idiomatic way to replace (null x) function from common lisp in clojure - clojure

In Common Lisp you use the (null x) function to check for empty lists and nil values.
Most logically this maps to
(or (nil? x) (= '() x))
In clojure. Can someone suggest a more idiomatic way to do it in Clojure?

To get the same result for an empty list in Clojure as you do in Common Lisp, use the empty? function. This function is in the core library: no imports are necessary.
It is also a predicate, and suffixed with a ?, making it a little clearer what exactly you're doing in the code.
=> (empty? '())
true
=> (empty? '(1 2))
false
=> (empty? nil)
true
As j-g faustus already noted, seq can be used for a similar effect.

seq also serves as test for end,
already idiomatic
(when (seq coll)
...)
From clojure.org lazy
It works because (seq nil) and (seq ()) both return nil.
And since nil means false, you don't need an explicit nil test.

Related

Clojure: How to determine if a nested list contains non-numeric items?

I need to write a Clojure function which takes an unevaluated arbitrarily deep nesting of lists as input, and then determines if any item in the list (not in function position) is non-numeric. This is my first time writing anything in Clojure so I am a bit confused. Here is my first attempt at making the function:
(defn list-eval
[x]
(for [lst x]
(for [item lst]
(if(integer? item)
(println "")
(println "This list contains a non-numeric value")))))
I tried to use a nested for-loop to iterate through each item in every nested list. Trying to test the function like so:
=> (list-eval (1(2 3("a" 5(3)))))
results in this exception:
ClassCastException java.lang.Long cannot be cast to clojure.lang.IFn listeval.core/eval7976 (form-init4504441070457356195.clj:1)
Does the problem here lie in the code, or in how I call the function and pass an argument? In either case, how can I make this work as intended?
This happens because (1 ..) is treated as calling a function, and 1 is a Long, and not a function. First you should change the nested list to '(1(2 3("a" 5(3)))). Next you can change your function to run recursively:
(defn list-eval
[x]
(if (list? x)
(for [lst x] (list-eval lst))
(if (integer? x)
(println "")
(println "This list contains a non-numeric value"))))
=> (list-eval '(1(2 3("a" 5(3)))))
There is a cool function called tree-seq that does all the hard work for you in traversing the structure. Use it then remove any collections, remove all numbers, and check if there is anything left.
(defn any-non-numbers?
[x]
(->> x
(tree-seq coll? #(if (map? %) (vals %) %))
(remove (some-fn coll? number?))
not-empty
boolean))
Examples:
user=> (any-non-numbers? 1)
false
user=> (any-non-numbers? [1 2])
false
user=> (any-non-numbers? [1 2 "sd"])
true
user=> (any-non-numbers? [1 2 "sd" {:x 1}])
true
user=> (any-non-numbers? [1 2 {:x 1}])
false
user=> (any-non-numbers? [1 2 {:x 1 :y "hello"}])
true
If you want to consider map keys as well, just change (vals %) to (interleave (keys %) (vals %)).
quoting
As others have mentioned, you need to quote a list to keep it from being evaluated as
code. That's the cause of the exception you're seeing.
for and nesting
for will only descend to the nesting depth you tell it to. It is not a for loop,
as you might expect, but a sequence comprehension, like the the python list comprehension.
(for [x xs, y ys] y) will presume that xs is a list of lists and flatten it.
(for [x xs, y ys, z zs] z) Is the same but with an extra level of nesting.
To walk down to any depth, you'd usually use recursion.
(There are ways to do this iteratively, but they're more difficult to wrap your head around.)
side effects
You're doing side effects (printing) inside a lazy sequence. This will work at the repl,
but if you're not using the result anywhere, it won't run and cause great confusion.
It's something every new clojurian bumps into at some point.
(doseq is like for, but for side effects.)
The clojure way is to separate functions that work with values from functions that
"do stuff", like printing to the console of launching missiles, and to keep the
side effecting functions as simple as possible.
putting it all together
Let's make a clear problem statement: Is there a non number anywhere inside an
arbitrarily nested list? If there is, print a message saying that to the console.
In a lot of cases, when you'd use a for loop in other langs reduce is what you want in clojure.
(defn collect-nested-non-numbers
;; If called with one argument, call itself with empty accumulator
;; and that argument.
([form] (collect-nested-non-numbers [] form))
([acc x]
(if (coll? x)
;; If x is a collection, use reduce to call itself on every element.
(reduce collect-nested-non-numbers acc x)
;; Put x into the accumulator if it's a non-number
(if (number? x)
acc
(conj acc x)))))
;; A function that ends in a question mark is (by convention) one that
;; returns a boolean.
(defn only-numbers? [form]
(empty? (collect-nested-non-numbers form)))
;; Our function that does stuff becomes very simple.
;; Which is a good thing, cause it's difficult to test.
(defn warn-on-non-numbers [form]
(when-not (only-numbers? form)
(println "This list contains a non-numeric value")))
And that'll work. There already exists a bunch of things that'll help you walk a nested structure, though, so you don't need to do it manually.
There's the clojure.walk namespace that comes with clojure. It's for when you have
a nested thing and want to transform some parts of it. There's tree-seq which is explained
in another answer. Specter is a library which is
a very powerful mini language for expressing transformations of nested structures.
Then there's my utils library comfy which contains reduce versions of the
functions in clojure.walk, for when you've got a nested thing and want to "reduce" it to a single value.
The nice thing about that is that you can use reduced which is like the imperative break statement, but for reduce. If it finds a non-number it doesn't need to keep going through the whole thing.
(ns foo.core
(:require
[madstap.comfy :as comfy]))
(defn only-numbers? [form]
(comfy/prewalk-reduce
(fn [ret x]
(if (or (coll? x) (number? x))
ret
(reduced false)))
true
form))
Maybe by "any item in the list (not in function position)" you meant this?
(defn only-numbers-in-arg-position? [form]
(comfy/prewalk-reduce
(fn [ret x]
(if (and (list? x) (not (every? (some-fn number? list?) (rest x))))
(reduced false)
ret))
true
form))

Clojure: pass value if it passes predicate truth test

Is it possible to remove the let statement / avoid the intermediate 'x' in the following code?:
(let [x (f a)]
(when (pred? x) x))
I bumped into this problem in the following use case:
(let [coll (get-collection-somewhere)]
(when (every? some? coll) ; if the collection doesn't contain nil values
(remove true? coll))) ; remove all true values
So if the collection is free of nil values, only not-true values remain, like numbers, strings, or whatever.
So, I'm looking for something like this:
(defn pass-if-true [x pred?]
(when (pred? x) x))
Assuming that you don't want to define that pass-if-true function, the best you can do is an anonymous function:
(#(when (every? some? %)
(remove true? %))
(get-collection-somewhere))
You could also extract the predicate and transformation into parameters:
(#(when (%1 %3) (%2 %3))
(partial every? some?)
(partial remove true?)
(get-collection-somewhere))
The let form is necessary to prevent your collection-building function from running twice:
(f a) or (get-collection-somewhere)
This is a typical idiom and you are doing it correctly.
Of course, you don't need the let if you already have the collection and are not building inside this expression.
However, you may wish to see when-let:
https://clojuredocs.org/clojure.core/when-let
It can save some keystrokes in some circumstances, but this isn't one of them.

Clojure's equivalent to Lisp's atom function

I have this Lisp code, and I'm trying to convert it into Clojure code.
(defun copy-tree (tr)
(if (atom tr)
tr
(cons (copy-tree (car tr))
(copy-tree (crd tr)))))
It seems like that Clojure doesn't have Lisp's atom (or atom in Clojure has very different meaning), I had to modify the code as follows. (Am I using atom? wrong or there is something else....?)
(defn single-valued?
[x]
(not (or (nil? x)
(.. x getClass isArray)
(some #(instance? % x) [clojure.lang.Counted
clojure.lang.IPersistentCollection
java.util.Collection
java.util.Map]))))
(defn copy-tree [tr]
(if (or (= tr ()) (single-valued? tr))
tr
(cons (copy-tree (first tr))
(copy-tree (rest tr)))))
The code works fine, but is there better way to replace Lisp's atom function?
I think you'll find this behaves apropriately:
(def single-valued? (complement coll?))
the difference is that it will bottom out sooner for nil -- (rest nil) is () which finally does not recur, but ((complement coll?) nil) returns true, so stops the recursion one step sooner.

How to make '() to be nil?

How to make clojure to count '() as nil?
For example:
How to make something like
(if '() :true :false)
;to be
:false
;Or easier
(my-fun/macro/namespace/... (if '() :true :false))
:false
And not just if. In every way.
(= nil '()) or (my-something (= nil '()))
true
And every code to be (= '() nil) save.
(something (+ 1 (if (= nil '()) 1 2)))
2
I was thinking about some kind of regural expression. Which will look on code and replace '() by nil, but there are some things like (rest '(1)) and many others which are '() and I am not sure how to handle it.
I was told that macros allow you to build your own languages. I want to try it by changing clojure. So this is much about "How clojure works and how to change it?" than "I really need it to for my work."
Thank you for help.
'() just isn't the same thing as nil - why would you want it do be?
What you might be looking for though is the seq function, which returns nil if given an empty collection:
(seq [1 2 3])
=> (1 2 3)
(seq [])
=> nil
(seq '())
=> nil
seq is therefore often used to test for "emptiness", with idioms like:
(if (seq coll)
(do-something-with coll)
(get-empty-result))
You say you would like to change Clojure using the macros. Presently, as far as I know, this is not something you could do with the "regular" macro system (terminology fix anyone?). What you would really need (I think) is a reader macro. Things I have seen online (here, for example) seem to say that there exists something like reader macros in Clojure 1.4--but I have no familiarity with this because I really like using clooj as my IDE, and it currently is not using Clojure 1.4. Maybe somebody else has better info on this "extensible reader" magic.
Regardless, I don't really like the idea of changing the language in that way, and I think there is a potentially very good alternative: namely, the Clojure function not-empty.
This function takes any collection and either returns that collection as is, or returns nil if that collection is empty. This means that anywhere you will want () to return nil, you should wrap it not-empty. This answer is very similar to mikera's answer above, except that you don't have to convert your collections to sequences (which can be nice).
Both using seq and not-empty are pretty silly in cases where you have a "hand-written" collection. After all, if you are writing it by hand (or rather, typing it manually), then you are going to know for sure whether or not it is empty. The cases in which this is useful is when you have an expression or a symbol that returns a collection, and you do not know whether the returned collection will be empty or not.
Example:
=> (if-let [c (not-empty (take (rand-int 5) [:a :b :c :d]))]
(println c)
(println "Twas empty"))
;//80% of the time, this will print some non-empty sub-list of [:a :b :c :d]
;//The other 20% of the time, this will return...
Twas empty
=> nil
What about empty? ? It's the most expressive.
(if (empty? '())
:true
:false)
You can override macros and functions. For instance:
(defn classic-lisp [arg]
(if (seq? arg) (seq arg) arg))
(defn = [& args]
(apply clojure.core/= (map classic-lisp args)))
(defmacro when [cond & args]
`(when (classic-lisp ~cond) ~#args))
Unfortunately, you can't override if, as it is a special form and not a macro. You will have to wrap your code with another macro.
Let's make an if* macro to be an if with common-lisp behavior:
(defmacro if* [cond & args]
`(if (classic-lisp ~cond) ~#args)
With this, we can replace all ifs with if*s:
(use 'clojure.walk)
(defn replace-ifs [code]
(postwalk-replace '{if if*} (macroexpand-all code)))
(defmacro clojure-the-old-way [& body]
`(do ~#(map replace-ifs body)))
Now:
=> (clojure-the-old-way (if '() :true :false) )
:false
You should be able to load files and replace ifs in them too:
(defn read-clj-file [filename]
;; loads list of clojure expressions from file *filename*
(read-string (str "(" (slurp filename) ")")))
(defn load-clj-file-the-old-way [filename]
(doseq [line (replace-ifs (read-clj-file filename))] (eval line))
Note that I didn't test the code to load files and it might be incompatible with leiningen or namespaces. I believe it should work with overriden = though.

In Clojure is an empty list a sequence of infinite nulls?

I am learning the concept of sequence and nil in Clojure. This was the result of a small experimentation.
1:6 user=> (first '())
nil
1:7 user=> (rest '())
()
1:8 user=> (first (rest '()))
nil
Does this mean that '() is actually a sequence of nils?
If you want to test whether the "rest" of a collection is empty, use next.
user> (next '(foo bar))
(bar)
user> (next '())
nil
user> (doc next)
-------------------------
clojure.core/next
([coll])
Returns a seq of the items after the first. Calls seq on its
argument. If there are no more items, returns nil.
"nil-punning" (treating an empty collection/seq and nil as the same thing) was removed last year in favor of fully-lazy sequences. See here for a discussion leading up to this change.
first and rest are functions that apply to a logical structure (a seq) and not on the linked cons structure of a list (as in other lisps).
Clojure defines many algorithms in terms of sequences (seqs). A seq is a logical list, and unlike most Lisps where the list is represented by a concrete, 2-slot structure, Clojure uses the ISeq interface to allow many data structures to provide access to their elements as sequences.
http://clojure.org/sequences
The behavior is a result of the definition of the function and not determined by the primitive structure of the data.
No - an empty list is not the same as an infinite sequence of nils
This is relatively easy to show. Suppose we have:
(def infinite-nils (repeat nil)) ; an infinite lazy sequence of nils
(def empty-list '()) ; an empty list
They have different numbers of elements:
(count infinite-nils) => doesn't terminate
(count empty-list) => 0
Taking from them:
(take 10 infinite-nils) => (nil nil nil nil nil nil nil nil nil nil)
(take 10 empty-list) => ()
If you call seq on them you get
(seq inifinite-nils) => sequence of infinite nils
(seq empty-list) => nil
The confusion in the original can largely be resolved by understanding the following facts:
'() is a collection (a persistent list), not a sequence. However it is sequential, so you can call seq on it to convert it into sequence.
nil is the empty sequence - so therefore (seq '()) returns nil, as does (seq (rest '()))
first returns nil on an empty sequence - hence why (first (rest '())) is nil.
Also learning Clojure.
For empty sequences, rest returns a sequence for which seq returns nil.
That's why you get that behavior.
I assume this is to simplify recursing on sequences until they are empty, and probably other smartypants reasons...
Technically yes though not in a useful way.
"Does the sequence that is created by calling (seq '()) have an infinite number of nulls?"
the answer is yes becase the (rest) of an empty sequence is sill an empty sequence which it's self can have a (rest)
This output is misleading by the way:
1:7 user=> (rest '())
()
the first '() in this is the empty list.
the secong () in this is the empty sequence.
sequences are printed the same as lists in the repl even though they are not the same.