Initialize a constexpr array as sum of other two constexpr arrays - c++

Given two constexpr arrays (type[N] or std::array<type, N>)
constexpr int A[5] { 0, 1, 2, 3, 4 };
constexpr int B[5] { 5, 4, 3, 2, 1 };
is it possible to initialize a new constexpr array performing an element-wise operation (or constexpr function)?
For example, can this code
constexpr int sum(int i) { return A[i] + B[i]; }
constexpr int S[5] { sum(0), sum(1), sum(2), sum(3), sum(4) };
be rewritten more conveniently in a form that calls sum(i) for every element in S?

Similar things have been done many times already, but here's a solution for this particular compile-time operation on arrays ;)
template<int... Is>
struct seq {};
template<int I, int... Is>
struct gen_seq : gen_seq<I-1, I-1, Is...> {};
template<int... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
#include <array>
template<class T, int N, int... Is>
constexpr std::array<T, N> sum(T const (&lhs)[N], T const (&rhs)[N], seq<Is...>)
{
return {{lhs[Is]+rhs[Is]...}};
}
template<class T, int N>
constexpr auto sum(T const (&lhs)[N], T const (&rhs)[N])
-> decltype( sum(lhs, rhs, gen_seq<N>{}) )
{
return sum(lhs, rhs, gen_seq<N>{});
}
#include <iostream>
int main()
{
constexpr int a[] = {1,2,3,4,5};
constexpr int b[] = {1,2,3,4,5};
constexpr auto c = sum(a,b);
for(auto e : c) std::cout << e << ", ";
}
N.B. std::array::operator[] is not constexpr in C++11, therefore I've used raw arrays as input.
For arbitrary binary functions:
template<class T, int N, class F, int... Is>
constexpr auto transform(T const (&lhs)[N], T const (&rhs)[N], F f,
seq<Is...>)
-> std::array<decltype( f(lhs[0], rhs[0]) ), N>
{
return {{ f(lhs[Is], rhs[Is])... }};
}
template<class T, int N, class F>
constexpr auto transform(T const (&lhs)[N], T const (&rhs)[N], F f)
-> decltype( transform(lhs, rhs, f, gen_seq<N>{}) )
{
return transform(lhs, rhs, f, gen_seq<N>{});
}
constexpr int sum(int l, int r) { return l+r; }
// ...
constexpr auto c = transform(a,b,sum);
For arbitrary n-ary functions and arbitrary array-like types:
template<class F, class... Args>
constexpr auto index_invoke(F f, int i, Args&&... args)
-> decltype( f(args[i]...) )
{
return f(args[i]...);
}
template<class F, int... Is, class... Args>
constexpr auto transform_impl(F f, seq<Is...>, Args&&... args)
-> std::array<decltype( f(args[0]...) ), sizeof...(Is)>
{
return {{ index_invoke(f, Is, std::forward<Args>(args)...)... }};
}
template <class T, class...>
struct get_extent_helper
: std::integral_constant<int,
std::extent<typename std::remove_reference<T>::type>{}>
{};
template<class F, class... Args>
constexpr auto transform(F f, Args&&... args)
-> decltype( transform_impl(f, gen_seq< get_extent_helper<Args...>{} >{},
std::forward<Args>(args)...) )
{
using N = get_extent_helper<Args...>;
return transform_impl(f, gen_seq<N{}>{}, std::forward<Args>(args)...);
}
More lightweight with an alias-template:
template <class T, class...>
using get_extent_helper =
std::integral_constant<int,
std::extent<typename std::remove_reference<T>::type>{}>;
But this is buggy under g++4.8.1

Related

Multi patterend varadic templates in C++

I don't think this is possible based on what I've read however I'm hoping someone here may know of some solution that would get this to work.
I have a vector (maths) class for C++
template <typename T, size_t N> class vec;
And want to create a varadic friend function apply to apply a function to these vectors element-wise
i.e.
template <typename F, typename ...Args> friend vec<typename std::result_of<pow(Args&&...)>::type, N> apply(F&& f, const vec<Args, N>&... args);
which is valid (untested yet)
however I want to achieve a pattern like
template <typename F> friend vec<typename std::result_of<F&&(T&&)>::type, N> apply(F&& f, const vec<T, N>& V);
template <typename F> friend vec<typename std::result_of<F&&(T&&, T&&)>::type, N> apply(F&& f, const vec<T, N>& V1, const vec<T, N>& V2);
template <typename F> friend vec<typename std::result_of<F&&(T&&, T&&)>::type, N> apply(F&& f, const vec<T, N>& V1, const T& V2);
template <typename F> friend vec<typename std::result_of<F&&(T&&, T&&)>::type, N> apply(F&& f, const T& V1, const vec<T, N>& V2);
template <typename F, typename U> friend vec<typename std::result_of<F&&(T&&, U&&)>::type, N> apply(F&& f, const vec<T, N>& V1, const vec<U, N>& V2);
template <typename F, typename U> friend vec<typename std::result_of<F&&(T&&, U&&)>::type, N> apply(F&& f, const vec<T, N>& V1, const U& V2);
template <typename F, typename U> friend vec<typename std::result_of<F&&(U&&, T&&)>::type, N> apply(F&& f, const vec<U, N>& V1, const vec<T, N>& V2);
template <typename F, typename U> friend vec<typename std::result_of<F&&(U&&, T&&)>::type, N> apply(F&& f, const U& V1, const vec<T, N>& V2);
note that only one of the arguments is required to be a vector any scalars would be broadcasted to the length of the vector.
The idea is that apply(pow, /*vec<float,N>*/V, /*int*/n) -> {pow(V.v[i],n)...} where i -> 0 ... N rather than apply(pow, /*vec<float,N>*/V, /*int*/n) -> apply(pow, /*vec<float,N>*/V, /*vec<int,N>*/tmp{/*int*/n}) {pow(V.v[i],tmp.v[i])...}
So I would like to be able to write something like the following (which isn't valid C++, but it should give an idea of what I want to achieve)
template <typename F, typename ...Args> friend vec<typename std::result_of<pow(Args&&...)>::type, N> apply(F&& f, const vec<Args, N>&||scalar<Args>::type... args) {
vec<typename std::result_of<pow(Args&&...)>::type, N> r;
for (int i= 0; i < N; i++) { r = f((is_vec<Args>?args.v[i]:args)...); }
return r;
}
EDIT:
Based on Frank's comments I'm looking for something along the lines of
template<typename F, typename ...Args, size_t N>
vec<typename std::enable_if<sum<is_vec<Args,N>...>::value > 0, std::result_of<F&&(base_type<Args>::type&&...)>::type>::type, N>
(F&& f, Args&&...args) {
vec<typename std::result_of<F&&(base_type<Args>::type&&...)>::type, N> result;
for(std::size_t i = 0 ; i < N ; ++i) { result.v[i] = f(extract_v(std::forward<Args>(args),i)...); }
return result;
}
however I'm unsure if this version could even compile as it may be too ambiguous to be able to detriment the value of N.
Not sure to understand what do you exactly want but...
It seems to me that can be useful a custom type traits to extract, from a list of types, the dimension of the Vec, iff (if and only if) in the list of types there is at least one Vec and there aren't Vec's of different lengths.
I suggest something as follows, heavily based on template specialization,
template <std::size_t, typename ...>
struct dimVec;
// ground case for no Vecs: unimplemented for SFINAE failure !
template <>
struct dimVec<0U>;
// ground case with one or more Vecs: size fixed
template <std::size_t N>
struct dimVec<N> : public std::integral_constant<std::size_t, N>
{ };
// first Vec: size detected
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<0U, Vec<T, N>, Ts...> : public dimVec<N, Ts...>
{ };
// another Vec of same size: continue
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<N, Vec<T, N>, Ts...> : public dimVec<N, Ts...>
{ };
// another Vec of different size: unimplemented for SFINAE failure !
template <std::size_t N1, std::size_t N2, typename T, typename ... Ts>
struct dimVec<N1, Vec<T, N2>, Ts...>;
// a not-Vec type: continue
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<N, T, Ts...> : public dimVec<N, Ts...>
{ };
with the help of a template static variable
template <typename ... Args>
static constexpr auto dimVecV { dimVec<0U, Args...>::value };
Now should be easy.
You can write an apply() function that receive a variadic list of args of types Args... and is SFINAE enabled iff dimVecV<Args...> is defined
template <typename F, typename ... Args, std::size_t N = dimVecV<Args...>>
auto apply (F && f, Args ... as)
{ return applyH1(std::make_index_sequence<N>{}, f, as...); }
Observe that the N variable is used to SFINAE enable/disable the function but is useful itself: it's used to pass a std::index_sequence from 0 to N-1 to the first helper function applyH1()
template <std::size_t ... Is, typename F, typename ... Args>
auto applyH1 (std::index_sequence<Is...> const &, F && f, Args ... as)
-> Vec<decltype(applyH2<0U>(f, as...)), sizeof...(Is)>
{ return { applyH2<Is>(f, as...)... }; }
that initialize the returned Vec with single values calculated from the second helper function applyH2()
template <std::size_t I, typename F, typename ... Args>
auto applyH2 (F && f, Args ... as)
{ return f(extrV<I>(as)...); }
that uses a set of template functions extrV()
template <std::size_t I, typename T, std::size_t N>
constexpr auto extrV (Vec<T, N> const & v)
{ return v[I]; }
template <std::size_t I, typename T>
constexpr auto extrV (T const & v)
{ return v; }
to extract the I-th element from a Vec or to pass-through a scalar value.
It's a little long but not particularly complicated.
The following is a full working example
#include <array>
#include <iostream>
#include <type_traits>
template <typename T, std::size_t N>
class Vec;
template <std::size_t, typename ...>
struct dimVec;
// ground case for no Vecs: unimplemented for SFINAE failure !
template <>
struct dimVec<0U>;
// ground case with one or more Vecs: size fixed
template <std::size_t N>
struct dimVec<N> : public std::integral_constant<std::size_t, N>
{ };
// first Vec: size detected
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<0U, Vec<T, N>, Ts...> : public dimVec<N, Ts...>
{ };
// another Vec of same size: continue
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<N, Vec<T, N>, Ts...> : public dimVec<N, Ts...>
{ };
// another Vec of different size: unimplemented for SFINAE failure !
template <std::size_t N1, std::size_t N2, typename T, typename ... Ts>
struct dimVec<N1, Vec<T, N2>, Ts...>;
// a not-Vec type: continue
template <std::size_t N, typename T, typename ... Ts>
struct dimVec<N, T, Ts...> : public dimVec<N, Ts...>
{ };
template <typename ... Args>
static constexpr auto dimVecV { dimVec<0U, Args...>::value };
template <std::size_t I, typename T, std::size_t N>
constexpr auto extrV (Vec<T, N> const & v)
{ return v[I]; }
template <std::size_t I, typename T>
constexpr auto extrV (T const & v)
{ return v; }
template <typename T, std::size_t N>
class Vec
{
private:
std::array<T, N> d;
public:
template <typename ... Ts>
Vec (Ts ... ts) : d{{ ts... }}
{ }
T & operator[] (int i)
{ return d[i]; }
T const & operator[] (int i) const
{ return d[i]; }
};
template <std::size_t I, typename F, typename ... Args>
auto applyH2 (F && f, Args ... as)
{ return f(extrV<I>(as)...); }
template <std::size_t ... Is, typename F, typename ... Args>
auto applyH1 (std::index_sequence<Is...> const &, F && f, Args ... as)
-> Vec<decltype(applyH2<0U>(f, as...)), sizeof...(Is)>
{ return { applyH2<Is>(f, as...)... }; }
template <typename F, typename ... Args, std::size_t N = dimVecV<Args...>>
auto apply (F && f, Args ... as)
{ return applyH1(std::make_index_sequence<N>{}, f, as...); }
long foo (int a, int b)
{ return a + b + 42; }
int main ()
{
Vec<int, 3U> v3;
Vec<int, 2U> v2;
auto r1 { apply(foo, v2, v2) };
auto r2 { apply(foo, v3, v3) };
auto r3 { apply(foo, v3, 0) };
static_assert( std::is_same<decltype(r1), Vec<long, 2U>>{}, "!" );
static_assert( std::is_same<decltype(r2), Vec<long, 3U>>{}, "!" );
static_assert( std::is_same<decltype(r3), Vec<long, 3U>>{}, "!" );
// apply(foo, v2, v3); // compilation error
// apply(foo, 1, 2); // compilation error
}
You can achieve what you want through a combination of partial template specialization and parameter pack extension.
#include <array>
template<typename T, std::size_t N>
using Vec = std::array<T, N>;
template<typename T>
struct extract {
static auto exec(T const& v, std::size_t) {return v;}
enum { size = 1 };
};
template<typename T, std::size_t N>
struct extract<Vec<T,N>> {
static auto exec(Vec<T,N> const& v, std::size_t i) {return v[i];}
enum {size = N};
};
template<typename T>
auto extract_v(T const& v, std::size_t i) {return extract<T>::exec(v, i);}
template<typename... args>
struct extract_size {
enum {size = 1};
};
template<typename first, typename... rest>
struct extract_size<first, rest...> {
enum {
rest_size_ = extract_size<rest...>::size,
self_size_ = extract<first>::size,
size = rest_size_ > self_size_ ? rest_size_ : self_size_
};
static_assert(self_size_ == 1 || rest_size_ == 1 || rest_size_ == self_size_, "");
};
template<typename F, typename... args_t>
auto apply(F const& cb, args_t&&... args) {
constexpr std::size_t size = extract_size<std::decay_t<args_t>...>::size;
using result_t = decltype(cb(extract_v(std::forward<args_t>(args),0)...));
Vec<result_t, size> result;
for(std::size_t i = 0 ; i < size ; ++i) {
result[i] = cb(extract_v(std::forward<args_t>(args),i)...);
}
return result;
}

C++ parameter pack with single type enforced in arguments

I want to be able to do the following:
#include <array>
struct blah { };
template<typename... Args>
constexpr auto foo(Args&&... args)
{
return std::array<blah, sizeof...(Args)>{{ args... }};
}
auto res = foo({}, {});
The following answers aren't satisfying: they just want to check that the parameter pack is of a single type, but I want to convert the values right to it in the arguments (else it does not work).
C++ parameter pack, constrained to have instances of a single type?
Parameter with non-deduced type after parameter pack
Specifying one type for all arguments passed to variadic function or variadic template function w/out using array, vector, structs, etc?
I also can't use initializer_list since I wouldn't be able to count the number of arguments to pass to the array type.
And I especially don't want to type foo(blah{}, blah{});.
What are my possibilities ?
A little bit expanded approach of Jarod42 for lazies (C++17):
#include <utility>
#include <array>
struct blah {};
template <class T, std::size_t I>
using typer = T;
template <class T, std::size_t N, class = std::make_index_sequence<N>>
struct bar_impl;
template <class T, std::size_t N, std::size_t... Is>
struct bar_impl<T, N, std::index_sequence<Is...>> {
static auto foo(typer<T, Is>... ts) {
return std::array<T, N>{{ts...}};
}
};
template <class T = blah, std::size_t N = 10, class = std::make_index_sequence<N>>
struct bar;
template <class T, std::size_t N, std::size_t... Is>
struct bar<T, N, std::index_sequence<Is...>>: bar_impl<T, Is>... {
using bar_impl<T, Is>::foo...;
};
int main() {
bar<>::foo({}, {});
}
[live demo]
Edit:
Some C++14 solution which (as noted by max66) is even simpler than I expected:
#include <utility>
#include <array>
struct blah {};
template <class T, std::size_t I>
using typer = T;
template <class T = blah, std::size_t N = 10, class = std::make_index_sequence<N>>
struct bar;
template <class T, std::size_t N, std::size_t... Is>
struct bar<T, N, std::index_sequence<Is...>>: bar<T, N - 1> {
using bar<T, N - 1>::foo;
static auto foo(typer<T, Is>... ts) {
return std::array<T, N>{{ts...}};
}
};
template <class T>
struct bar<T, 0, std::index_sequence<>> {
static auto foo() {
return std::array<T, 0>{{}};
}
};
int main() {
bar<>::foo({}, {});
}
[live demo]
One more edit:
This one (as suggested by Jarod42) provides exactly the same syntax for invocation as in OP's question:
#include <utility>
#include <array>
struct blah {};
template <class T, std::size_t I>
using typer = T;
template <class T = blah, std::size_t N = 10, class = std::make_index_sequence<N>>
struct bar;
template <class T, std::size_t N, std::size_t... Is>
struct bar<T, N, std::index_sequence<Is...>>: bar<T, N - 1> {
using bar<T, N - 1>::operator();
auto operator()(typer<T, Is>... ts) {
return std::array<T, N>{{ts...}};
}
};
template <class T>
struct bar<T, 0, std::index_sequence<>> {
auto operator()() {
return std::array<T, 0>{{}};
}
};
bar<> foo;
int main() {
foo({}, {});
}
[live demo]
Alright, if you can afford to change the syntax a little bit, this is the best I managed to find:
#include <array>
// to_array implementation taken from
// http://en.cppreference.com/w/cpp/experimental/to_array
namespace detail {
template <class T, std::size_t N, std::size_t... I>
constexpr std::array<std::remove_cv_t<T>, N>
to_array_impl(T (&a)[N], std::index_sequence<I...>)
{
return { {a[I]...} };
}
}
template <class T, std::size_t N>
constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N])
{
return detail::to_array_impl(a, std::make_index_sequence<N>{});
}
// End of to_array implementation
struct blah { };
template<std::size_t N>
constexpr auto foo(const blah(&arr)[N])
{
return to_array(arr);
}
int main()
{
auto res = foo({{}, {}});
return 0;
}
As you can see, foo({}, {}) became foo({{}, {}}).
Here is a working example: https://ideone.com/slbKi3
The issue with the way you want it (foo({}, {})) is that the compiler has no way to know what it is supposed to convert {} to.
I tried to find a way to let it know but it didn't listen at all.
If you accept, as proposed by Telokis, to add a bracket level calling foo()
auto res = foo( { {}, {} } );
you can use the C-style array trick proposed by Telokis and a simple cycle to initialize the returned value
template <std::size_t N>
constexpr std::array<blah, N> foo (const blah(&arr)[N])
{
std::array<blah, N> ret;
for ( auto i = 0U ; i < N ; ++i )
ret[i] = arr[i];
return ret;
}
Unfortunately the operator[] for std::array is constexpr only starting from C++17, so the preceding foo is effectively constexpr only starting from C++17.
So you can call
auto res = foo( { {}, {} } );
also in C++11 and C++14, but
constexpr auto res = foo( { {}, {} } );
only starting from C++17.
One (limited) ways to keep your syntax is to have several overloads:
constexpr auto foo(const blah& a1)
{
return std::array<blah, 1>{{ a1 }};
}
constexpr auto foo(const blah& a1, const blah& a2)
{
return std::array<blah, 2>{{ a1, a2 }};
}
// ...
// Up to N
constexpr auto foo(const blah& a1, const blah& a2, .., const blah& aN)
{
return std::array<blah, N>{{ a1, a2, .., aN }};
}
W.F. in his answer shows a way to generate it thanks to variadic at class scope.
In C++17 you can use a combination of static_assert and std::conjunction like this:
#include <array>
#include <type_traits>
struct blah {};
template <typename Arg, typename... Args>
constexpr auto foo_helper(Arg&& first, Args&&... rest) {
static_assert(std::conjunction_v<std::is_same<Arg, Args>...>);
return std::array<blah, 1 + sizeof...(Args)>{first, rest...};
}
template <typename... Args>
constexpr auto foo(Args&&... args) {
return foo_helper(std::forward<Args>(args)...);
}
auto res = foo(blah{}, blah{})

Append to std::array

Since I was not able to find such a function (incorrectly?), I'm trying to make a compile-time function (constexpr) function which takes a std::array<T,n> arr and a T t and returns a new std::array<T,n+1> with t added to the end of arr. I've started with something like this:
template <typename T, int n>
constexpr std::array<T,n+1> append(std::array<T,n> a, T t);
template <typename T>
constexpr std::array<T,1> append(std::array<T,0> a, T t)
{
return std::array<T,1>{t};
}
template <typename T>
constexpr std::array<T,2> append(std::array<T,1> a, T t)
{
return std::array<T,2>{a[0], t};
}
Here I get stuck. What I need is a way to expand a in the first n places of the initializer list, and then add t add the end. Is that possible? Or is there another way of doing this?
Of course, it is possible: std::index_sequence<I...> is your friend! You'd simply dispatch to a function which takes a suitable std::index_sequence<I...> as argument and expands the pack with all the values. For example:
template <typename T, std::size_t N, std::size_t... I>
constexpr std::array<T, N + 1>
append_aux(std::array<T, N> a, T t, std::index_sequence<I...>) {
return std::array<T, N + 1>{ a[I]..., t };
}
template <typename T, std::size_t N>
constexpr std::array<T, N + 1> append(std::array<T, N> a, T t) {
return append_aux(a, t, std::make_index_sequence<N>());
}
It was easy to extend Dietmar's answer to a util that lets you constexpr- catenate two arrays:
// constexpr util to catenate two array's.
//
// Usage:
//
// constexpr std::array<int, 2> a1 = { 1, 2 };
// constexpr std::array<int, 2> a2 = { 3, 4 };
//
// constexpr auto a3 = catenate_array(a1, a2);
template <typename T, std::size_t N, std::size_t M, std::size_t... I, std::size_t... J>
constexpr std::array<T, N + M>
catenate_array_aux(std::array<T, N> a1, std::array<T, M> a2, std::index_sequence<I...>, std::index_sequence<J...>) {
return std::array<T, N + M>{ a1[I]..., a2[J]... };
}
template <typename T, std::size_t N, std::size_t M>
constexpr std::array<T, N + M> catenate_array(std::array<T, N> a1, std::array<T, M> a2) {
return catenate_array_aux(a1, a2, std::make_index_sequence<N>(), std::make_index_sequence<M>());
}

Passing many functions and storing all their results in a tuple

Consider this output:
int foo (int, char) {std::cout << "foo\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
bool baz (char, short, float) {std::cout << "baz\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
multiFunction<2,3,3> (tuple, foo, bar, baz); // foo bar baz
}
So multiFunction<2,3,3> takes the first 2 elements of tuple and passes them to foo, the next 3 elements of tuple and passes them to bar, etc... I got this working (except when the functions have overloads, which is a separate problem). But the return values of each function called are lost. I want those return values stored somewhere, something like
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo, bar, baz);
But I don't know how to implement that. For those who want to help get this done, here is my (updated) working code so far, which stores the outputs into a stringstream only. Not easy to get all the values back, especially if the objects saved in the stream are complex classes.
#include <iostream>
#include <tuple>
#include <utility>
#include <sstream>
template <std::size_t N, typename Tuple>
struct TupleHead {
static auto get (const Tuple& tuple) { // The subtuple from the first N components of tuple.
return std::tuple_cat (TupleHead<N-1, Tuple>::get(tuple), std::make_tuple(std::get<N-1>(tuple)));
}
};
template <typename Tuple>
struct TupleHead<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <std::size_t N, typename Tuple>
struct TupleTail {
static auto get (const Tuple& tuple) { // The subtuple from the last N components of tuple.
return std::tuple_cat (std::make_tuple(std::get<std::tuple_size<Tuple>::value - N>(tuple)), TupleTail<N-1, Tuple>::get(tuple));
}
};
template <typename Tuple>
struct TupleTail<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&) {
return f(std::get<Is>(tuple)...);
}
template <typename Tuple, typename F>
auto functionOnTuple (const Tuple& tuple, F f) {
return functionOnTupleHelper (tuple, f, std::make_index_sequence<std::tuple_size<Tuple>::value>{});
}
template <typename Tuple, typename... Functions> struct MultiFunction;
template <typename Tuple, typename F, typename... Fs>
struct MultiFunction<Tuple, F, Fs...> {
template <std::size_t I, std::size_t... Is>
static inline auto execute (const Tuple& tuple, std::ostringstream& oss, const std::index_sequence<I, Is...>&, F f, Fs... fs) {
const auto headTuple = TupleHead<I, Tuple>::get(tuple);
const auto tailTuple = TupleTail<std::tuple_size<Tuple>::value - I, Tuple>::get(tuple);
// functionOnTuple (headTuple, f); // Always works, though return type is lost.
oss << std::boolalpha << functionOnTuple (headTuple, f) << '\n'; // What about return types that are void???
return MultiFunction<std::remove_const_t<decltype(tailTuple)>, Fs...>::execute (tailTuple, oss, std::index_sequence<Is...>{}, fs...);
}
};
template <>
struct MultiFunction<std::tuple<>> {
static auto execute (const std::tuple<>&, std::ostringstream& oss, std::index_sequence<>) { // End of recursion.
std::cout << std::boolalpha << oss.str();
// Convert 'oss' into the desired tuple? But how?
return std::tuple<int, double, bool>(); // This line is just to make the test compile.
}
};
template <std::size_t... Is, typename Tuple, typename... Fs>
auto multiFunction (const Tuple& tuple, Fs... fs) {
std::ostringstream oss;
return MultiFunction<Tuple, Fs...>::execute (tuple, oss, std::index_sequence<Is...>{}, fs...);
}
// Testing
template <typename T> int foo (int, char) {std::cout << "foo<T>\n"; return 0;}
double bar (bool, double, long ) {std::cout << "bar\n"; return 3.5;}
template <int...> bool baz (char, short, float) {std::cout << "baz<int...>\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
std::tuple<int, double, bool> result = multiFunction<2,3,3> (tuple, foo<bool>, bar, baz<2,5,1>); // foo<T> bar baz<int...>
}
Here's an approach where the number of arguments is deduced greedily:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto call(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is,
typename ArgT, typename F, typename... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs) {
return tuple_cat(make_tuple(f(get<offset+I>(forward<ArgT>(argt))...)),
call<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto call(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return call<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::call<0>(std::index_sequence<>{},
std::forward<ArgT>(argt), std::forward<Fs>(fs)...);}
Demo. However, the above has quadratic time complexity in the number of return values, because tuple_cat is called recursively. Instead, we can use a slightly modified version of call to obtain the indices for each call - the actual tuple is then obtained directly:
#include <tuple>
namespace detail {
using namespace std;
template <size_t, size_t... Is, typename Arg>
constexpr auto indices(index_sequence<Is...>, Arg&&) {return tuple<>{};}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&&, Fs&&...);
template <size_t offset, size_t... Is, typename ArgT, typename F, class... Fs,
typename=decltype(declval<F>()(get<offset+Is>(declval<ArgT>())...))>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, F&& f, Fs&&... fs){
return tuple_cat(make_tuple(index_sequence<offset+Is...>{}),
indices<offset+sizeof...(Is)>(index_sequence<>{},
forward<ArgT>(argt),
forward<Fs>(fs)...));}
template <size_t offset, size_t... Is, typename ArgT, typename... Fs>
constexpr auto indices(index_sequence<Is...>, ArgT&& argt, Fs&&... fs) {
return indices<offset>(index_sequence<Is..., sizeof...(Is)>{},
forward<ArgT>(argt), forward<Fs>(fs)...);}
template <typename Arg, typename F, size_t... Is>
constexpr auto apply(Arg&& a, F&& f, index_sequence<Is...>) {
return f(get<Is>(a)...);}
template <typename ITuple, typename Args, size_t... Is, typename... Fs>
constexpr auto apply_all(Args&& args, index_sequence<Is...>, Fs&&... fs) {
return make_tuple(apply(forward<Args>(args), forward<Fs>(fs),
tuple_element_t<Is, ITuple>{})...);
}
}
template <typename ArgT, typename... Fs>
constexpr auto multifunction(ArgT&& argt, Fs&&... fs) {
return detail::apply_all<decltype(detail::indices<0>(std::index_sequence<>{},
std::forward<ArgT>(argt),
std::forward<Fs>(fs)...))>
(std::forward<ArgT>(argt), std::index_sequence_for<Fs...>{},
std::forward<Fs>(fs)...);}
Demo 2.
Building from the ground up and ignoring perfect forwarding so that I have to type less. We need a couple helpers. First, we need a partial version of apply that takes which indices from the tuple we want to apply to the function:
<class Tuple, class F, size_t... Is>
auto partial_apply(Tuple tuple, F f, std::index_sequence<Is...>) {
return f(get<Is>(tuple)...);
}
Then, we need to call that function for each subset of the tuple. Let's say we have all of our functions and indexes wrapped in a tuple already:
template <class Tuple, class FsTuple, class IsTuple, size_t... Is>
auto multi_apply(Tuple tuple, FsTuple fs, IsTuple indexes, std::index_sequence<Is...>) {
return std::make_tuple(
partial_apply(tuple,
std::get<Is>(fs),
std::get<Is>(indexes)
)...
);
}
So in this case, we'd want to end up calling multi_apply(tuple, <foo,bar,baz>, <<0,1>,<2,3,4>,<5,6,7>>, <0, 1, 2>).
All we need know is to build the indexes part. We're starting with <2,3,3>. We need to get the partial sums (<0,2,5>) and add that to the index sequences <<0,1>,<0,1,2>,<0,1,2>>. So we can write a partial sum function:
template <size_t I>
using size_t_ = std::integral_constant<size_t, I>;
template <class R, size_t N>
R partial_sum_(std::index_sequence<>, R, size_t_<N> ) {
return R{};
}
template <size_t I, size_t... Is, size_t... Js, size_t S>
auto partial_sum_(std::index_sequence<I, Is...>,
std::index_sequence<Js...>, size_t_<S> )
{
return partial_sum_(std::index_sequence<Is...>{},
std::index_sequence<Js..., S>{}, size_t_<S+I>{} );
}
template <size_t... Is>
auto partial_sum_(std::index_sequence<Is...> is)
{
return partial_sum_(is, std::index_sequence<>{}, size_t_<0>{} );
};
Which we can use to generate all of our indexes as a tuple:
template <size_t... Is, size_t N>
auto increment(std::index_sequence<Is...>, size_t_<N> )
{
return std::index_sequence<Is+N...>{};
}
template <class... Seqs, size_t... Ns>
auto make_all_indexes(std::index_sequence<Ns...>, Seqs... seqs)
{
return std::make_tuple(increment(seqs, size_t_<Ns>{})...);
}
Like so:
template <size_t... Is, class Tuple, class... Fs>
auto multiFunction(Tuple tuple, Fs... fs)
{
static_assert(sizeof...(Is) == sizeof...(Fs));
return multi_apply(tuple,
std::make_tuple(fs...),
make_all_indexes(
partial_sum_(std::index_sequence<Is...>{}),
std::make_index_sequence<Is>{}...
),
std::make_index_sequence<sizeof...(Is)>{}
);
}
If you want to handle void returns, then just make partial_apply return a tuple of a single element (or an empty tuple) and change the make_tuple() usage in multi_apply to tuple_cat().
Here's yet another impl:
template<std::size_t N>
constexpr Array<std::size_t, N> scan(std::size_t const (&a)[N])
{
Array<std::size_t, N> b{};
for (int i = 0; i != N - 1; ++i)
b[i + 1] = a[i] + b[i];
return b;
}
template<std::size_t O, std::size_t... N, class F, class Tuple>
inline decltype(auto) eval_from(std::index_sequence<N...>, F f, Tuple&& t)
{
return f(std::get<N + O>(std::forward<Tuple>(t))...);
}
template<std::size_t... O, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl1(std::index_sequence<O...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
return pack(eval_from<O>(std::make_index_sequence<N>(), f, std::forward<Tuple>(t))...);
}
template<std::size_t... I, std::size_t... N, class Tuple, class... F>
inline auto multi_function_impl0(std::index_sequence<I...>, std::index_sequence<N...>, Tuple&& t, F... f)
{
constexpr std::size_t ns[] = {N...};
constexpr auto offsets = scan(ns);
return multi_function_impl1(std::index_sequence<offsets[I]...>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
template<std::size_t... N, class Tuple, class... F>
auto multi_function(Tuple&& t, F... f)
{
return multi_function_impl0(std::make_index_sequence<sizeof...(N)>(), std::index_sequence<N...>(), std::forward<Tuple>(t), f...);
}
where pack and Array are similar to std::make_tuple and std::array respectively, but to overcome some problems:
std::make_tuple decays it args, so references are lost
std::array cannot have its elems written in constexpr in c++14
DEMO
Here's my solution after following T.C.'s advice, adding to my previous (albeit inefficient) solution:
#include <iostream>
#include <tuple>
#include <utility>
struct NoReturnValue {
friend std::ostream& operator<< (std::ostream& os, const NoReturnValue&) {
return os << "[no value returned]";
}
};
template <std::size_t N, typename Tuple>
struct TupleHead {
static auto get (const Tuple& tuple) { // The subtuple from the first N components of tuple.
return std::tuple_cat (TupleHead<N-1, Tuple>::get(tuple), std::make_tuple(std::get<N-1>(tuple)));
}
};
template <typename Tuple>
struct TupleHead<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <std::size_t N, typename Tuple>
struct TupleTail {
static auto get (const Tuple& tuple) { // The subtuple from the last N components of tuple.
return std::tuple_cat (std::make_tuple(std::get<std::tuple_size<Tuple>::value - N>(tuple)), TupleTail<N-1, Tuple>::get(tuple));
}
};
template <typename Tuple>
struct TupleTail<0, Tuple> {
static auto get (const Tuple&) { return std::tuple<>{}; }
};
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&,
std::enable_if_t< !std::is_void<std::result_of_t<F(std::tuple_element_t<Is, Tuple>...)>>::value >* = nullptr) { // This overload is called only if f's return type is not void.
return std::make_tuple(f(std::get<Is>(tuple)...)); // Thanks to T.C.'s advice on returning a single tuple and then calling std::tuple_cat on all the single tuples.
}
template <typename Tuple, typename F, std::size_t... Is>
auto functionOnTupleHelper (const Tuple& tuple, F f, const std::index_sequence<Is...>&,
std::enable_if_t< std::is_void<std::result_of_t<F(std::tuple_element_t<Is, Tuple>...)>>::value >* = nullptr) { // This overload is called only if f's return type is void.
f(std::get<Is>(tuple)...);
return std::tuple<NoReturnValue>(); // Thanks to T.C.'s advice on returning std::tuple<NoReturnValue>() if the return type of 'f' is void.
}
template <typename Tuple, typename F>
auto functionOnTuple (const Tuple& tuple, F f) {
return functionOnTupleHelper (tuple, f, std::make_index_sequence<std::tuple_size<Tuple>::value>{});
}
template <typename Tuple, typename... Functions> struct MultiFunction;
template <typename Tuple, typename F, typename... Fs>
struct MultiFunction<Tuple, F, Fs...> {
template <std::size_t I, std::size_t... Is>
static inline auto execute (const Tuple& tuple, const std::index_sequence<I, Is...>&, F f, Fs... fs) {
const auto headTuple = TupleHead<I, Tuple>::get(tuple);
const auto tailTuple = TupleTail<std::tuple_size<Tuple>::value - I, Tuple>::get(tuple);
const auto r = functionOnTuple(headTuple, f); // Which overload of 'functionOnTupleHelper' is called dedends on whether f's return type is void or not.
return std::tuple_cat (r, MultiFunction<std::remove_const_t<decltype(tailTuple)>, Fs...>::execute (tailTuple, std::index_sequence<Is...>{}, fs...)); // T.C.'s idea of tuple_cat with all the single return tuples.
}
};
template <>
struct MultiFunction<std::tuple<>> {
static auto execute (const std::tuple<>&, std::index_sequence<>) { return std::tuple<>(); }
};
template <std::size_t... Is, typename Tuple, typename... Fs>
auto multiFunction (const Tuple& tuple, Fs... fs) {
return MultiFunction<Tuple, Fs...>::execute (tuple, std::index_sequence<Is...>{}, fs...);
}
// Testing
template <typename T> int foo (int, char) {std::cout << "foo<T>\n"; return 0;}
double bar (bool, double, long) {std::cout << "bar\n"; return 3.5;}
double bar (bool, int) {return 1.4;}
void voidFunction() {std::cout << "voidFunction\n";}
template <int...> bool baz (char, short, float) {std::cout << "baz<int...>\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
const auto firstBar = [](bool b, double d, long l) {return bar(b, d, l);};
const auto t = multiFunction<2,3,0,3> (tuple, foo<bool>, firstBar, voidFunction, baz<2,5,1>); // Note that since 'bar' has an overload, we have to define 'firstBar' to indicate which 'bar' function we want to use.
std::cout << std::boolalpha << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t) << '\n';
// 0 3.5 [no value returned] true
}
This solution should have linear time complexity. It uses std::tie instead of std::make_tuple, so neither the functions nor the arguments are copied unnecessarily. I think it should be fairly easy to follow compared to some other answers here.
First, we need a utility to invoke a function using a std::tuple of arguments.
template <typename F, typename Args, std::size_t... Is>
auto invoke_impl(F const& f, Args const& args, std::index_sequence<Is...>)
{
return f(std::get<Is>(args)...);
}
template <typename F, typename Args>
auto invoke(F const& f, Args const& args)
{
return invoke_impl(f, args, std::make_index_sequence<std::tuple_size<Args>::value>());
}
Secondly, we need a utility to std::tie a sub-range of tuple elements.
template <std::size_t Offset, typename Tuple, std::size_t... Is>
auto sub_tie_impl(Tuple const& tuple, std::index_sequence<Is...>)
{
return std::tie(std::get<Offset + Is>(tuple)...);
}
template <std::size_t Offset, std::size_t Count, typename Tuple>
auto sub_tie(Tuple const& tuple)
{
return sub_tie_impl<Offset>(tuple, std::make_index_sequence<Count>());
}
Now we can create our utility to consume a std::tuple of arguments using a sequence of functions.
First we std::tie the functions into a tuple, then we split the argument list into a parameter pack of sub-argument lists, and finally we invoke a function for each sub-argument list, packing the results into a tuple which we then return.
template <typename Fs, std::size_t... Is, typename... SubArgs>
auto consume_impl(Fs const& fs, std::index_sequence<Is...>, SubArgs const&... sub_args)
{
return std::make_tuple(invoke(std::get<Is>(fs), sub_args)...);
}
template <std::size_t, typename Args, typename Fs, typename... SubArgs>
auto consume_impl(Args const&, Fs const& fs, SubArgs const&... sub_args)
{
return consume_impl(fs, std::make_index_sequence<sizeof...(SubArgs)>(), sub_args...);
}
template <std::size_t Offset, std::size_t Count, std::size_t... Counts,
typename Args, typename Fs, typename... SubArgs>
auto consume_impl(Args const& args, Fs const& fs, SubArgs const&... sub_args)
{
return consume_impl<Offset + Count, Counts...>(args, fs, sub_args...,
sub_tie<Offset, Count>(args));
}
template <std::size_t... Counts, typename Args, typename... Fs>
auto consume(Args const& args, Fs const&... fs)
{
return consume_impl<0, Counts...>(args, std::tie(fs...));
}
Here's another solution borrowing Barry's partial_apply idea but avoiding the use of his partial_sum function altogether. It is shorter as a result. I think this is linear in time complexity.
#include <iostream>
#include <tuple>
#include <utility>
template <std::size_t Offset, typename F, typename Tuple, std::size_t... Is>
auto partial_apply_impl (F f, const Tuple& tuple, const std::index_sequence<Is...>&) {
return f(std::get<Offset + Is>(tuple)...);
}
template <typename Off, typename F, typename Tuple> // Off must be of type OffsetIndexSequence<A,B> only.
auto partial_apply (F f, const Tuple& tuple) {
return partial_apply_impl<Off::value>(f, tuple, typename Off::sequence{});
}
template <std::size_t Offset, std::size_t Size>
struct OffsetIndexSequence : std::integral_constant<std::size_t, Offset> {
using sequence = std::make_index_sequence<Size>;
};
template <typename Output, std::size_t... Is> struct OffsetIndexSequenceBuilder;
template <template <typename...> class P, typename... Out, std::size_t Offset, std::size_t First, std::size_t... Rest>
struct OffsetIndexSequenceBuilder<P<Out...>, Offset, First, Rest...> :
OffsetIndexSequenceBuilder<P<Out..., OffsetIndexSequence<Offset, First>>, Offset + First, Rest...> {};
template <template <typename...> class P, typename... Out, std::size_t Offset>
struct OffsetIndexSequenceBuilder<P<Out...>, Offset> {
using type = P<Out...>;
};
template <std::size_t... Is>
using offset_index_sequences = typename OffsetIndexSequenceBuilder<std::tuple<>, 0, Is...>::type;
template <typename> struct MultiFunction;
template <template <typename...> class P, typename... Offs>
struct MultiFunction<P<Offs...>> {
template <typename ArgsTuple, typename... Fs>
static auto execute (const ArgsTuple& argsTuple, Fs... fs) {
using ResultTuple = std::tuple<decltype(partial_apply<Offs>(fs, argsTuple))...>;
return ResultTuple{partial_apply<Offs>(fs, argsTuple)...};
}
};
template <std::size_t... Is, typename ArgsTuple, typename... Fs>
auto multiFunction (const ArgsTuple& argsTuple, Fs... fs) {
return MultiFunction<offset_index_sequences<Is...>>::execute(argsTuple, fs...);
}
// Testing
int foo (int, char) {std::cout << "foo\n"; return 0;}
double bar (bool, double, long) {std::cout << "bar\n"; return 3.5;}
bool baz (char, short, float) {std::cout << "baz\n"; return true;}
int main() {
const auto tuple = std::make_tuple(5, 'a', true, 3.5, 1000, 't', 2, 5.8);
const std::tuple<int, double, bool> t = multiFunction<2,3,3> (tuple, foo, bar, baz); // foo bar baz
std::cout << std::boolalpha << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << '\n'; // 0 3.5 true
}

Splitting argpack in half?

How can I split an argument pack in two equal parts?
For example, I would like to do something like this:
template<typename T> T sum(const T& t)
{ return t; }
template<typename T> T sum(const T& t1, const T& t2)
{ return t1 + t2; }
template<typename ...T> T sum(T&& ...t)
{ sum(first_half(t)...) + sum(second_half(t)...); }
I would suggest something along the lines of this, as the required nesting depth and amount of boilerplate code is lower than in the suggested solution. However, the actual parameter pack is never split, instead two ranges of indices are produced to index the input values which are forwarded as tuples to be then accessed via std::get. Aside from the nesting depth, it is far easier to specify how the splitting is performed (rounding up, down, or taking a power of two and the remainder).
int sum(int a) { return a; }
int sum(int a, int b) { return a + b; }
template<typename... Args> int sum(Args&&... args);
template<typename Tuple, size_t... index>
int sum_helper(pack_indices<index...>, Tuple&& args)
{
return sum(std::get<index>(args)...);
}
template <size_t begin, size_t end, typename... Args>
int sum_helper(Args&&... args)
{
typename make_pack_indices<end, begin>::type indices;
return sum_helper(indices, std::forward_as_tuple(std::forward<Args>(args)...));
}
template<typename... Args>
int sum(Args&&... args)
{
constexpr size_t N = sizeof...(Args);
return sum(
sum_helper<0, N/2>(std::forward<Args>(args)...),
sum_helper<N/2, N>(std::forward<Args>(args)...)
);
}
which requires
template <size_t...>
struct pack_indices {};
template <size_t Sp, typename IntPack, size_t Ep>
struct make_indices_imp;
template <size_t Sp, size_t Ep, size_t... Indices>
struct make_indices_imp<Sp, pack_indices<Indices...>, Ep>
{
typedef typename make_indices_imp<Sp+1, pack_indices<Indices..., Sp>, Ep>::type type;
};
template <size_t Ep, size_t... Indices>
struct make_indices_imp<Ep, pack_indices<Indices...>, Ep>
{
typedef pack_indices<Indices...> type;
};
template <size_t Ep, size_t Sp = 0>
struct make_pack_indices
{
static_assert(Sp <= Ep, "make_tuple_indices input error");
typedef typename make_indices_imp<Sp, pack_indices<>, Ep>::type type;
};
A possible solution is to convert the argument list into a tuple and then extract the needed arguments via std::get and std::index_sequence (it will appear only in C++14, but you can easily implement the same functionality in the meantime).
Untested example code follows:
template<class T1, class T2>
struct append_index_seq;
template<std::size_t N, std::size_t... NN>
struct append_index_seq<N, std::index_sequence<NN...>> {
using type = std::index_sequence<N, NN...>;
};
template<std::size_t M, std::size_t N1, std::size_t... N>
struct add_index_seq_impl {
using type = append_index_seq<N1+M, add_index_seq<N, M>::type>::type;
};
template<std::size_t M, std::size_t N1>
struct add_index_seq_impl {
using type = std::index_sequence<N1+M>::type;
};
template<std::size_t M, std::size_t... N>
struct add_index_seq;
template<std::size_t M, std::size_t... N>
struct add_index_seq<m, std::index_sequence<N...>> {
using type = add_index_seq_impl<M, N...>;
}
template<std::size_t N>
struct get_first_half {
static_assert(N % 2 == 0, "N must be even");
using indexes = std::make_index_sequence<N/2>;
};
template<std::size_t N>
struct get_second_half {
static_assert(N % 2 == 0, "N must be even");
using indexes_1st = std::make_index_sequence<N/2>;
using indexes = add_index_seq<N/2, indexes_1st>::type;
};
template<class F, class Tuple, std::size_t... I>
auto apply(F&& f, Tuple&& t, index_sequence<I...>)
{
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
template<class ...T> T sum(T&& ...t)
{
auto params = std::make_tuple(t);
T r1 = apply(sum, params, get_first_half<T...>::indexes);
T r2 = apply(sum, params, get_second_half<T...>::indexes);
return r1 + r2;
}