Using length function in OCaml - ocaml

I'm begining my learning of OCaml and I have been quite stuck on a simple problem.
I'm trying to count with a simple loop the number of letters that I have in a file of 6 lines.
Here's my code :
let fi = open_in "example";;
let string = "";;
let nb_carac = 0;;
for i = 0 to 6 do
string = input_line fi;
nb_carac = (nb_carac + String.length(string));
done;;
Problem is, it doesn't seem to count anything and reaches directly to EOF.
I get the following error message:
Warning 10: this expression should have type unit.
Warning 10: this expression should have type unit.
Exception: End_of_file.
I don't really get it. I have tried each line individually and they all worked. What am i doing wrong?
Thanks!

OCaml does not have mutable variables. You should use tail recursion or references. Read any basic OCaml textbook or tutorial.
Both lines:
string = input_line fi;
nb_carac = (nb_carac + String.length(string));
are understood as useless equality tests (this explains the warning you are getting).
Perhaps you want:
(* shameful *)
let string = ref "";;
let nb_carac = ref 0;;
then e.g.
(* shameful *)
string := input_line fi;
nb_carac := !nb_carac + String.length(!string);
but you should get a very bad grade if you code so imperatively in a functional language like OCaml.
As a rule of thumb, avoid mutating data when coding in OCaml. Of course there are important exceptions to this rule.
The correct solution to your exercise is to use tail recursive functions which do not mutate any data. Look at OCaml standard library stdlib/list.ml for some inspiration.
Probably a better solution to your exercise starts with
let count_lines_and_characters fil = (* incomplete code, fill the ... *)
let rec ....
in ....
;;
Of course you should fill the ....

Related

OCaml Factorial Function with Restrictions

I'm trying to learn OCaml on my own, and I've reached imperative programming. I found this little exercise that I'm just completely stuck on how to even approach. It seems so simple, but I think my understanding is just lacking.
The problem asks me to write the function for factorial without using the rec keyword, and without loops. It's supposed to teach me the environment model, but that's also confusing to me.
My first thought was to try something like this:
let factorial =
let f = ref (fun n -> 0) in
let temp_factorial n =
if n = 0
then 1
else
begin
f := n * !f*(n-1)
!f
end
But I'm not sure if this works. Any help would be greatly appreciated :)
Your code is a little strange and wrong, but the basic idea is workable. Once you have a reference f to a function of type int -> int, you can use !f freely in later code. In fact you can assign f so it refers to a function that uses !f. This is equivalent to recursion, but it uses the imperative part of OCaml.
let f = ref (fun n -> n + 1)
f :=
(fun n ->
if n < 2 then 1
else (* ... left as an exercise ... *)
)
let factoral n = !f n
The key is that the part left as an exercise can use !f.

Efficient input in OCaml

Suppose I am writing an OCaml program and my input will be a large stream of integers separated by spaces i.e.
let string = input_line stdin;;
will return a string which looks like e.g. "2 4 34 765 5 ..." Now, the program itself will take a further two values i and j which specify a small subsequence of this input on which the main procedure will take place (let's say that the main procedure is the find the maximum of this sublist). In other words, the whole stream will be inputted into the program but the program will only end up acting on a small subset of the input.
My question is: what is the best way to translate the relevant part of the input stream into something usable i.e. a string of ints? One option would be to convert the whole input string into a list of ints using
let list = List.map int_of_string(Str.split (Str.regexp_string " ") string;;
and then once the bounds i and j have been entered one easily locates the relevant sublist and its maximum. The problem is that the initial pre-processing of the large stream is immensely time-consuming.
Is there an efficient way of locating the small sublist directly from the large stream i.e. processing the input along with the main procedure?
OCaml's standard library is rather small. It provides necessary and sufficient set of orthogonal features, as should do any good standard library. But, usually, this is not enough for a casual user. That's why there exist libraries, that do the stuff, that is rather common.
I would like to mention two the most prominent libraries: Jane Street's Core library and Batteries included (aka Core and Batteries).
Both libraries provides a bunch of high-level I/O functions, but there exists a little problem. It is not possible or even reasonable to try to address any use case in a library. Otherwise the library's interface wont be terse and comprehensible. And your case is non-standard. There is a convention, a tacit agreement between data engineers, to represent a set of things with a set of lines in a file. And to represent one "thing" (or a feature) with a line. So, if you have a dataset where each element is a scalar, you should represent it as a sequence of scalars separated by a newline. Several elements on a single line is only for multidimensional features.
So, with a proper representation, your problem can be solve as simple as (with Core):
open Core.Std
let () =
let filename = "data" in
let max_number =
let open In_channel in
with_file filename
~f:(fold_lines ~init:0
~f:(fun m s -> Int.(max m ## of_string s))) in
printf "Max number is %s is %d\n" filename max_number
You can compile and run this program with corebuild test.byte -- assuming that code is in a file name test.byte and core library is installed (with opam install core if you're using opam).
Also, there exists an excellent library Lwt, that provides a monadic high-level interface to the I/O. With this library, you can parse a set of scalars in a following way:
open Lwt
let program =
let filename = "data" in
let lines = Lwt_io.lines_of_file filename in
Lwt_stream.fold (fun s m -> max m ## int_of_string s) lines 0 >>=
Lwt_io.printf "Max number is %s is %d\n" filename
let () = Lwt_main.run program
This program can be compiled and run with ocamlbuild -package lwt.unix test.byte --, if lwt library is installed on your system (opam install lwt).
So, that is not to say, that your problem cannot be solved (or is hard to be solved) in OCaml, it is just to mention, that you should start with a proper representation. But, suppose, you do not own the representation, and cannot change it. Let's look, how this can be solved efficiently with OCaml. As previous examples represent, in general your problem can be described as a channel folding, i.e. an consequential application of a function f to each value in a file. So, we can define a function fold_channel, that will read an integer value from a channel and apply a function to it and the previously read value. Of course, this function can be further abstracted, by lifting the format argument, but for the demonstration purpose, I suppose, this will be enough.
let rec fold_channel f init ic =
try Scanf.fscanf ic "%u " (fun s -> fold_channel f (f s init) ic)
with End_of_file -> init
let () =
let max_value = open_in "atad" |> fold_channel max 0 in
Printf.printf "max value is %u\n" max_value
Although, I should note that this implementation is not for a heavy duty work. It is even not tail-recursive. If you need really efficient lexer, you can use ocaml's lexer generator, for example.
Update 1
Since there is a word "efficient" in the title, and everybody likes benchmarks, I've decided to compare this three implementations. Of course, since pure OCaml implementation is not tail-recursive it is not comparable to others. You may wonder, why it is not tail-recursive, as all calls to fold_channel is in a tail position. The problem is with exception handler - on each call to the fold channel, we need to remember the init value, since we're going to return it. This is a common issue with recursion and exceptions, you may google it for more examples and explanations.
So, at first we need to fix the third implementation. We will use a common trick with option value.
let id x = x
let read_int ic =
try Some (Scanf.fscanf ic "%u " id) with End_of_file -> None
let rec fold_channel f init ic =
match read_int ic with
| Some s -> fold_channel f (f s init) ic
| None -> init
let () =
let max_value = open_in "atad" |> fold_channel max 0 in
Printf.printf "max value is %u\n" max_value
So, with a new tail-recursive implementation, let's try them all on a big-data. 100_000_000 numbers is a big data for my 7 years old laptop. I've also added a C implementations as a baseline, and an OCaml clone of the C implementation:
let () =
let m = ref 0 in
try
let ic = open_in "atad" in
while true do
let n = Scanf.fscanf ic "%d " (fun x -> x) in
m := max n !m;
done
with End_of_file ->
Printf.printf "max value is %u\n" !m;
close_in ic
Update 2
Yet another implementation, that uses ocamllex. It consists of two files, a lexer specification lex_int.mll
{}
let digit = ['0'-'9']
let space = [' ' '\t' '\n']*
rule next = parse
| eof {None}
| space {next lexbuf}
| digit+ as n {Some (int_of_string n)}
{}
And the implementation:
let rec fold_channel f init buf =
match Lex_int.next buf with
| Some s -> fold_channel f (f s init) buf
| None -> init
let () =
let max_value = open_in "atad" |>
Lexing.from_channel |>
fold_channel max 0 in
Printf.printf "max value is %u\n" max_value
And here are the results:
implementation time ratio rate (MB/s)
plain C 22 s 1.0 12.5
ocamllex 33 s 1.5 8.4
Core 62 s 2.8 4.5
C-like OCaml 83 s 3.7 3.3
fold_channel 84 s 3.8 3.3
Lwt 143 s 6.5 1.9
P.S. You can see, that in this particular case Lwt is an outlier. This doesn't mean that Lwt is slow, it is just not its granularity. And I would like to assure you, that to my experience Lwt is a well suited tool for a HPC. For example, in one of my programs it processes a 30 MB/s network stream in a real-time.
Update 3
By the way, I've tried to address the problem in an abstract way, and I didn't provide a solution for your particular example (with j and k). Since, folding is a generalization of the iteration, it can be easily solved by extending the state (parameter init) to hold a counter and check whether it is contained in a range, that was specified by a user. But, this leads to an interesting consequence: what to do, when you have outran the range? Of course, you can continue to the end, just ignoring the output. Or you can non-locally exit from a function with an exception, something like raise (Done m). Core library provides such facility with a with_return function, that allows you to break out of your computation at any point.
open Core.Std
let () =
let filename = "data" in
let b1,b2 = Int.(of_string Sys.argv.(1), of_string Sys.argv.(2)) in
let range = Interval.Int.create b1 b2 in
let _,max_number =
let open In_channel in
with_return begin fun call ->
with_file filename
~f:(fold_lines ~init:(0,0)
~f:(fun (i,m) s ->
match Interval.Int.compare_value range i with
| `Below -> i+1,m
| `Within -> i+1, Int.(max m ## of_string s)
| `Above -> call.return (i,m)
| `Interval_is_empty -> failwith "empty interval"))
end in
printf "Max number is %s is %d\n" filename max_number
You may use the Scanf module family of functions. For instance, Scanf.fscanf let you read tokens from a channel according to a string format (which is a special type in OCaml).
Your program can be decomposed in two functions:
one which skip a number i of tokens from the input channel,
one which extract the maximum integer out of a number j from a channel
Let's write these:
let rec skip_tokens c i =
match i with
| i when i > 0 -> Scanf.fscanf c "%s " (fun _ -> skip_tokens c ## pred i)
| _ -> ()
let rec get_max c j m =
match j with
| j when j > 0 -> Scanf.fscanf c "%d " (fun x -> max m x |> get_max c (pred j))
| _ -> m
Note the space after the token format indicator in the string which tells the scanner to also swallow all the spaces and carriage returns in between tokens.
All you need to do now is to combine them. Here's a small program you can run from the CLI which takes the i and j parameters, expects a stream of tokens, and print out the maximum value as wanted:
let _ =
let i = int_of_string Sys.argv.(1)
and j = int_of_string Sys.argv.(2) in
skip_tokens stdin (pred i);
get_max stdin j min_int |> print_int;
print_newline ()
You could probably write more flexible combinators by extracting the recursive part out. I'll leave this as an exercise for the reader.

Empty character in OCaml

I am trying to do something fairly simple. I want to take a string such as "1,000" and return the string "1000".
Here was my attempt:
String.map (function x -> if x = ',' then '' else x) "1,000";;
however I get a compiler error saying there is a syntax error wrt ''
Thanks for the insight!
Unfortunately, there's no character like the one you're looking for. There is a string that's 0 characters long (""), but there's no character that's not there at all. All characters (so to speak) are 1 character.
To solve your problem you need a more general operation than String.map. The essence of a map is that its input and output have the same shape but different contents. For strings this means that the input and output are strings of the same length.
Unless you really want to avoid imperative coding (which is actually a great thing to avoid, especially when starting out with OCaml), you would probably do best using String.iter and a buffer (from the Buffer module).
Update
The string_map_partial function given by Andreas Rossberg is pretty nice. Here's another implementation that uses String.iter and a buffer:
let string_map_partial f s =
let b = Buffer.create (String.length s) in
let addperhaps c =
match f c with
| None -> ()
| Some c' -> Buffer.add_char b c'
in
String.iter addperhaps s;
Buffer.contents b
Just an alternate implementation with different stylistic tradeoffs. Not faster, probably not slower either. It's still written imperatively (for the same reason).
What you'd need here is a function like the following, which unfortunately is not in the standard library:
(* string_map_partial : (char -> char option) -> string -> string *)
let string_map_partial f s =
let buf = String.create (String.length s) in
let j = ref 0 in
for i = 0 to String.length s - 1 do
match f s.[i] with
| None -> ()
| Some c -> buf.[!j] <- c; incr j
done;
String.sub buf 0 !j
You can then write:
string_map_partial (fun c -> if c = ',' then None else Some c) "1,000"
(Note: I chose an imperative implementation for string_map_partial, because a purely functional one would require repeated string concatenation, which is fairly expensive in OCaml.)
A purely functional version could be this one:
let string_map_partial f s =
let n = String.length s in
let rec map_str i acc =
if i < n then
map_str (i + 1) (acc ^ (f (String.make 1 s.[i])))
else acc
in map_str 0 ""
Which is terminal recursive, but less performant than the imperative version.

How to use List.nth inside a function

I am new to OCaml. I am trying to use List.nth just like List.length but it keeps giving me a syntax error or complains about not matching the interface defined in another file. Everything seems to work fine if I comment out using List.nth
Thanks
It's hard to help unless you show the code that's not working. Here is a session that uses List.nth:
$ ocaml
OCaml version 4.00.0
# let x = [3;5;7;9];;
val x : int list = [3; 5; 7; 9]
# List.nth x 2;;
- : int = 7
#
Here's a session that defines a function that uses List.nth. (There's nothing special about this.)
# let name_of_day k =
List.nth ["Mon";"Tue";"Wed";"Thu";"Fri";"Sat";"Sun"] k;;
val name_of_day : int -> string = <fun>
# name_of_day 3;;
- : string = "Thu"
# 
(As a side comment: using List.nth is often inappropriate. It takes time proportional to n to find the nth element of a list. People just starting with OCaml often think of it like accessing an array--i.e., constant time--but it's not.)

Catching an exception when indexing a list in Haskell

getChar :: Int -> IO Char
getChar n = do
c <- getLine
return (c !! n)
The program must needs a number and a line and it will return char, but how do I catch exception, if the number is too big?
I tried like this but it doesnt seem to work
getChar n
= do
c <-getLine
| n>=0 && n < b
= return c !! n
| otherwise
= error "Too big number"
where
b = length c
This is not a homework, im trying to involve myself. Google didint give me useful answers
Couldn't implement catch in there. Examples?
You probably want to restructure things a bit as you've got IO mixed up in something it doesn't have to be. What about changing the signature to something like this?
getChar :: Int -> String -> Maybe Char
getChar n x | n < length x = Just (x !! n)
| otherwise = Nothing
Data.Maybe allows you to indicate that you are either going to return something (e.g. the length is within range) or Nothing (the length isn't within range). The function that calls getChar can then decide what to do with things. Data.Either provides a way of returning an error message with an error instead. From what I've seen (and I'm by no means an expert) exceptions are rarely used in Haskell, and choice types such as Either or Maybe are much more commonly used.
Now in the code that calls this, you can use pattern matching to see what happened e.g.
main :: IO ()
main = do
x <- getLine
let z = getChar' 5 x
case z of
(Just z) -> print $ "The 5th character is " ++ show z
Nothing -> print $ "The 5th character is out of range"
You can use the drop function to drop the first n characters of the line (drop will just give an empty result if there are fewer than n chars), and the listToMaybe function to turn a list to a Maybe (either Just c where c is the first element of the list, or Nothing if the list is empty):
import Data.Maybe (listToMaybe)
getchar :: Int -> IO (Maybe Char)
getchar n = do
line <- getLine
return . listToMaybe . drop n $ line
getChar' :: Int -> IO Char
getChar' n =
do
c <- getLine
if (n < length c)
then
return (c !! n)
else
getChar' n
You can do something like above. This is just an example though. But, since you are a beginner, it is strongly recommended not to play with IO and Monads. You can come to it after you get familiarized with pure functional concepts.