In my personal case, Pub/Sub's pushes to a Python service on Cloud Functions are being unfeasible due to it's short timeout. So the idea of having a container-based managed instance group of Compute Engine instances sounds good, these instances can scale up/down based on Pub/Sub pending task count metrics. These machines' containers would run Python code on startup, the given code would PULL Pub/Sub and process the pulled job accordingly.
Contextualization aside, the question is: Is it a good idea? Are there any gotchas? As there would be several machines at scale, how could I guarantee that a same given 'queued task' would not be picked and have it's processing started on more than one of these machines? I know about ACKs, but ACKs should just be emitted when the task ends successfully, isn't it? What strategy to use to prevent the initially mentioned and other problems?
Related
Suppose we have a web-service written in python, that does some time-consuming file processing. It definitely should not be run inside the HTTP handler as it takes up to 10 mins to complete. Instead, the processing should be done asynchronously by some sort of workers, and it would be also nice to report the progress of the task execution to display to the user.
Would it be a good idea to setup Google Cloud Tasks with some Cloud Run or Cloud Functions service as a HTTP target to do this work?
Is Google Cloud Tasks suitable for handling this type of async tasks, where the user is sitting and waiting for result?
If not, is there any other options to achieve this with Google Cloud? (or should I use custom task services for this purpose, for instance, celery and redis) It also seems that Cloud Run Jobs features somewhat similar functionality, but there are not any queue systems to manage workers.
GC tasks is simply a tool for queuing tasks. It is a useful tool for ensuring that tasks do run, as it has built in retry mechanisms. How you use that in the context of an application depends on a lot of other detail of the application itself, but it is definitely possible to use it for background/asynchronous processing of tasks.
We use Google Cloud tasks to implement long running processes that report their progress via data store records. Some of these processes run longer than the standard 10 minute timeout, and trigger a new cloud task to complete the processing. We then have a simple lightweight handler that retrieves the status record from data store and reports that to the user. We poll that handler from the client, but you could also implement something like websockets.
GCP can handle Asynchronous tasks, Asynchronous execution is a well-established way to reduce request latency and make your application more responsive.
We can use cloud run or cloud functions for this type of tasks , Because we can increase the time limit upto 30 min in http task handlers in GCP cloud tasks.
For more information refer to this document.
We use Google Cloud tasks to implement long running processes that report their progress via data store records. Some of these processes run longer than the standard 10 minute timeout, and trigger a new cloud task to complete the processing.
I'm new to using Cloud Run and the idea of scaling down to zero is very appealing to me, but I have question about a few scenarios about its usage:
If I have a Cloud Run instance querying an external API endpoint, would the instance winds down while waiting for the response if no additional requests come in (i.e. I set the query time out to 60min, and no requests are received in that 60 min)?
If the Cloud Run instance is running computation that lasts for longer than 24 hour, or perhaps even days, without receiving requests, could it be trusted to carry out the computation until it's done without being randomly shutdown or restarted for servicing or other purposes (I ask this because Cloud Run is primarily intended as for stateless applications, but I have infrequent computation jobs that may take a long time that may be considered "stateful" in short-term context).
Does CPU utilization impact auto-scaling (e.g. if I have a computationally intensive job not configured for distributed computing running on one instance, would this trigger Cloud Run to spawn additional instances?)
If you deep dive in the documentation, I'm quite sure that you can find your answers. So, here a summary
(Interesting read).The Cloud Run instances are shut down only when they aren't in used (usually 15 minutes (can change at any time, no commitment, only observations) without request handling). In your case, if you are in a request handling context, no worries, your instance won't be killed, it is in use! Note: don't send an HTTP response before the end of the processing. Background process/jobs aren't considered in a request context. The context is considered from the receipt of the request to the response (OK or KO) back. Partial response/streaming is accepted.
Cloud run instance can, potentially, live more than 24h, but nothing is guaranteed. And, because the request handling is limited to 1h, you can't run process longer that that. I recommend you to have a look to GKE autopilot or to run a container on a Compute Engine and stop the VM at the end of the processing to save resources and money (or a hack to run your container on AI PLatform custom training; even if you train nothing, you run a custom container on a serverless platform!). If you can, I recommend you to design your workload to be split in several small and parallelizable jobs
Yes, it's described here. But keep in mind that only 1 request is processed on one instance. If you send a request that trigger an intensive compute job, the request will be only processed on the same instance (that can have several CPUs if your workload is compliant with that). And if another request comes in during the intensive processing, another Cloud Run instance will be spawn to handle it; only the new request.
I've got a Google Cloud PubSub topic which at times has thousands of messages and at times zero messages coming in. These messages represent tasks which can take upwards of an hour each. Preferably I'm able to use Cloud Run for this, as it scales really well to the demand, if a thousand messages gets published, I want 100s of Cloud Run instances to spin up. These Run instances get started by a push subscription. The problem is that PubSub has a 600 second timeout for the acknowledgement. This means in order to have Cloud Run process these messages they have to finish within 600 seconds. If they do not, PubSub times it out, and sends it again, causing the task to be restarted until the first task finally does acknowledge it (this causes the same task to be ran many times). Cloud Run acknowledges the messages by returning a 2** HTTP status code. The documentation states
When an application running on Cloud Run finishes handling a request, the container instance's access to CPU will be disabled or severely limited. Therefore, you should not start background threads or routines that run outside the scope of the request handlers.
So is it maybe possible to acknowledge a PubSub request through code and continue the processing, without having Google Cloud Run hand over the resources? Or is there a better solution I'm unaware of?
Because these processes are so code/resource-intensive, I feel Cloud Functions will not suffice. I've looked at https://cloud.google.com/solutions/using-cloud-pub-sub-long-running-tasks and https://cloud.google.com/blog/products/gcp/how-google-cloud-pubsub-supports-long-running-workloads. But these didn't answer my question.
I've looked at Google Cloud Tasks, which might be something? But the rest of the project has been built around PubSub/Run/Functions, so preferably I stick with that.
This project is written in Python.
So preferably I would like to write my Google Cloud Run tasks like this:
#app.route('/', methods=['POST'])
def index():
"""Endpoint for Google Cloud PubSub messages"""
pubsub_message = request.get_json()
logger.info(f'Received PubSub pubsub_message {pubsub_message}')
if message_incorrect(pubsub_message):
return "Invalid request", 400 #use normal NACK handling
# acknowledge message here without returning
# ...
# Do actual processing of the task here
# ...
So how can or should I solve this, so that the the resource-intensive tasks get properly scaled on demand ( so a push PubSub subscription ). And the tasks only get executed once.
Answers:
In short what has been answered. Cloud Run and Functions are just not suited for this problem. There is no way to have them do tasks that take longer than 9 or 15 minutes respectively. The only solution is to switch over to another Google Service and use a pull style subscription and lose out on auto-scaling of GC Run/Functions
Cloud Run on GKE can handle long process, more CPU and memory than available on managed platform. However, you have a GKE cluster always running and you loose the "pay-as-you-use" benefit.
If you want to use this solution, don't link directly PubSub push subscription to your Cloud Run on GKE. Use Cloud Task with HTTP job for this. The timeout is longer than PubSub (up to 24h instead of 10 min) and the retry policies are customizables.
Neither Cloud Functions nor Cloud Run is sufficient for arbitrarily long running operations. Cloud Functions has a hard cap of 9 minutes per invocation, and Cloud Run caps at 60. If you need more time, you're going to have to delegate the work to another product, such as Google Compute Engine. It should be possible to kick off some Compute Engine work from one of the serverless products.
Give the limits of pubsub acks, you'll probably have to find a way for a client to be able to poll or listen to some resource to find out when the work is actually done. You could use a database for that, and Cloud Firestore lets you listen to documents to find out when they change. So you could use that to track the status of your long-running work.
I'm new to using AWS, so any pointers would be appreciated.
I have a need to process large files using our in-house software.
It takes about 2GB of input and generates 5GB of output, running for 2 hours on a c3.8xlarge.
For now I do it manually, start an instance (either on-demand or spot-request), but now I want to reliably automate and scale this processing - what are good frameworks or platform or amazon services to do that?
Especially regarding the possibility that a spot-instance will be terminated half-way through (and I'll need to detect that and restart the job).
I heard about Python Celery, but does it work well with amazon and spot-instances?
Or are there other recommended mechanisms?
Thank you!
This is somewhat opinion-based, but you can mix and match some of the AWS pieces to make this easier:
put the input data on S3
push an entry into a SQS queue indicating a job needs to be processed with a long visibility timeout
set up an autoscaling policy based on SQS with your machine description in CloudFormation.
use UserData/cloudinit to set up the machine and start your application
write code to receive the queue entry, start processing, finish processing, then delete the SQS message.
code should check for another queued entry. If none, code should terminate machine.
I'm implementing a task queue with Amazon SQS ( but i guess the question applies to any task-queue ) , where the workers are expected to take different action depending on how many times the job has been re-tried already ( move it to a different queue, increase visibility timeout, send an alert..etc )
What would be the best way to keep track of failed job count? I'd like to avoid having to keep a centralized db for job:retry-count records. Should i look at time spent in the queue instead in a monitoring process? IMO that would be ugly or un-clean at best, iterating over jobs until i find ancient ones..
thanks!
Andras
There is another simpler way. With your message you can request ApproximateReceiveCount information and base your retry logic on that. This way you won't have to keep it in the database and can calculate it from the message itself.
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
I've had good success combining SQS with SimpleDB. It is "centralized", but only as much as SQS is.
Every job gets a record in simpleDB and a task in SQS. You can put any information you like in SimpleDB like the job creation time. When a worker pulls a job from the queue it can grab the corresponding record from simpleDB to determine it's history. You can see how old the job is, and you can see how many times it has been attempted. Once you're done, you can add worker data to the SimpleDB record (completion time, outcome, logs, errors, stack-trace, whatever) and acknowledge the message from SQS.
I prefer this method because it helps diagnose faults by providing lots of debug info for failed tasks. It also allows workers to handle the job differently depending on how long the job has been queued, how many failures it's had, etc.
It also gives you the ability to query SimpleDB directly and calculate things like average time per task, percent failure rate, etc.
Amazon just released Simple workflow serice (swf) which you can think of as a more sophisticated/flexible version of GAE Task queues.
It will let you monitor your tasks (with hearbeats), configure retry strategies and create complicated workflows. It looks pretty promising abstracting out task dependencies, scheduling and fault tolerance for tasks (esp. asynchronous ones)
Checkout http://docs.amazonwebservices.com/amazonswf/latest/developerguide/swf-dg-intro-to-swf.html for overview.
SQS stands for "Simple Queue Service" which, in concept is the incorrect name for that service. The first and foremost feature of a "Queue" is FIFO (First in, First out), and SQS lacks that. Just wanting to clarify.
Also, Azure Queue Services lacks that as well. For the best cloud Queue service, use Azure's Service Bus since it's a TRUE Queue concept.