Find closest number C++ using arrays, floats - c++

I need to find the closest (and minor) number to the average in the given numbers. For example:
If the given numbers are 1,2,3,4,5 the average will be 3, and the closest numbers are 2 and 4 but the minor is 2 so the result should be 2.
Or, if the given numbers are 1, 325, 350, 299 the average will be 243.75 so the closest number is 299.
int best = a[0];
for (i = 1; i < count; ++i)
best = abs(a[i] - x) < abs(best - x) ? a[i] : best;

Your code's almost right... you just need to also check if the distance from the average x is the same as best's distance, but on the minor side while best isn't....
double i_delta = abs(a[i] - x);
double x_delta = abs(best - x);
if (i_delta < x_delta)
best = a[i];
else if (i_delta == x_delta && a[i] < best)
best = a[i];
(You have to do one pass through the values to calculate the average, so your overall algo's going to be O(n). So an extra iteration like you're using isn't reducing the overall big-O efficiency... all good.)

This isn't tough and you should be able to do that. I'm assuming this is question from your school homework and you are not in mood
int closest(int* array, int size){
//Calculating sum for finding average first
double sum = 0.0;
for (int i=0; i< size; i++){
sum+= array[i]*1.0;
}
//Here is our average
double average = sum/size;
//Assuming initial answer is very huge so that every other comparison is less than this
int answer = 100000000;
for (int i=0; i< size; i++){
//Finiding the difference for current element
double temp = abs(array[i]-average);
double temp1 = abs(answer - average);
//If current difference is less than previous one that replace the previous answer
if (temp < temp1) answer = array[i];
//If they are equal then accept the minor one
else if (temp == temp1){
if (array[i]< answer) answer = array[i];
}
}
return answer;
}
P.S. This isn't good practice to ask such question to ask here. You should have attempted it first and then posted your question with your attempt.

Related

Compiler optimization on the traveling salesman problem

I am playing with the travelling salesman problem and am looking at the version where:
the towns are points in 2d space and there are paths from every town to all others and the lengths are the distances between the points. So it's very easy to implement the naive solution where you check all permutations of n points and calculate the length of the path.
I've found however that for n >= 10 the compiler does some magic and prints a value that is certainly not the actual shortest path. I compile with the Microsoft visual studio compiler in release mode with the default settings. For values (10,30) it thinks for 30 seconds and then returns some number that seems like it could be correct but it is not (I check in different ways). And for n > 40 it calculates a result immediately and is always 2.14748e+09.
I am looking for an explanation to what does the compiler do in the different situations (the (10,30) case is really interesting). And an example where these optimizations are more useful than the program just spinning to the end of the world.
vector<pair<int,int>> points;
void min_len()
{
// n is a global variable with the number of points(towns)
double min = INT_MAX;
// there are n! permutations of n elements
for (auto j = 0; j < factorial(n); ++j)
{
double sum = 0;
for (auto i = 0; i < n - 1; ++i)
{
sum += distance_points(points[i], points[i + 1]);
}
if (sum < min)
{
min = sum;
s_path = points;
}
next_permutation(points.begin(), points.end());
}
for (auto i = 0; i < n; ++i)
{
cout << s_path[i].first << " " << s_path[i].second << endl;
}
cout << min << endl;
}
unsigned int factorial(unsigned int n)
{
int res = 1, i;
for (i = 2; i <= n; i++)
res *= i;
return res;
}
Your factorial function is overflowing. Try replacing it with one returning int64_t and see your code taking 3 years to terminate for n > 20.
constexpr uint64_t factorial(unsigned int n) {
return n ? n * factorial(n-1) : 1;
}
Also, you don't need to calculate this at all. The std::next_permutation function returns 0 when all permutations have occured (starting from sorted position).

Max Sum Subarray with Partition constraint using Dynamic Programming

Problem statement: Given a set of n coins of some denominations (maybe repeating, in random order), and a number k. A game is being played by a single player in the following manner: Player can choose to pick 0 to k coins contiguously but will have to leave one next coin from picking. In this manner give the highest sum of coins he/she can collect.
Input:
First line contains 2 space-separated integers n and x respectively, which denote
n - Size of the array
x - Window size
Output:
A single integer denoting the max sum the player can obtain.
Working Soln Link: Ideone
long long solve(int n, int x) {
if (n == 0) return 0;
long long total = accumulate(arr + 1, arr + n + 1, 0ll);
if (x >= n) return total;
multiset<long long> dp_x;
for (int i = 1; i <= x + 1; i++) {
dp[i] = arr[i];
dp_x.insert(dp[i]);
}
for (int i = x + 2; i <= n; i++) {
dp[i] = arr[i] + *dp_x.begin();
dp_x.erase(dp_x.find(dp[i - x - 1]));
dp_x.insert(dp[i]);
}
long long ans = total;
for (int i = n - x; i <= n; i++) {
ans = min(ans, dp[i]);
}
return total - ans;
}
Can someone kindly explain how this code is working i.e., how line no. 12-26 in the Ideone solution is producing the correct answer?
I have dry run the code using pen and paper and found that it's giving the correct answer but couldn't figure out the algorithm used(if any). Can someone kindly explain to me how Line No. 12-26 is producing the correct answer? Is there any technique or algorithm at use here?
I am new to DP, so if someone can point out a tutorial(YouTube video, etc) related to this kind of problem, that would be great too. Thank you.
It looks like the idea is converting the problem - You must choose at least one coin in no more than x+1 coins in a row, and make it minimal. Then the original problem's answer would just be [sum of all values] - [answer of the new problem].
Then we're ready to talk about dynamic programming. Let's define a recurrence relation for f(i) which means "the partial answer of the new problem considering 1st to i-th coins, and i-th coin is chosen". (Sorry about the bad description, edits welcome)
f(i) = a(i) : if (i<=x+1)
f(i) = a(i) + min(f(i-1),f(i-2),...,f(i-x-1)) : otherwise
where a(i) is the i-th coin value
I added some comments line by line.
// NOTE f() is dp[] and a() is arr[]
long long solve(int n, int x) {
if (n == 0) return 0;
long long total = accumulate(arr + 1, arr + n + 1, 0ll); // get the sum
if (x >= n) return total;
multiset<long long> dp_x; // A min-heap (with fast random access)
for (int i = 1; i <= x + 1; i++) { // For 1 to (x+1)th,
dp[i] = arr[i]; // f(i) = a(i)
dp_x.insert(dp[i]); // Push the value to the heap
}
for (int i = x + 2; i <= n; i++) { // For the rest,
dp[i] = arr[i] + *dp_x.begin(); // f(i) = a(i) + min(...)
dp_x.erase(dp_x.find(dp[i - x - 1])); // Erase the oldest one from the heap
dp_x.insert(dp[i]); // Push the value to the heap, so it keeps the latest x+1 elements
}
long long ans = total;
for (int i = n - x; i <= n; i++) { // Find minimum of dp[] (among candidate answers)
ans = min(ans, dp[i]);
}
return total - ans;
}
Please also note that multiset is used as a min-heap. However we also need quick random-access(to erase the old ones) and multiset can do it in logarithmic time. So, the overall time complexity is O(n log x).

Minimize the maximum difference between the heights

Given heights of n towers and a value k. We need to either increase or decrease height of every tower by k (only once) where k > 0. The task is to minimize the difference between the heights of the longest and the shortest tower after modifications, and output this difference.
I get the intuition behind the solution but I can not comment on the correctness of the solution below.
// C++ program to find the minimum possible
// difference between maximum and minimum
// elements when we have to add/subtract
// every number by k
#include <bits/stdc++.h>
using namespace std;
// Modifies the array by subtracting/adding
// k to every element such that the difference
// between maximum and minimum is minimized
int getMinDiff(int arr[], int n, int k)
{
if (n == 1)
return 0;
// Sort all elements
sort(arr, arr+n);
// Initialize result
int ans = arr[n-1] - arr[0];
// Handle corner elements
int small = arr[0] + k;
int big = arr[n-1] - k;
if (small > big)
swap(small, big);
// Traverse middle elements
for (int i = 1; i < n-1; i ++)
{
int subtract = arr[i] - k;
int add = arr[i] + k;
// If both subtraction and addition
// do not change diff
if (subtract >= small || add <= big)
continue;
// Either subtraction causes a smaller
// number or addition causes a greater
// number. Update small or big using
// greedy approach (If big - subtract
// causes smaller diff, update small
// Else update big)
if (big - subtract <= add - small)
small = subtract;
else
big = add;
}
return min(ans, big - small);
}
// Driver function to test the above function
int main()
{
int arr[] = {4, 6};
int n = sizeof(arr)/sizeof(arr[0]);
int k = 10;
cout << "\nMaximum difference is "
<< getMinDiff(arr, n, k);
return 0;
}
Can anyone help me provide the correct solution to this problem?
The codes above work, however I don't find much explanation so I'll try to add some in order to help develop intuition.
For any given tower, you have two choices, you can either increase its height or decrease it.
Now if you decide to increase its height from say Hi to Hi + K, then you can also increase the height of all shorter towers as that won't affect the maximum. Similarly, if you decide to decrease the height of a tower from Hi to Hi − K, then you can also decrease the heights of all taller towers.
We will make use of this, we have n buildings, and we'll try to make each of the building the highest and see making which building the highest gives us the least range of heights(which is our answer). Let me explain:
So what we want to do is - 1) We first sort the array(you will soon see why).
2) Then for every building from i = 0 to n-2[1] , we try to make it the highest (by adding K to the building, adding K to the buildings on its left and subtracting K from the buildings on its right).
So say we're at building Hi, we've added K to it and the buildings before it and subtracted K from the buildings after it. So the minimum height of the buildings will now be min(H0 + K, Hi+1 - K), i.e. min(1st building + K, next building on right - K).
(Note: This is because we sorted the array. Convince yourself by taking a few examples.)
Likewise, the maximum height of the buildings will be max(Hi + K, Hn-1 - K), i.e. max(current building + K, last building on right - K).
3) max - min gives you the range.
[1]Note that when i = n-1. In this case, there is no building after the current building, so we're adding K to every building, so the range will merely be
height[n-1] - height[0] since K is added to everything, so it cancels out.
Here's a Java implementation based on the idea above:
class Solution {
int getMinDiff(int[] arr, int n, int k) {
Arrays.sort(arr);
int ans = arr[n-1] - arr[0];
int smallest = arr[0] + k, largest = arr[n-1]-k;
for(int i = 0; i < n-1; i++){
int min = Math.min(smallest, arr[i+1]-k);
int max = Math.max(largest, arr[i]+k);
if (min < 0) continue;
ans = Math.min(ans, max-min);
}
return ans;
}
}
int getMinDiff(int a[], int n, int k) {
sort(a,a+n);
int i,mx,mn,ans;
ans = a[n-1]-a[0]; // this can be one possible solution
for(i=0;i<n;i++)
{
if(a[i]>=k) // since height of tower can't be -ve so taking only +ve heights
{
mn = min(a[0]+k, a[i]-k);
mx = max(a[n-1]-k, a[i-1]+k);
ans = min(ans, mx-mn);
}
}
return ans;
}
This is C++ code, it passed all the test cases.
This python code might be of some help to you. Code is self explanatory.
def getMinDiff(arr, n, k):
arr = sorted(arr)
ans = arr[-1]-arr[0] #this case occurs when either we subtract k or add k to all elements of the array
for i in range(n):
mn=min(arr[0]+k, arr[i]-k) #after sorting, arr[0] is minimum. so adding k pushes it towards maximum. We subtract k from arr[i] to get any other worse (smaller) minimum. worse means increasing the diff b/w mn and mx
mx=max(arr[n-1]-k, arr[i]+k) # after sorting, arr[n-1] is maximum. so subtracting k pushes it towards minimum. We add k to arr[i] to get any other worse (bigger) maximum. worse means increasing the diff b/w mn and mx
ans = min(ans, mx-mn)
return ans
Here's a solution:-
But before jumping on to the solution, here's some info that is required to understand it. In the best case scenario, the minimum difference would be zero. This could happen only in two cases - (1) the array contain duplicates or (2) for an element, lets say 'x', there exists another element in the array which has the value 'x + 2*k'.
The idea is pretty simple.
First we would sort the array.
Next, we will try to find either the optimum value (for which the answer would come out to be zero) or at least the closest number to the optimum value using Binary Search
Here's a Javascript implementation of the algorithm:-
function minDiffTower(arr, k) {
arr = arr.sort((a,b) => a-b);
let minDiff = Infinity;
let prev = null;
for (let i=0; i<arr.length; i++) {
let el = arr[i];
// Handling case when the array have duplicates
if (el == prev) {
minDiff = 0;
break;
}
prev = el;
let targetNum = el + 2*k; // Lets say we have an element 10. The difference would be zero when there exists an element with value 10+2*k (this is the 'optimum value' as discussed in the explaination
let closestMatchDiff = Infinity; // It's not necessary that there would exist 'targetNum' in the array, so we try to find the closest to this number using Binary Search
let lb = i+1;
let ub = arr.length-1;
while (lb<=ub) {
let mid = lb + ((ub-lb)>>1);
let currMidDiff = arr[mid] > targetNum ? arr[mid] - targetNum : targetNum - arr[mid];
closestMatchDiff = Math.min(closestMatchDiff, currMidDiff);
if (arr[mid] == targetNum) break; // in this case the answer would be simply zero, no need to proceed further
else if (arr[mid] < targetNum) lb = mid+1;
else ub = mid-1;
}
minDiff = Math.min(minDiff, closestMatchDiff);
}
return minDiff;
}
Here is the C++ code, I have continued from where you left. The code is self-explanatory.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int minDiff(int arr[], int n, int k)
{
// If the array has only one element.
if (n == 1)
{
return 0;
}
//sort all elements
sort(arr, arr + n);
//initialise result
int ans = arr[n - 1] - arr[0];
//Handle corner elements
int small = arr[0] + k;
int big = arr[n - 1] - k;
if (small > big)
{
// Swap the elements to keep the array sorted.
int temp = small;
small = big;
big = temp;
}
//traverse middle elements
for (int i = 0; i < n - 1; i++)
{
int subtract = arr[i] - k;
int add = arr[i] + k;
// If both subtraction and addition do not change the diff.
// Subtraction does not give new minimum.
// Addition does not give new maximum.
if (subtract >= small or add <= big)
{
continue;
}
// Either subtraction causes a smaller number or addition causes a greater number.
//Update small or big using greedy approach.
// if big-subtract causes smaller diff, update small Else update big
if (big - subtract <= add - small)
{
small = subtract;
}
else
{
big = add;
}
}
return min(ans, big - small);
}
int main(void)
{
int arr[] = {1, 5, 15, 10};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
cout << "\nMaximum difference is: " << minDiff(arr, n, k) << endl;
return 0;
}
class Solution {
public:
int getMinDiff(int arr[], int n, int k) {
sort(arr, arr+n);
int diff = arr[n-1]-arr[0];
int mine, maxe;
for(int i = 0; i < n; i++)
arr[i]+=k;
mine = arr[0];
maxe = arr[n-1]-2*k;
for(int i = n-1; i > 0; i--){
if(arr[i]-2*k < 0)
break;
mine = min(mine, arr[i]-2*k);
maxe = max(arr[i-1], arr[n-1]-2*k);
diff = min(diff, maxe-mine);
}
return diff;
}
};
class Solution:
def getMinDiff(self, arr, n, k):
# code here
arr.sort()
res = arr[-1]-arr[0]
for i in range(1, n):
if arr[i]>=k:
# at a time we can increase or decrease one number only.
# Hence assuming we decrease ith elem, we will increase i-1 th elem.
# using this we basically find which is new_min and new_max possible
# and if the difference is smaller than res, we return the same.
new_min = min(arr[0]+k, arr[i]-k)
new_max = max(arr[-1]-k, arr[i-1]+k)
res = min(res, new_max-new_min)
return res

Maximum sub array modulo using Kadane algorithm

I am trying to solve hackerrank problem - Maximum sub array modulo - described here https://www.hackerrank.com/challenges/maximum-subarray-sum/problem.
I am curious if this problem can be solved with Kadane algorithm.
The goal: given an n-element array of integers, and an integer 'm' , determine the maximum value of the sum of any of its subarrays modulo 'm'.
Input Format:
1) First line contains an integer 'q' denoting the number of queries to perform. Each query is described over two lines:
a) The first line contains two space-separated integers
describing - array length and modulo number.
b) The second line contains space-separated integers describing the
elements of array.
Here is the likely C++ code that I came up . It fails for some of the test cases (sorry the test cases are too large to post here). Could you comment/review as why this may not work? Thanks.
#include <bits/stdc++.h>
int main()
{
uint64_t q = 0, n = 0, m = 0;
std::cin >> q;
std::cin >> n;
std::cin >> m;
while(q) {
std::vector<uint64_t> vec;
for (uint64_t i = 0; i < n; i++) {
uint64_t num;
std::cin >> num;
vec.push_back(num);
}
uint64_t subArrayMax = 0;
uint64_t maxMod = 0;
for (uint64_t i = 0; i < n; i++) {
// Kadane's algorithm.
subArrayMax = std::max(subArrayMax, subArrayMax+vec[i]); // try (a+b)%m=(a%m+b%m)%m trick?
maxMod = std::max(maxMod, subArrayMax % m);
}
std::cout << maxMod;
--q;
}
}
Kadane's algorithm is not working here because it involves property of modular arithmetic.
First you have to understand why Kadane's algorithm works: It is a simple dynamic programming which answers the following question:
If we know the maximum sum end at index i-1, then maximum sum end at i is either append a[i] to the subarray yielding answer at i-1, OR not appending it
With modular arithmetic, this does not work. For eg:
Let A = {1,2,3,4}, M = 6
With Kadane's algorithm, of course, maximum sum is adding all elements, and it can be found using the thought quoted above: Keep appending a[i] into previous maximum sum found.
But if we are finding maximum sum % 6, then answer is (2+3)%6 = 5 but not (1+2+3)%6 = 0 or (1+2+3+4)%6 = 4. The larger the maximum sum NOT IMPLIES a more optimal sum for maximum sum % M. Therefore your goal here is not even finding maximum sum.
This problem can be solved in O(N lg N) using a modified version of Kadane's algorithm.
For a specific index i,
Let DP(i) = maximum subarray sum % M end at i
Let PS(i) be the prefix sum % M end at i
Naturally you will start to think how to find some j < i which (PS(i) - PS(j)+ M) % M is maximum. (Assume you know how to precompute PS and basic modular arithmetic)
Here is the core part: turns out
DP(i) = max(PS(i), (PS(i) - PS(j) + M) % M
Where PS(j') is the smallest number larger than PS(i) out of all j < i
Why? Because look at the formula, if PS(j') < PS(i), then it is of course better NOT TO minus anything from PS(i).
However if PS(j') > PS(i), then we can rewrite the formula like this: (M - x)%M, then we want x = PS(j')-PS(i) as small as possible, so that (M - x)%M is the largest.
Same as Kadane's algorithm, we keep track the maximum answer found along the process.
We can use priority queue or set data structure to find such j' for all i online, achieving O(N lg N) in total. Details you can see below accepted code:
#include<bits/stdc++.h>
#define LL long long
using namespace std;
int T;
set<LL> pre;
LL n, M, a[100010], ans, sum;
int main() {
cin >> T;
while(T--){
ans = sum = 0;
pre.clear();
cin >> n >> M;
for(int i=0; i<n;i++) cin >> a[i];
for(int i=0; i<n; i++){
(sum += a[i]) %= M;
ans = max(ans, sum);
ans = max(ans, (sum - *(pre.upper_bound(sum))+M)%M);
pre.insert(sum);
}
cout << ans << endl;
}
return 0;
}

Find which two values in an array maximize a given expression?

I met a very simple interview question, but my solution is incorrect. Any helps on this? 1)any bugs in my solution? 2)any good idea for time complexity O(n)?
Question:
Given an int array A[], define X=A[i]+A[j]+(j-i), j>=i. Find max value of X?
My solution is:
int solution(vector<int> &A){
if(A.empty())
return -1;
long long max_dis=-2000000000, cur_dis;
int size = A.size();
for(int i=0;i<size;i++){
for(int j=i;j<size;j++){
cur_dis=A[j]+A[i]+(j-i);
if(cur_dis > max_dis)
max_dis=cur_dis;
}
}
return max_dis;
}
The crucial insight is that it can be done in O(n) only if you track where potentially useful values are even before you're certain they'll prove usable.
Start with best_i = best_j = max_i = 0. The first two track the i and j values to use in the solution. The next one will record the index with the highest contributing factor for i, i.e. where A[i] - i is highest.
Let's call the value of X for some values of i and j "Xi,j", and start by recording our best solution so far ala Xbest = X0,0
Increment n along the array...
whenever the value at [n] gives a better "i" contribution for A[i] - i than max_i, update max_i.
whenever using n as the "j" index yields Xmax_i,n greater than Xbest, best_i = max_i, best_j = n.
Discussion - why/how it works
j_random_hacker's comment suggests I sketch a proof, but honestly I've no idea where to start. I'll try to explain as best I can - if someone else has a better explanation please chip in....
Restating the problem: greatest Xi,j where j >= i. Given we can set an initial Xbest of X0,0, the problem is knowing when to update it and to what. As we contemplate successive indices in the array as potential values for j, we want to generate Xi,j=n for some i (discussed next) to compare with Xbest. But, what i value to use? Well, given any index from 0 to n is <= j, the j >= i constraint isn't relevant if we pick the best i value from the indices we've already visited. We work out the best i value by separating the i-related contribution to X from the j-related contribution - A[i] - i - so in preparation for considering whether we've a new best solution with j=n we must maintain the best_i variable too as we go.
A way to approach the problem
For whatever it's worth - when I was groping around for a solution, I wrote down on paper some imaginary i and j contributions that I could see covered the interesting cases... where Ci and Cj are the contributions related to n's use as i and j respectively, something like
n 0 1 2 3 4
Ci 4 2 8 3 1
Cj 12 4 3 5 9
You'll notice I didn't bother picking values where Ci could be A[i] - i while Cj was A[j] + j... I could see the emerging solution should work for any formulas, and that would have just made it harder to capture the interesting cases. So - what's the interesting case? When n = 2 the Ci value is higher than anything we've seen in earlier elements, but given only knowledge of those earlier elements we can't yet see a way to use it. That scenario is the single "great" complication of the problem. What's needed is a Cj value of at least 9 so Xbest is improved, which happens to come along when n = 4. If we'd found an even better Ci at [3] then we'd of course want to use that. best_i tracks where that waiting-on-a-good-enough-Cj value index is.
Longer version of my comment: what about iterating the array from both ends, trying to find the highest number, while decreasing it by the distance from the appripriate end. Would that find the correct indexes (and thus the correct X)?
#include <vector>
#include <algorithm>
#include <iostream>
#include <random>
#include <climits>
long long brutal(const std::vector<int>& a) {
long long x = LLONG_MIN;
for(int i=0; i < a.size(); i++)
for(int j=i; j < a.size(); j++)
x = std::max(x, (long long)a[i] + a[j] + j-i);
return x;
}
long long smart(const std::vector<int>& a) {
if(a.size() == 0) return LLONG_MIN;
long long x = LLONG_MIN, y = x;
for(int i = 0; i < a.size(); i++)
x = std::max(x, (long long)a[i]-i);
for(int j = 0; j < a.size(); j++)
y = std::max(y, (long long)a[j]+j);
return x + y;
}
int main() {
std::random_device rd;
std::uniform_int_distribution<int> rlen(0, 1000);
std::uniform_int_distribution<int> rnum(INT_MIN,INT_MAX);
std::vector<int> v;
for(int loop = 0; loop < 10000; loop++) {
v.resize(rlen(rd));
for(int i = 0; i < v.size(); i++)
v[i] = rnum(rd);
if(brutal(v) != smart(v)) {
std::cout << "bad" << std::endl;
return -1;
}
}
std::cout << "good" << std::endl;
}
I'll write in pseudo code because I don't have much time, but this should be the most performing way using recursion
compare(array, left, right)
val = array[left] + array[right] + (right - left);
if (right - left) > 1
val1 = compare(array, left, right-1);
val2 = compare(array, left+1, right);
val = Max(Max(val1,val2),val);
end if
return val
and than you call simply
compare(array,0,array.length);
I think I found a incredibly faster solution but you need to check it:
you need to rewrite your array as follow
Array[i] = array[i] + (MOD((array.lenght / 2) - i));
Then you just find the 2 highest value of the array and sum them, that should be your solution, almost O(n)
wait maybe I'm missing something... I have to check.
Ok you get the 2 highest value from this New Array, and save the positions i, and j. Then you need to calculate from the original array your result.
------------ EDIT
This should be an implementation of the method suggested by Tony D (in c#) that I tested.
int best_i, best_j, max_i, currentMax;
best_i = 0;
best_j = 0;
max_i = 0;
currentMax = 0;
for (int n = 0; n < array.Count; n++)
{
if (array[n] - n > array[max_i] - max_i) max_i = n;
if (array[n] + array[max_i] - (n - max_i) > currentMax)
{
best_i = max_i;
best_j = n;
currentMax = array[n] + array[max_i] - (n - max_i);
}
}
return currentMax;
Question:
Given an int array A[], define X=A[i]+A[j]+(j-i), j>=i. Find max value of X?
Answer O(n):
lets rewrite the formula: X = A[i]-i + A[j]+j
we can track the highest A[i]-i we got and the highest A[j]+j we got. We loop over the array once and update both of our max values. After looping once we return the sum of A[i]-i + A[j]+j, which equals X.
We absolutely don't care about the j>=i constraint, because it is always true when we maximize both A[i]-i and A[j]+j
Code:
int solution(vector<int> &A){
if(A.empty()) return -1;
long long max_Ai_part =-2000000000;
long long max_Aj_part =-2000000000;
int size = A.size();
for(int i=0;i<size;i++){
if(max_Ai_part < A[i] - i)
max_Ai_part = A[i] - i;
if(max_Aj_part < A[j] + j)
max_Ai_part = A[j] - j;
}
return max_Ai_part + max_Aj_part;
}
Bonus:
most people get confused with the j>=i constraint. If you have a feeling for numbers, you should be able to see that i should tend to be lower than j.
Assume we have our formula, it is maximized and i > j. (this is impossible, but lets check it out)
we define x1 := j-i and x2 = i-j
A[i]+A[j]+j-i = A[i]+A[j] + x1, x1 < 0
we could then swap i with j and end up with this:
A[j]+A[i]+i-j = A[i]+A[j] + x2, x2 > 0
it is basically the same formula, but now because i > j the second formula will be greater than the first. In other words we could increase the maximum by swapping i and j which can't be true if we already had the maximum.
If we ever find a maximum, i cannot be greater than j.