Clojure expect matching with ref in collection - clojure

I have a collection which contains a reference. The reference is generated by the called function. How can I compare the expected and actual collections given that the reference is different, even though the values are the same?
This is a special case of a more general problem.
How can I perform a partial match, marking certain elements indicating that an exact match is unnecessary?
The point of this question is related to testing.
I have a function returning a form containing references and I would like to compare it to see if it matches what I expect.
Based on comments:
I have done this...
(defprotocol Ireference? (reference? [this]))
(extend-type java.lang.Object Ireference? (reference? [this] false))
(extend-type nil Ireference? (reference? [this] false))
(extend-type clojure.lang.Ref Ireference? (reference? [this] true))
(extend-type clojure.lang.Agent Ireference? (reference? [this] true))
(defn ref->str
"takes an arbitrary tree and replaces all futures
with agnostic strings."
[form]
(clojure.walk/postwalk #(if (reference? %) (list 'ref #%) %) form))
Which does what I want.
(expect '{:foo (ref :bar) :baz {:zoo (ref :awk)}}
(ref->str {:foo (ref :bar) :baz {:zoo (ref :awk)}})
This gives me a match.
The reference? predicate is from How do we test whether something is a reference?

This, by design, cannot be done in clojure as you have described it. You can get a similar effect by walking the structure and calling deref on all the mutable types to produce a value which can then be compared. As Rich Hickey explains nicely in this video (specifically 24 min in)
It doesn't make sense for two values to be equal only some of the time. If the language allowed this it would lose much of the power gained by focusing on programming with imitable values. Perhaps if you put the collection in the ref instead of the ref in the collection things would be easier to reason about?

Related

Functional alternative to "let"

I find myself writing a lot of clojure in this manner:
(defn my-fun [input]
(let [result1 (some-complicated-procedure input)
result2 (some-other-procedure result1)]
(do-something-with-results result1 result2)))
This let statement seems very... imperative. Which I don't like. In principal, I could be writing the same function like this:
(defn my-fun [input]
(do-something-with-results (some-complicated-procedure input)
(some-other-procedure (some-complicated-procedure input)))))
The problem with this is that it involves recomputation of some-complicated-procedure, which may be arbitrarily expensive. Also you can imagine that some-complicated-procedure is actually a series of nested function calls, and then I either have to write a whole new function, or risk that changes in the first invocation don't get applied to the second:
E.g. this works, but I have to have an extra shallow, top-level function that makes it hard to do a mental stack trace:
(defn some-complicated-procedure [input] (lots (of (nested (operations input)))))
(defn my-fun [input]
(do-something-with-results (some-complicated-procedure input)
(some-other-procedure (some-complicated-procedure input)))))
E.g. this is dangerous because refactoring is hard:
(defn my-fun [input]
(do-something-with-results (lots (of (nested (operations (mistake input))))) ; oops made a change here that wasn't applied to the other nested calls
(some-other-procedure (lots (of (nested (operations input))))))))
Given these tradeoffs, I feel like I don't have any alternatives to writing long, imperative let statements, but when I do, I cant shake the feeling that I'm not writing idiomatic clojure. Is there a way I can address the computation and code cleanliness problems raised above and write idiomatic clojure? Are imperitive-ish let statements idiomatic?
The kind of let statements you describe might remind you of imperative code, but there is nothing imperative about them. Haskell has similar statements for binding names to values within bodies, too.
If your situation really needs a bigger hammer, there are some bigger hammers that you can either use or take for inspiration. The following two libraries offer some kind of binding form (akin to let) with a localized memoization of results, so as to perform only the necessary steps and reuse their results if needed again: Plumatic Plumbing, specifically the Graph part; and Zach Tellman's Manifold, whose let-flow form furthermore orchestrates asynchronous steps to wait for the necessary inputs to become available, and to run in parallel when possible. Even if you decide to maintain your present course, their docs make good reading, and the code of Manifold itself is educational.
I recently had this same question when I looked at this code I wrote
(let [user-symbols (map :symbol states)
duplicates (for [[id freq] (frequencies user-symbols) :when (> freq 1)] id)]
(do-something-with duplicates))
You'll note that map and for are lazy and will not be executed until do-something-with is executed. It's also possible that not all (or even not any) of the states will be mapped or the frequencies calculated. It depends on what do-something-with actually requests of the sequence returned by for. This is very much functional and idiomatic functional programming.
i guess the simplest approach to keep it functional would be to have a pass-through state to accumulate the intermediate results. something like this:
(defn with-state [res-key f state]
(assoc state res-key (f state)))
user> (with-state :res (comp inc :init) {:init 10})
;;=> {:init 10, :res 11}
so you can move on to something like this:
(->> {:init 100}
(with-state :inc'd (comp inc :init))
(with-state :inc-doubled (comp (partial * 2) :inc'd))
(with-state :inc-doubled-squared (comp #(* % %) :inc-doubled))
(with-state :summarized (fn [st] (apply + (vals st)))))
;;=> {:init 100,
;; :inc'd 101,
;; :inc-doubled 202,
;; :inc-doubled-squared 40804,
;; :summarized 41207}
The let form is a perfectly functional construct and can be seen as syntactic sugar for calls to anonymous functions. We can easily write a recursive macro to implement our own version of let:
(defmacro my-let [bindings body]
(if (empty? bindings)
body
`((fn [~(first bindings)]
(my-let ~(rest (rest bindings)) ~body))
~(second bindings))))
Here is an example of calling it:
(my-let [a 3
b (+ a 1)]
(* a b))
;; => 12
And here is a macroexpand-all called on the above expression, that reveal how we implement my-let using anonymous functions:
(clojure.walk/macroexpand-all '(my-let [a 3
b (+ a 1)]
(* a b)))
;; => ((fn* ([a] ((fn* ([b] (* a b))) (+ a 1)))) 3)
Note that the expansion doesn't rely on let and that the bound symbols become parameter names in the anonymous functions.
As others write, let is actually perfectly functional, but at times it can feel imperative. It's better to become fully comfortable with it.
You might, however, want to kick the tires of my little library tl;dr that lets you write code like for example
(compute
(+ a b c)
where
a (f b)
c (+ 100 b))

Using let style destructuring for def

Is there a reasonable way to have multiple def statements happen with destructing the same way that let does it? For Example:
(let [[rtgs pcts] (->> (sort-by second row)
(apply map vector))]
.....)
What I want is something like:
(defs [rtgs pcts] (->> (sort-by second row)
(apply map vector)))
This comes up a lot in the REPL, notebooks and when debugging. Seriously feels like a missing feature so I'd like guidance on one of:
This exists already and I'm missing it
This is a bad idea because... (variable capture?, un-idiomatic?, Rich said so?)
It's just un-needed and I must be suffering from withdrawals from an evil language. (same as: don't mess up our language with your macros)
A super short experiment give me something like:
(defmacro def2 [[name1 name2] form]
`(let [[ret1# ret2#] ~form]
(do (def ~name1 ret1#)
(def ~name2 ret2#))))
And this works as in:
(def2 [three five] ((juxt dec inc) 4))
three ;; => 3
five ;; => 5
Of course and "industrial strength" version of that macro might be:
checking that number of names matches the number of inputs. (return from form)
recursive call to handle more names (can I do that in a macro like this?)
While I agree with Josh that you probably shouldn't have this running in production, I don't see any harm in having it as a convenience at the repl (in fact I think I'll copy this into my debug-repl kitchen-sink library).
I enjoy writing macros (although they're usually not needed) so I whipped up an implementation. It accepts any binding form, like in let.
(I wrote this specs-first, but if you're on clojure < 1.9.0-alpha17, you can just remove the spec stuff and it'll work the same.)
(ns macro-fun
(:require
[clojure.spec.alpha :as s]
[clojure.core.specs.alpha :as core-specs]))
(s/fdef syms-in-binding
:args (s/cat :b ::core-specs/binding-form)
:ret (s/coll-of simple-symbol? :kind vector?))
(defn syms-in-binding
"Returns a vector of all symbols in a binding form."
[b]
(letfn [(step [acc coll]
(reduce (fn [acc x]
(cond (coll? x) (step acc x)
(symbol? x) (conj acc x)
:else acc))
acc, coll))]
(if (symbol? b) [b] (step [] b))))
(s/fdef defs
:args (s/cat :binding ::core-specs/binding-form, :body any?))
(defmacro defs
"Like def, but can take a binding form instead of a symbol to
destructure the results of the body.
Doesn't support docstrings or other metadata."
[binding body]
`(let [~binding ~body]
~#(for [sym (syms-in-binding binding)]
`(def ~sym ~sym))))
;; Usage
(defs {:keys [foo bar]} {:foo 42 :bar 36})
foo ;=> 42
bar ;=> 36
(defs [a b [c d]] [1 2 [3 4]])
[a b c d] ;=> [1 2 3 4]
(defs baz 42)
baz ;=> 42
About your REPL-driven development comment:
I don't have any experience with Ipython, but I'll give a brief explanation of my REPL workflow and you can maybe comment about any comparisons/contrasts with Ipython.
I never use my repl like a terminal, inputting a command and waiting for a reply. My editor supports (emacs, but any clojure editor should do) putting the cursor at the end of any s-expression and sending that to the repl, "printing" the result after the cursor.
I usually have a comment block in the file where I start working, just typing whatever and evaluating it. Then, when I'm reasonably happy with a result, I pull it out of the "repl-area" and into the "real-code".
(ns stuff.core)
;; Real code is here.
;; I make sure that this part always basically works,
;; ie. doesn't blow up when I evaluate the whole file
(defn foo-fn [x]
,,,)
(comment
;; Random experiments.
;; I usually delete this when I'm done with a coding session,
;; but I copy some forms into tests.
;; Sometimes I leave it for posterity though,
;; if I think it explains something well.
(def some-data [,,,])
;; Trying out foo-fn, maybe copy this into a test when I'm done.
(foo-fn some-data)
;; Half-finished other stuff.
(defn bar-fn [x] ,,,)
(keys 42) ; I wonder what happens if...
)
You can see an example of this in the clojure core source code.
The number of defs that any piece of clojure will have will vary per project, but I'd say that in general, defs are not often the result of some computation, let alone the result of a computation that needs to be destructured. More often defs are the starting point for some later computation that will depend on this value.
Usually functions are better for computing a value; and if the computation is expensive, then you can memoize the function. If you feel you really need this functionality, then by all means, use your macro -- that's one of the sellings points of clojure, namely, extensibility! But in general, if you feel you need this construct, consider the possibility that you're relying too much on global state.
Just to give some real examples, I just referenced my main project at work, which is probably 2K-3K lines of clojure, in about 20 namespaces. We have about 20 defs, most of which are marked private and among them, none are actually computing anything. We have things like:
(def path-prefix "/some-path")
(def zk-conn (atom nil))
(def success? #{200})
(def compile* (clojure.core.memoize/ttl compiler {} ...)))
(def ^:private nashorn-factory (NashornScriptEngineFactory.))
(def ^:private read-json (comp json/read-str ... ))
Defining functions (using comp and memoize), enumerations, state via atom -- but no real computation.
So I'd say, based on your bullet points above, this falls somewhere between 2 and 3: it's definitely not a common use case that's needed (you're the first person I've ever heard who wants this, so it's uncommon to me anyway); and the reason it's uncommon is because of what I said above, i.e., it may be a code smell that indicates reliance on too much global state, and hence, would not be very idiomatic.
One litmus test I have for much of my code is: if I pull this function out of this namespace and paste it into another, does it still work? Removing dependencies on external vars allows for easier testing and more modular code. Sometimes we need it though, so see what your requirements are and proceed accordingly. Best of luck!

Idiomatic no-op/"pass"

What's the (most) idiomatic Clojure representation of no-op? I.e.,
(def r (ref {}))
...
(let [der #r]
(match [(:a der) (:b der)]
[nil nil] (do (fill-in-a) (fill-in-b))
[_ nil] (fill-in-b)
[nil _] (fill-in-a)
[_ _] ????))
Python has pass. What should I be using in Clojure?
ETA: I ask mostly because I've run into places (cond, e.g.) where not supplying anything causes an error. I realize that "most" of the time, an equivalent of pass isn't needed, but when it is, I'd like to know what's the most Clojuric.
I see the keyword :default used in cases like this fairly commonly.
It has the nice property of being recognizable in the output and or logs. This way when you see a log line like: "process completed :default" it's obvious that nothing actually ran. This takes advantage of the fact that keywords are truthy in Clojure so the default will be counted as a success.
There are no "statements" in Clojure, but there are an infinite number of ways to "do nothing". An empty do block (do), literally indicates that one is "doing nothing" and evaluates to nil. Also, I agree with the comment that the question itself indicates that you are not using Clojure in an idiomatic way, regardless of this specific stylistic question.
The most analogous thing that I can think of in Clojure to a "statement that does nothing" from imperative programming would be a function that does nothing. There are a couple of built-ins that can help you here: identity is a single-arg function that simply returns its argument, and constantly is a higher-order function that accepts a value, and returns a function that will accept any number of arguments and return that value. Both are useful as placeholders in situations where you need to pass a function but don't want that function to actually do much of anything. A simple example:
(defn twizzle [x]
(let [f (cond (even? x) (partial * 4)
(= 0 (rem x 3)) (partial + 2)
:else identity)]
(f (inc x))))
Rewriting this function to "do nothing" in the default case, while possible, would require an awkward rewrite without the use of identity.

Clojure idiomatic get-and-set function

Is there a more idiomatic/readable way of writing a get-and-set function in Clojure than:
(def the-ref (ref {}))
(defn get-and-set [new-value]
(dosync
(let [old-value #the-ref]
(do
(ref-set the-ref new-value)
old-value))))
for the simple cases I tend to see this operation used directly instead of wrapped in a function:
hello.core> (dosync (some-work #the-ref) (ref-set the-ref 5))
5
In this case dosync generally serves as the wrapper you are looking for. within the dosync This is significant because dosync composes nicely with other transactions and makes the bounds of the transaction visible. If you are in a position where the wrapper function can completely encapsulate all the references to the ref then perhaps refs are not the best tool.
A typical use of refs could look more along these lines:
(dosync (some-work #the-ref #the-other-ref) (ref-set the-ref #the-other-ref))
The need to wrap it is rare because when ref's are used they typically are use in groups of more than one ref because coordinated changes are required by the problem at hand. In cases where their is just one value then atoms are more common.

Format output string depending on the data type

I'm writing a clojure function to format various data types as a string.
My naive solution:
(defn p [d]
(cond
(vector? d) (str "vector: " d)
(list? d) (str "list: " d)))
#'user/p
user> (p [1 2 3])
"vector: [1 2 3]"
user> (p '(1 2 3))
"list: (1 2 3)"
I haven't used multimethods before. I this a good use, or is there a another way to avoid the smelly use of cond?
I'd go for defining a format protocol and extending it to types you need, as suggested by #rodnaph:
(defprotocol Format
(fmt [this]))
(extend-protocol Format
clojure.lang.IPersistentVector
(fmt [this] (str "vector:" this))
clojure.lang.IPersistentList
(fmt [this] (str "list:" this)))
However I don't know which will have better performance, multimethod or protocol extension.
The multimethod definition could look like this:
(defmulti fmt class)
(defmethod fmt
clojure.lang.IPersistentVector [this]
(str "vector:" this))
(defmethod fmt
clojure.lang.IPersistentList [this]
(str "list:" this))
EDIT: you might want to check this question about protocols vs multimethods, as there quite nicely are explained common use cases for both. According to that information, it is better to use a protocol in your scenario.
(I'm a noob but) It looks like a protocol would be best suited to this:
http://clojure.org/protocols
Then you can define the different formatting implementations for each data type you'd like to support.
I'm sure your question is showing a simplified case relative to what you really need to accomplish. For the general solution, I concur that protocols are a decent approach.
You asked about multimethods, but the trouble you'll run into is with the dispatch function. defmulti takes a dispatch function which will be called on the arguments to the real function. The dispatch function must return a value that can then be used to select which method implementation will be invoked.
The trouble is, what do you dispatch on? To discriminate between collection types, you'd end up with something like this:
(defmulti stringify class)
(defmethod stringify clojure.lang.PersistentVector [v] ...)
(defmethod stringify clojure.lang.PersistentArrayMap [m] ...)
;;; More dispatching on concrete class names
Well, as soon as you see specific clojure.lang class names appearing in your code, all kinds of alarm bells should be going off. These are way too specific... they'll break if the Clojure core library changes, they won't work very cleanly with Java interop, they don't cover user-defined types that happen to implement Seqable... in short, they are a breakdown of abstraction.
Any time you would be tempted to dispatch on class names, whether from Clojure, Java, or 3rd party libraries, you should always reach for extend-type instead.