and compare it to the exponent that results from a proper static cast of the integer interpretation to a float.
Looks like a kolmogorov complexity issue. Basically, from what you show as example, the shorter number (when printed as string to be read by a human), be it integer or float, is the right answer for your heuristic.
Also, obviously if the value is an incorrect float, it is an integer :-)
Seems direct enough to implement.
You can probably "detect" it by looking at the high bits, with floats they'd generally be non-zero, with integers, they would be unless you're dealing with a very large number. So... you could try and see if (2^30) & number returns 0 or not.
If both numbers are positive, your floats are reasonably large (greater than 10^-42), and your ints are reasonably small (less than 8*10^6), then the check is pretty simple. Treat the data as a float and compare to the least normalized float.
union float_or_int {
float f;
int32_t i;
};
bool is_positive_normalized_float( float_or_int &u ) {
return u.f >= numeric_limits<float>::min();
}
This assumes IEEE float and same endinanness between the CPU and the FPU.
A human can do this easily
A human can't do it at all. Ergo neither can a computer. There are 2^32 valid int values. A large number of them are also valid float values. There is no way of distinguishing the intent of the data other than by tagging it or by not getting into such a mess in the first place.
Don't attempt this.
You are going to be looking at the upper 8 or 9 bits. That's where the sign and mantissa of a floating point value are. Values of 0x00 0x80 and 0xFF here are pretty uncommon for valid float data.
In particular if the upper 9 bits are all 0 then this likely to be a valid floating point value only if all 32 bits are 0. Another way to say this is that if the exponent is 0, the mantissa should also be zero. If the upper bit is 1 and the next 8 bits are 0, this is legal, but also not likely to be valid. It represents -0.0 which is a legal floating point value, but a meaningless one.
To put this into numerical terms. if the upper byte is 0x00 (or 0x80), then the value has a magnitude of at most 2.35e-38. Plank's constant is 6.62e-34 m2kg/s that's 4 orders of magnitude larger. The estimated diameter of a proton is much much larger than that (estimated at 1.6e−15 meters). The smallest non-zero value for audio data is about 2.3e-10. You aren't likely to see floating point values are are legitimate measurements of anything real that are smaller than 2.35e-38 but not zero.
Going the other direction if the upper byte is 0xFF then this value is either Infinite, a NaN or larger in magnitude than 3.4e+38. The age of the universe is estimated to be 1.3e+10 years (1.3e+25 femtoseconds). The observable universe has roughly e+23 stars, Avagadro's number is 6.02e+23. Once again float values larger than e+38 rarely show up in legitimate measurements.
This is not to say that the FPU can't load or produce such values, and you will certainly see them in intermediate values of calculations if you are working with modern FPUs. A modern FPU will load a floating point value that has a exponent of 0 but the other bits are not 0. These are called denormalized values. This is why you are seeing small positive integers show up as float values in the range of e-42 even though the normal range of a float only goes down to e-38
An exponent of all 1s represents Infinity. You probably won't find infinities in your data, but you would know better than I. -Infinity is 0xFF800000, +Infinity is 0x7F800000, any value other than 0 in the mantissa of Infinity is malformed. malformed infinities are used as NaNs.
Loading a NaN into a float register can cause it to throw an exception, so you want to use integer math to do your guessing about whether your data is float or int until you are fairly certain it is int.
If you know that your floats are all going to be actual values (no NaNs, INFs, denormals or other aberrant values) then you can use this a criterion. In general an array of ints will have a high probability of containing "bad" float values.
I assume the following:
that you mean IEEE 754 single precision floating point numbers.
that the sign bit of the float is saved in the MSB of an int.
So here we go:
static boolean probablyFloat(uint32_t bits) {
bool sign = (bits & 0x80000000U) != 0;
int exp = ((bits & 0x7f800000U) >> 23) - 127;
uint32_t mant = bits & 0x007fffff;
// +- 0.0
if (exp == -127 && mant == 0)
return true;
// +- 1 billionth to 1 billion
if (-30 <= exp && exp <= 30)
return true;
// some value with only a few binary digits
if ((mant & 0x0000ffff) == 0)
return true;
return false;
}
int main() {
assert(probablyFloat(1065353216));
assert(probablyFloat(1084227584));
assert(probablyFloat(1085276160));
assert(probablyFloat(1068149391));
assert(probablyFloat(1083179008));
assert(probablyFloat(1120403456));
assert(probablyFloat(0));
assert(probablyFloat(-1110651699));
assert(probablyFloat(1195593728));
return 0;
}
simplifying what Alan said, I'd ONLY look at the integer form. and say, if the number is bigger than 99999999 then it's almost definitely a float.
This has the advantage that it's fast, easy, and avoids nan issues.
It has the disadvantage that it pretty much full of crap... i didn't actually look at what floats these will represent or anything, but it looks reasonable from your examples...
In any case, this is a heuristic, so it's GONNA be full of crap, and not always work anyway...
Measure with a micrometer, mark with chalk, cut with an axe.
Here is a heuristic I came up with, based on #kriss' idea. After a brief look at some of my data, it seems to work fairly well.
I am using it in a disassembler to detect if a 32-bit value was likely originally an integer or float literal.
public class FloatUtil {
private static final int canonicalFloatNaN = Float.floatToRawIntBits(Float.NaN);
private static final int maxFloat = Float.floatToRawIntBits(Float.MAX_VALUE);
private static final int piFloat = Float.floatToRawIntBits((float)Math.PI);
private static final int eFloat = Float.floatToRawIntBits((float)Math.E);
private static final DecimalFormat format = new DecimalFormat("0.####################E0");
public static boolean isLikelyFloat(int value) {
// Check for some common named float values
if (value == canonicalFloatNaN ||
value == maxFloat ||
value == piFloat ||
value == eFloat) {
return true;
}
// Check for some named integer values
if (value == Integer.MAX_VALUE || value == Integer.MIN_VALUE) {
return false;
}
// a non-canocical NaN is more likely to be an integer
float floatValue = Float.intBitsToFloat(value);
if (Float.isNaN(floatValue)) {
return false;
}
// Otherwise, whichever has a shorter scientific notation representation is more likely.
// Integer wins the tie
String asInt = format.format(value);
String asFloat = format.format(floatValue);
// try to strip off any small imprecision near the end of the mantissa
int decimalPoint = asFloat.indexOf('.');
int exponent = asFloat.indexOf("E");
int zeros = asFloat.indexOf("000");
if (zeros > decimalPoint && zeros < exponent) {
asFloat = asFloat.substring(0, zeros) + asFloat.substring(exponent);
} else {
int nines = asFloat.indexOf("999");
if (nines > decimalPoint && nines < exponent) {
asFloat = asFloat.substring(0, nines) + asFloat.substring(exponent);
}
}
return asFloat.length() < asInt.length();
}
}
And here are some of the values it works for (and a couple it doesn't)
#Test
public void isLikelyFloatTest() {
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.23f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.0f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.NaN)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.NEGATIVE_INFINITY)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.POSITIVE_INFINITY)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1e-30f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1000f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(-1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(-5f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.3333f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(4.5f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(.1f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(50000f)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.MAX_VALUE)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits((float)Math.PI)));
Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits((float)Math.E)));
// Float.MIN_VALUE is equivalent to integer value 1. this should be detected as an integer
// Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(Float.MIN_VALUE)));
// This one doesn't quite work. It has a series of 2 0's, but we only strip 3 0's or more
// Assert.assertTrue(FloatUtil.isLikelyFloat(Float.floatToRawIntBits(1.33333f)));
Assert.assertFalse(FloatUtil.isLikelyFloat(0));
Assert.assertFalse(FloatUtil.isLikelyFloat(1));
Assert.assertFalse(FloatUtil.isLikelyFloat(10));
Assert.assertFalse(FloatUtil.isLikelyFloat(100));
Assert.assertFalse(FloatUtil.isLikelyFloat(1000));
Assert.assertFalse(FloatUtil.isLikelyFloat(1024));
Assert.assertFalse(FloatUtil.isLikelyFloat(1234));
Assert.assertFalse(FloatUtil.isLikelyFloat(-5));
Assert.assertFalse(FloatUtil.isLikelyFloat(-13));
Assert.assertFalse(FloatUtil.isLikelyFloat(-123));
Assert.assertFalse(FloatUtil.isLikelyFloat(20000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(2000000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(-2000000000));
Assert.assertFalse(FloatUtil.isLikelyFloat(Integer.MAX_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Integer.MIN_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Short.MIN_VALUE));
Assert.assertFalse(FloatUtil.isLikelyFloat(Short.MAX_VALUE));
}