Using boost.pool instead of 'new' for container of objects - c++

In the code base I'm working on, it currently has code that does this often:
// In the header:
class Label
{
public:
void ParseText();
private:
Letter* m_myArray;
};
// In the CPP:
void ParseText()
{
delete[] m_myArray;
m_myArray = new Letter[string_length];
// ......
}
Basically every time the string changes in the label, we delete the old set of letter objects and create them all over again. These letter objects are somewhat lightweight, but since this happens often I can't simply use std::vector<Letter> since each push_back() would result in a copy. I'd like to avoid the copy too.
Would using boost pool help here? I can imagine doing this (this is pseudocode, since I'm not sure how to use boost pool exactly yet):
// In the header:
class Label
{
public:
void ParseText();
private:
std::vector<Letter*> m_myArray;
boost::object_pool m_pool;
};
// In the CPP:
void ParseText()
{
// Loop through each element in m_myArray and call pool::free
m_myArray.clear();
// Loop each letter and create a new Letter object in the container
for( ... ) {
m_myArray.push_back(m_pool.malloc()); // Not sure how to handle constructor params
}
// ......
}
This would avoid the copy and would avoid doing allocations so often. However, I've lowered the maintainability of the code since there is so much boilerplate involved in adding/deleting items from the vector.
I've thought of using boost::ptr_vector with a custom deleter, but not sure if this helps much. It helps cleanup but I still have to call pool::malloc() each time I do a push_back.
Using a custom allocator with std::vector doesn't seem to make sense either since it's preallocated anyway and won't shrink in size.
Can anyone help me figure out the "best" solution for this problem?

I think a memory pool would make a difference in some situations. Since boost::object_pool<> doesn't provide a method to allocate a array of objects, so I would use boost::pool<> which is actually the underlying memory pool of boost::object_pool<>.
#include <cstdio>
#include <ctime>
#include "boost/pool/pool.hpp"
struct Letter{
float a, b, c;
int *p;
};
class Label
{
public:
Label() : m_myArray(NULL), string_length(1), last_size(0){}
void set_size(size_t n)
{
last_size = string_length; // use last_size to store the number of last allocation, just for test.
string_length = n;
}
void ParseText()
{
delete[] m_myArray;
m_myArray = new Letter[string_length];
}
void ParseText_pool();
private:
Letter* m_myArray;
size_t string_length;
size_t last_size; //boost::pool<>::ordered_free need the size
};
boost::pool<> p(sizeof(Letter));
void Label::ParseText_pool()
{
if(m_myArray)
p.ordered_free(m_myArray, last_size); // ordered_free need the right size
m_myArray = (Letter*)p.ordered_malloc(string_length); // if you need call the ctor, use placement new.
}
int main()
{
Label l;
float startTime = (float)clock()/CLOCKS_PER_SEC;
for(int i = 1; i < 1000000; ++i)
{
l.set_size(i%100 + 1);
l.ParseText();
}
float endTime = (float)clock()/CLOCKS_PER_SEC;
printf("without pool, time: %f\n", endTime - startTime);
Label l2;
startTime = (float)clock()/CLOCKS_PER_SEC;
for(int i = 1; i < 1000000; ++i)
{
l.set_size(i%100 + 1);
l2.ParseText_pool();
}
endTime = (float)clock()/CLOCKS_PER_SEC;
printf("with pool, time: %f\n", endTime - startTime);
};
Run on my machine and coliru, it shows the more frequent the allocation, the greater the advantage of using a memory pool.

What I think I would do is use vector and resize to minimize the amount of allocations, and allow letters to be reused. So we have something like this:
// In the header:
class Label
{
public:
void ParseText();
private:
std::vector<Letter> m_myArray;
};
// In the CPP:
void ParseText()
{
m_myArray.resize(string_length);
// ......
}
With an approach like this, as many Letter objects as possible are reused from the previous instance. You can even call reserve in the Label constructor to pre-allocate enough space to even prevent any copy/movement of the Letter objects later.

Related

c++ error: array initializer must be an initializer list

I have really been struggling with a piece of code for a couple days. The error message i receive when i run my code is:
error: array initializer must be an initializer list
accountStore (int size = 0) : accts(size) { }
There seem to be others with similar problems here but unfortunately I am unable to apply their solutions (either don't work or not applicable).
What I am simply attempting to do is create a container class (array, can't use vectors) of a class 'prepaidAccount' but I am just unable to get the constructor portion of the container class 'storeAccount' to work. See code snippet below:
class prepaidAccount{
public:
//prepaidAccount ();
prepaidAccount(string newPhoneNum, float newAvailBal) : phoneNumber(newPhoneNum), availableBalance (newAvailBal){} //constructor
double addBalance(double howMuch) {
availableBalance = howMuch + availableBalance;
return availableBalance;
}
double payForCall(int callDuration, double tariff) {
callDuration = callDuration/60; //convert to minutes
double costOfCall = callDuration * tariff;
if (costOfCall > availableBalance) {
return -1;
}
else {
availableBalance = availableBalance - costOfCall;
return costOfCall;
}
}
void setAvailBal(int newAvailBal) {availableBalance = newAvailBal;}
float getAvailBal() {return availableBalance;}
void setPhoneNum(string newPhoneNum) {phoneNumber = newPhoneNum;}
string getPhoneNum() const {return phoneNumber;}
private:
string phoneNumber;
float availableBalance;
};
class accountStore { //made to store 100 prepaid accounts
public:
accountStore (int size = 0) : accts(size) { }
....
private:
prepaidAccount accts[100];
}
In main I simply call accountStore Account;
Any help is absolutely welcome. I very recently started learning c++ and about classes and constructors so please bear with me.
Thanks
You can't initialize an array with int like accountStore (int size = 0) : accts(size) {}.
prepaidAccount doesn't have a default constructor, you have to write member initialization list like,
accountStore (int size = 0) : accts{prepaidAccount(...), prepaidAccount(...), ...} { }
The array has 100 elements, it's not a practical solution here.
As a suggestion, think about std::vector, which has a constructor constructing with the spicified count of elements with specified value. Such as,
class accountStore {
public:
accountStore (int size = 0) : accts(size, prepaidAccount(...)) { }
....
private:
std::vector<prepaidAccount> accts;
};
Given that you have specified that you do not want to use a container such as std::vector but would like to specify the size at runtime, your only option would be to manually implement dynamic allocation yourself. Also given that you are wanting create 100 objects at a time, I would suggest making a function that can construct a temporary object according to your needs and then use this to initialise your dynamically allocated array. Consider the below code as a good starting point. (WARNING untested code.)
class prepaidAccount {
public:
// Constructor
prepaidAccount(string newPhoneNum, float newAvailBal)
: phoneNumber(newPhoneNum), availableBalance(newAvailBal) {}
// Default Constructor needed for dynamic allocation.
prepaidAccount() {}
/* your code*/
};
// Used to construct a tempoary prepaid account for copying to the array.
// Could use whatever constructor you see fit.
prepaidAccount MakePrepaidAccount(/*some parameters*/) {
/* Some code to generate account */
return some_var;
}
class accountStore {
public:
// Explicit constructor to avoid implicit type-casts.
explicit accountStore(const int &size = 0)
: accts(new prepaidAccount[size]) {
for (int i = 0; i < size; i++) {
// Will call defualt assignment function.
prepaidAccount[i] = MakePrepaidAccount(/*some parameters*/);
}
}
// Destructor
~accountStore() {
// Cleans up dynamically allocated memory.
delete[] prepaidAccount;
}
prepaidAccount *accts;
};
Edit: Amongst the c++ community it is often questionable when choosing to use dynamic allocation when there is such an excellent and comprehensive library of smart pointers. For example an std::vector would be perfect in this situation.

Allocating an array of a class c++

How would I go about allocating an array of a class without constructing the class, so I could fill up the array later?
I was originally trying to use
Myclass * array = new Myclass[N];
But it tries to construct Myclass to N.
First just declare it without allocating
Myclass * array[N];
when you need it
for(int i=0;i<N;i++){
array[i] = new Myclass(/*params*/);
}
But consider using std::vector/std::list if you must not have to manage memory yourself.
If you really want to do that, (not sure why), you could try
#include <iostream>
using namespace std;
class MyClass
{
public:
MyClass()
{ cout << "helo" << endl; }
};
int main(int argc, char *argv[])
{
int size = 4;
// Here is the trick, pointer to pointer.
MyClass **vec = new MyClass *[size];
cout << "before" << endl;
for (int i = 0; i < 4; ++i)
vec[i] = new MyClass;
// remember to free the vec
return 0;
}
Someone suggested placement new, so here it goes:
// allocate space
std::vector<unsigned char> mybuffer(N * sizeof(Myclass));
Myclass *array = reinterpret_cast<Myclass *>(&mybuffer[0]);
// when you're ready to use it
new( &array[0] ) Myclass(2);
new( &array[1] ) Myclass(3);
// etc...
// when you're done with it
array[0].~Myclass();
array[1].~Myclass();
// etc....
Of course, it is undefined behaviour to use array[x] before you have new'd it, or after you called the destructor.
This is generally something you wouldn't use as a solution to a "normal" problem. Consider actually defining a default constructor that does nothing, and having a function you call later which enhances the objects above their default state.
If you can use C++11, the optimal solution for you is probably std::vector<MyClass> with emplace-base insertions:
class MyClass {
public:
MyClass(int a, bool b, char c); // some non-default constructor
MyClass(double d); // another constructor
void bar();
};
void foo(int n) {
std::vector<MyClass> mv;
mv.reserve(n); // not even needed but beneficial if you know the final size.
// emplace_back uses perfect forwarding to call any arbitrary constructor:
mv.emplace_back(2, false, 'a');
mv.emplace_back(3, true, 'b');
mv.emplace_back(3.1415926535);
// can iterate vector easily:
for (auto &i : mv) {
i.bar();
}
// everything destructed automatically when the collection falls of scope ...
}
This creates the values in the collection directly without a copy and defers any construction of elements until you are ready, unlike new[], which makes a bunch of default objects at array-creation time. It is generally better than placement new as well, since it doesn't leave open opportunities for missed destruction or destructing an invalid memory location as well as being just easier to read.
Alternatively, you may use boost::optional.
So in your case:
std::vector<boost::optional<Myclass>> array(N);

Using global variable for array size in class

I want to define dynamic array h of size size and later in other functions, modify and use it as here:
class definition:
static int size=10;
class hash{
public:
string h[size];
hash();
void resize();
void operations();
void print();
};
hash::hash()
{
h[size-1]="nikhil"; //size=10 now.
}
/*Defining `h` as `string* h=new string[size];` is not working.
My compiler (MinGW on Windows 7) show error: dynamic allocation is not allowed by default*/
// resizing the array
void hash::resize( )
{
string temp[2*size];
for(int i=0;i<=size;i=i+1)
{
temp[i]=h[i];
}
size=2*size;
h=temp;
}
void hash::print()
{
for(int i=0;i<size;i=i+1)
{if(!h[i].empty())
{cout<<"h["<<i<<"]="<<h[i]<<endl;}
}
}
int main()
{
hash p;
p.resize();//now size should change to 20.
p.print();
}
Where is the problem is it defining the size variable or in resizing the array?
Use std::vector if you need arrays of dynamic size.
class hash {
public:
std::vector<std::string> h;
hash();
void resize();
void operations();
void print();
};
hash::hash() : h(10) {
h[9] = "nikhil";
}
void hash::resize() {
h.resize(2 * h.size());
}
Though note that std::vector does resizing for you automatically if you add new elements using push_back. Also note that the standard library has hash table data types already (std::unordered_set and std::unordered_map), so you don’t have to write them yourself.
I do not know C++ but you haven't exactly told what is going on.
But the way your resize() method is working is the for loop goes through 2*the size of H which will cause a problem.
When you loop through 2*size it is trying to loop through more items than what you actually have in the original array. you have to loop through the original array size.
for(int i = 0; i < h.size(); i++)
{
temp[i] = h[i];
}
I can barely see the comments in your code they are too light for me so I didn't see them.
But to explain a little better i guess, lets say original array is size 5 your new one is size 10 when you loop through 10 items you dont have 10 items in the original array so you'll get errors when trying to access them.

Offset and pass vector reference

When using arrays you can do something like
class SomeClass
{
public:
int* LockMember( size_t& numInts );
private:
int* member;
size_t numInts;
};
int* SomeClass::LockMember( size_t& out_numInts )
{
out_numInts = numInts - 1;
return member + 1;
}
To return an array offset by some amount so as to prevent someone from modifying some part of contingeous memory, or, atleast, show some intent that this part of contingeous memory of the object should remain untouched.
Since I use vectors everywhere, I am wondering if there was some way to accomplish the same sort of thing:
class SomeClass
{
public:
std::vector<int> LockMember( void );
private:
std::vector<int> member;
};
std::vector<int> SomeClass::LockMember( void )
{
// somehow make a vector with its beginning iterator pointing to member.begin() + 1
// have a size smaller by one, still the same end iterator. The vector must be
// pointing to the same data as in this class as it needs to be modifiable.
return magicOffsetVector;
}
With the commented part replaced by real code. Any ideas?
If I understand you correctly: You want some memory with two parts: At the beginning you want something that can't be touched, and after that you want something that is open for use by client code.
You could do something along the following code. This will give the client code a copy to play with. This does mean you would have to do a lot of copying, though.
class SomeClass
{
public:
std::vector<int> getMember( void ) const;
void setMember(std::vector<int> newContent);
private:
std::vector<int> member;
size_t magicOffset;
};
// Read restricted part
std::vector<int> SomeClass::getMember( void ) const
{
return vector<int>(member.begin() + magicOffset, member.end());
}
// Assign to restricted part
void SomeClass::setMember(const std::vector<int>& v)
{
std::copy(v.begin(), v.end(), member.begin() + magicOffset);
}
In order to avoid the copying, it is possible that you could allocate memory for two vectors, one for the protected part and one for the unprotected part, and use placement new to put both vectors into that memory, thus ensuring that they are in contiguous memory. And then give the client code more or less free access to the public part of the vector. However, there's still the thing with bookkeeping variables in vector, and basically this would be an awful hack that's just waiting to blow up.
However, if you only need access to the unrestricted part on a per-element basis, you could just do range-checking on the arguments, i.e.:
int getElement(size_t idx)
{
idx += magicOffset;
if (idx > member.size() || idx < 0) throw std::out_of_range("Illegal index");
return member[idx];
}
And then either provide a setElement, or return int&.

Handling Huge Multidimensional Arrays in C++

I'm designing a game in C++ similar to Minecraft that holds an enormous amount of terrain data in memory. In general, I want to store an array in memory that is [5][4][5][50][50][50]. This isn't bad since it amounts to about 100mb of virtual memory since my structure will only be about 8 bytes.
However, I'm having trouble figuring out the best way to handle this. I do want this to be in virtual memory, but obviously not on the stack. And I keep making the mistake some how of creating this array on the stack an causing a stack overflow. What I would like to do is below. This is just code that I threw together to give you an example of what I'm doing, I have code with correct syntax on my machine, I just didn't want to clutter the post.
typedef struct modelBlock
{
// Information about the blocks
} BLOCK;
typedef struct modelGrid
{
bool empty;
BLOCK blocksArray[50][50][50];
} GRID;
class Parent
{
Child* child;
Parent(void);
}
Parent::Parent()
{
Child c;
child = &c;
}
class Child
{
GRID grids[5][4][5];
}
However, every time I do this, I cause a stack overflow (appropriate web site choice right?). I played with using pointer based arrays, but I had a lot of trouble with data being lost outside of its scope.
If anyone could give me some insight on how to get my data to store on the heap instead of the stack, or if I should use some other way of creating my array, I'd really appreciate the help. I'd like to avoid using vectors because of overhead, though I'm not sure how substantial it is.
Use boost::multi_array
If you want to allocate something on the heap, use new.
#include <memory>
class Parent
{
std::auto_ptr<Child> child; // use auto_ptr for dynamically-allocated members
Parent(const Parent&); // You probably don't want to copy this giant thing
public:
Parent();
};
Parent::Parent()
: child(new Child) // initialize members with an initializer list
{
}
Also, avoid mixing C and C++ styles. There's no reason to do
typedef struct blah{ ... } BLAH;
in C++. A struct is just a class with all of the members public by default; just like a class, you can refer to the struct type's name without using the struct tag. There's also no need to specify void for a function that takes no parameters.
boost::multi_array (linked in PigBen's answer) is a good choice over raw arrays.
If you want the class created on the heap, create it with new:
Child * c = new Child;
and then of course delete it, or better still use a smart pointer.
In order to do exactly what you're trying to do you have to declare everything as pointers (and pointers to pointers to pointers to pointers) and then allocate each one individually.
Teh sux!
A better option is to simply allocate the ginormous block in one chunk and use multiple variable along with pointer arithmetic to arrive at the correct location.
Edit: Wasn't paying attention and didn't notice your constructor. That's not only not the way to get your Child allocated on the free-store, it's a great way to create situations eliciting undefined behavior. Your Child will be gone when the constructor is through and the pointer to it will then be invalid. I wonder if you shouldn't run through some basic tutorials before trying to write a game.
Here's something that works and can be built upon without the boost dependency. One downside is it removes use of [][][] style of referencing elements, but it's a small cost and can be added.
template<class T>
class Matrix {
unsigned char* _data;
const size_t _depth;
const size_t _cols;
const size_t _rows;
public:
Matrix(const size_t& depth, const size_t& rows, const size_t& cols):
_depth(depth),
_rows(rows),
_cols(cols) {
_data = new unsigned char [depth * rows * cols * sizeof(T)];
}
~Matrix() {
delete[] _data;
}
T& at(const size_t& depthIndex, const size_t& rowIndex, const size_t& colIndex) const {
return *reinterpret_cast<T*>(_data + ((((depthIndex * _cols + colIndex) * _rows) + rowIndex) * sizeof(T)));
}
const size_t& getDepth() const {
return _depth;
}
const size_t& getRows() const {
return _rows;
}
const size_t& getCols() const {
return _cols;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Matrix<int> block(50, 50, 50);
size_t d, r, c;
for (d = 0; d < block.getDepth(); d++) {
for (r = 0; r < block.getRows(); r++) {
for (c = 0; c < block.getCols(); c++) {
block.at(d, r, c) = d * 10000000 + r * 10000 + c;
}
}
}
for (d = 0; d < block.getDepth(); d++) {
for (r = 0; r < block.getRows(); r++) {
for (c = 0; c < block.getCols(); c++) {
assert(block.at(d, r, c) == d * 10000000 + r * 10000 + c);
}
}
}
return 0;
}
A smaller example (with changed names for all the structs, to make the general principle clearer). The 'Bloe' struct is the one you want to allocate on the heap, and this is accomplished using 'new'.
struct Bla {
int arr[4][4];
};
struct Bloe {
Bla bla[2][2];
};
int main()
{
Bloe* bloe = new Bloe();
bloe->bla[1][1].arr[1][1] = 1;
return 0;
}
I did this by putting all the data in a binary file. I calculated the offset of the data and used seek() and read() to get the data when needed. The open() call is very slow so you should leave the file open during the lifetime of the program.
Below is how I understood what you showed you were trying to do in your example. I tried to keep it straightforward. Each Array of [50][50][50] is allocated in one memory chunk on the heap, and only allocated when used. There is also an exemple of access code. No fancy boost or anything special, just basic C++.
#include <iostream>
class Block
{
public:
// Information about the blocks
int data;
};
class Grid
{
public:
bool empty;
Block (*blocks)[50][50];
Grid() : empty(true) {
}
void makeRoom(){
this->blocks = new Block[50][50][50];
this->empty = false;
}
~Grid(){
if (!this->empty){
delete [] this->blocks;
}
}
};
class Parent
{
public:
Grid (* child)[4][5];
Parent()
{
this->child = new Grid[5][4][5];
}
~Parent()
{
delete [] this->child;
}
};
main(){
Parent p;
p.child[0][0][0].makeRoom();
if (!p.child[0][0][0].empty){
Block (* grid)[50][50] = p.child[0][0][0].blocks;
grid[49][49][49].data = 17;
}
std::cout << "item = "
<< p.child[0][0][0].blocks[49][49][49].data
<< std::endl;
}
This could still be more simple and straightfoward and just use one bug array of [50][50][50][5][4][5] blocks in one memory chunk on the heap, but I'll let you figure out how if this is what you want.
Also, usind dynamic allocation in class Parent only has the sole purpose to use heap instaed of stack, but for such a small array (5*4*5 pointers), allocating it on stack should not be a problem, hence it could be written.
class Parent
{
public:
Grid child[5][4][5];
};
without changing anything in the way it is used.