Clojure: combination of binding and map acting weird? - clojure

I'm learning Clojure at the moment, and I'm not getting the logic behind this code:
(def ^:dynamic *max-value* 250)
(defn valid-value? [v]
(<= v *max-value*))
(binding [*max-value* 500]
(prn (map valid-value? [299]))
(map valid-value? [299]))
It prints (true), but returns (false).
I realized the answer as I finished typing. I guess I'll post the question anyway,
maybe it will be useful for someone else.

map generates a lazy sequence, which evaluation isn't forced until the repl prints the value, in this case.
At that point, *max-value* is no longer bound to 500.
If you use mapv instead, [true] will be returned!

Related

How can you destructure in the REPL?

Suppose I've got a function (remove-bad-nodes g) that returns a sequence like this:
[updated-g bad-nodes]
where updated-g is a graph with its bad nodes removed, and bad-nodes is a collection containing the removed nodes.
As an argument to a function or inside a let, I could destructure it like this:
(let [[g bads] (remove-bad-nodes g)]
...)
but that only defines local variables. How could I do that in the REPL, so that in future commands I can refer to the updated graph as g and the removed nodes as bads? The first thing that comes to mind is this:
(def [g bads] (remove-bad-nodes g)
but that doesn't work, because def needs its first argument to be a Symbol.
Note that I'm not asking why def doesn't have syntax like let; there's already a question about that. I'm wondering what is a convenient, practical way to work in the REPL with functions that return "multiple values". If there's some reason why in normal Clojure practice there's no need to destructure in the REPL, because you do something else instead, explaining that might make a useful answer. I've been running into this a lot lately, which is why I'm asking. Usually, but not always, these functions return an updated version of something along with some other information. In side-effecting code, the function would modify the object and return only one value (the removed nodes, in the example), but obviously that's not the Clojurely way to do it.
I think the way to work with such functions in the repl is just to not def your intermediate results unless they are particularly interesting; for interesting-enough intermediate results it's not a big hassle to either def them to a single name, or to write multiple defs inside a destructuring form.
For example, instead of
(def [x y] (foo))
(def [a b] (bar x y))
you could write
(let [[x y] (foo),
[x' y'] (bar x y)])
(def a x') ; or maybe leave this out if `a` isn't that interesting
(def b y'))
A nice side effect of this is that the code you write while playing around in the repl will look much more similar to the code you will one day add to your source file, where you will surely not be defing things over and over, but rather destructuring them, passing them to functions, and so on. It will be easier to adapt the information you learned at the repl into a real program.
There's nothing unique about destructuring w/r/t the REPL. The answer to your question is essentially the same as this question. I think your options are:
let:
(let [[light burnt just-right] (classify-toasts (make-lots-of-toast))]
(prn light burnt just-right))
def the individual values:
(def result (classify-toasts (make-lots-of-toast)))
(def light (nth result 0))
(def burnt (nth result 1))
(def just-right (nth result 2))
Or write a macro to do that def work for you.
You could also consider a different representation if your function is always returning a 3-tuple/vector e.g. you could alternatively return a map from classify-toasts:
{:light 1, :burnt 2, :just-right 3}
And then when you need one of those values, destructure the map using the keywords wherever you need:
(:light the-map) => 1
Observe:
user=> (def results [1 2 3])
#'user/results
user=> (let [[light burnt just-right] results] (def light light) (def burnt burnt) (def just-right just-right))
#'user/just-right
user=> light
1
user=> burnt
2
user=> just-right
3

how to spec a lazy-seq generating function?

I wish to use spec in my pre and post conditions of a generator function. A simplified example of what I wish to do is described below:
(defn positive-numbers
([]
{:post [(s/valid? (s/+ int?) %)]}
(positive-numbers 1))
([n]
{:post [(s/valid? (s/+ int?) %)]}
(lazy-seq (cons n (positive-numbers (inc n))))))
(->> (positive-numbers) (take 5))
However, defining the generator function like that seems to cause stack-overflow, the cause being that spec will eagerly try to evaluate the whole thing, -or something like that....
Is there another way of using spec to describe the :post result of a generator function like the one above (without causing stack-overflow)?
The theoretically correct answer is that in general you cannot check whether a lazy sequence matches a spec without realizing all of it.
In the case of your specific example of (s/+ int?), given a lazy sequence, how would one establish merely by observing the sequence whether all its elements are integers? However many elements you examine, the next one could always be a keyword.
This is the sort of thing that a type system like, say, core.typed may be able to prove, but a runtime-predicate-based assertion won't be able to check.
Now, in addition to s/+ and s/*, spec (as of Clojure 1.9.0-alpha14) also has a a combinator called s/every, whose docstring says this:
Note that 'every' does not do exhaustive checking, rather it samples *coll-check-limit* elements.
So we have e.g.
(s/valid? (s/* int?) (concat (range 1000) [:foo]))
;= false
but
(s/valid? (s/every int?) (concat (range 1000) [:foo]))
;= true
(with the default *coll-check-limit* value of 101).
This actually isn't an immediate fix to your example – plugging in s/every in place of s/+ won't work, because each recursive call will want to validate its own return value, which will involve realizing more of the sequence, which will involve more recursive calls etc. But you could factor out the sequence-building logic to a helper function with no postconditions and then have positive-numbers declare the postcondition and call that helper function:
(defn positive-numbers* [n]
(lazy-seq (cons n (positive-numbers* (inc n)))))
(defn positive-numbers [n]
{:post [(s/valid? (s/every int? :min-count 1) %)]}
(positive-numbers* n))
Note the caveats:
this will still realize a good chunk of your sequence, which may wreak havoc with your application's performance profile;
the only watertight guarantee here is that the prefix actually examined is as desired, if the seq has a weird item at position 123456, that will go unnoticed.
Because of (1), this is something that makes more sense as a test-only assertion. (2) may be acceptable – you'll still catch some silly typos and the documentation value of the spec is there anyway; if it isn't and you do want an absolutely watertight guarantee that your return type is as desired, then again, core.typed (perhaps used locally just for a handful of namespaces) may be the better bet.

Call a side effecting function only when atom value changes

What is the simplest way to trigger a side-effecting function to be called only when an atom's value changes?
If I were using a ref, I think I could just do this:
(defn transform-item [x] ...)
(defn do-side-effect-on-change [] nil)
(def my-ref (ref ...))
(when (dosync (let [old-value #my-ref
_ (alter! my-ref transform-item)
new-value #my-ref]
(not= old-value new-value)))
(do-side-effect-on-change))
But this seems seems a bit roundabout, since I'm using a ref even though I am not trying to coordinate changes across multiple refs. Essentially I am using it just to conveniently access the old and new value within a successful transaction.
I feel like I should be able to use an atom instead. Is there a solution simpler than this?
(def my-atom (atom ...))
(let [watch-key ::side-effect-watch
watch-fn (fn [_ _ old-value new-value]
(when (not= old-value new-value)
(do-side-effect-on-change)))]
(add-watch my-atom watch-key watch-fn)
(swap! my-atom transform-item)
(remove-watch watch-key))
This also seems roundabout, because I am adding and removing the watch around every call to swap!. But I need this, because I don't want a watch hanging around that causes the side-effecting function to be triggered when other code modifies the atom.
It is important that the side-effecting function be called exactly once per mutation to the atom, and only when the transform function transform-item actually returns a new value. Sometimes it will return the old value, yielding new change.
(when (not= #a (swap! a transform))
(do-side-effect))
But you should be very clear about what concurrency semantics you need. For example another thread may modify the atom between reading it and swapping it:
a = 1
Thread 1 reads a as 1
Thread 2 modifies a to 2
Thread 1 swaps a from 2 to 2
Thread 1 determines 1 != 2 and calls do-side-effect
It is not clear to me from the question whether this is desirable or not desirable. If you do not want this behavior, then an atom just will not do the job unless you introduce concurrency control with a lock.
Seeing as you started with a ref and asked about an atom, I think you have probably given some thought to concurrency already. It seems like from your description the ref approach is better:
(when (dosync (not= #r (alter r transform))
(do-side-effect))
Is there a reason you don't like your ref solution?
If the answer is "because I don't have concurrency" Then I would encourage you to use a ref anyway. There isn't really a downside to it, and it makes your semantics explicit. IMO programs tend to grow and to a point where concurrency exists, and Clojure is really great at being explicit about what should happen when it exists. (For example oh I'm just calculating stuff, oh I'm just exposing this stuff as a web service now, oh now I'm concurrent).
In any case, bear in mind that functions like alter and swap! return the value, so you can make use of this for concise expressions.
I'm running into the same situation and just come up 2 solutions.
state field :changed?
Keeping a meanless :changed mark in atom to track swap function. And take the return value of swap! to see if things changed. For example:
(defn data (atom {:value 0 :changed? false}))
(let [{changed? :changed?} (swap! data (fn [data] (if (change?)
{:value 1 :changed? true}
{:value 0 :change? false})))]
(when changed? (do-your-task)))
exception based
You can throw an Exception in swap function, and catch it outside:
(try
(swap! data (fn [d] (if (changed?) d2 (ex-info "unchanged" {})))
(do-your-task)
(catch Exception _
))

Idiomatic no-op/"pass"

What's the (most) idiomatic Clojure representation of no-op? I.e.,
(def r (ref {}))
...
(let [der #r]
(match [(:a der) (:b der)]
[nil nil] (do (fill-in-a) (fill-in-b))
[_ nil] (fill-in-b)
[nil _] (fill-in-a)
[_ _] ????))
Python has pass. What should I be using in Clojure?
ETA: I ask mostly because I've run into places (cond, e.g.) where not supplying anything causes an error. I realize that "most" of the time, an equivalent of pass isn't needed, but when it is, I'd like to know what's the most Clojuric.
I see the keyword :default used in cases like this fairly commonly.
It has the nice property of being recognizable in the output and or logs. This way when you see a log line like: "process completed :default" it's obvious that nothing actually ran. This takes advantage of the fact that keywords are truthy in Clojure so the default will be counted as a success.
There are no "statements" in Clojure, but there are an infinite number of ways to "do nothing". An empty do block (do), literally indicates that one is "doing nothing" and evaluates to nil. Also, I agree with the comment that the question itself indicates that you are not using Clojure in an idiomatic way, regardless of this specific stylistic question.
The most analogous thing that I can think of in Clojure to a "statement that does nothing" from imperative programming would be a function that does nothing. There are a couple of built-ins that can help you here: identity is a single-arg function that simply returns its argument, and constantly is a higher-order function that accepts a value, and returns a function that will accept any number of arguments and return that value. Both are useful as placeholders in situations where you need to pass a function but don't want that function to actually do much of anything. A simple example:
(defn twizzle [x]
(let [f (cond (even? x) (partial * 4)
(= 0 (rem x 3)) (partial + 2)
:else identity)]
(f (inc x))))
Rewriting this function to "do nothing" in the default case, while possible, would require an awkward rewrite without the use of identity.

Clojure confusion - behavior of map, doseq in a multiprocess environment

In trying to replicate some websockets examples I've run into some behavior I don't understand and can't seem to find documentation for. Simplified, here's an example I'm running in lein that's supposed to run a function for every element in a shared map once per second:
(def clients (atom {"a" "b" "c" "d" }))
(def ticker-agent (agent nil))
(defn execute [a]
(println "execute")
(let [ keys (keys #clients) ]
(println "keys= " keys )
(doseq [ x keys ] (println x)))
;(map (fn [k] (println k)) keys)) ;; replace doseq with this?
(Thread/sleep 1000)
(send *agent* execute))
(defn -main [& args]
(send ticker-agent execute)
)
If I run this with map I get
execute
keys= (a c)
execute
keys= (a c)
...
First confusing issue: I understand that I'm likely using map incorrectly because there's no return value, but does that mean the inner println is optimized away? Especially given that if I run this in a repl:
(map #(println %) '(1 2 3))
it works fine?
Second question - if I run this with doseq instead of map I can run into conditions where the execution agent stops (which I'd append here, but am having difficulty isolating/recreating). Clearly there's something I"m missing possibly relating to locking on the maps keyset? I was able to do this even moving the shared map out of an atom. Is there default syncrhonization on the clojure map?
map is lazy. This means that it does not calculate any result until the result is accessed from the data structure it reteruns. This means that it will not run anything if its result is not used.
When you use map from the repl the print stage of the repl accesses the data, which causes any side effects in your mapped function to be invoked. Inside a function, if the return value is not investigated, any side effects in the mapping function will not occur.
You can use doall to force full evaluation of a lazy sequence. You can use dorun if you don't need the result value but want to ensure all side effects are invoked. Also you can use mapv which is not lazy (because vectors are never lazy), and gives you an associative data structure, which is often useful (better random access performance, optimized for appending rather than prepending).
Edit: Regarding the second part of your question (moving this here from a comment).
No, there is nothing about doseq that would hang your execution, try checking the agent-error status of your agent to see if there is some exception, because agents stop executing and stop accepting new tasks by default if they hit an error condition. You can also use set-error-model and set-error-handler! to customize the agent's error handling behavior.