I ran into an issue where multiple sessions started creating duplicated data and missing rows when copying from s3 to redshift.
I created a test script that starts 5 sessions and runs these sequentially. The duplication is recreated here frequently.
I am curious where I am going wrong with my implementation of the copy from s3 to redshift.
Below is a code block of essentially the flow for getting from s3 and COPY/IMPORT into redshift.
LOGGER.debug('Importing into %s', tmp_table)
cursor.execute('BEGIN;')
cursor.execute('LOCK {schema}.{table} ;'.format(**sql_args))
cursor.execute('CREATE TEMP TABLE {tmp_table} ( LIKE {schema}.{table} );'.format(**sql_args))
LOGGER.debug('{s3file}'.format(**sql_args))
cursor.execute('COPY {tmp_table} FROM \'s3://{bucket}/{s3file}\' CREDENTIALS \'aws_access_key_id={s3user};aws_secret_access_key={s3pwd}\' {copy_options};'.format(**sql_args))
cursor.execute('SELECT COUNT(*) FROM {tmp_table}'.format(**sql_args))
res = cursor.fetchall()
cursor.execute('INSERT INTO {schema}.{table} SELECT * FROM {tmp_table};'.format(**sql_args))
LOGGER.debug('Dropping {tmp_table}'.format(**sql_args))
cursor.execute('DROP TABLE {tmp_table};'.format(**sql_args))
cursor.execute('END;'.format(**sql_args))
I have tried messing with LOCKs and adjusting to autocommit.
Any help would be greatly appreciated.
Related
I am having a problem, where i have set enableUpdateCatalog=True and also updateBehaviour=LOG to update my glue table which has 1 partition key. After the job, runs there are no new partitions added on my glue catalog table, but data in S3 is separated by the partition key i have used, how do i get the job to automatically partition my glue catalog table?
Currently i have to manually run boto3 create_partition to create partitions on my glue catalog table. I want my job to automatically be able to create partitions as it discovers in S3 path separated by partition Keys
Code:
additionalOptions = {
"enableUpdateCatalog": True,
"updateBehavior": "LOG"}
additionalOptions["partitionKeys"] = ["partition_key0", "partition_key1"]
my_df = glueContext.write_dynamic_frame_from_catalog(frame=last_transform, database=<dst_db_name>,
table_name=<dst_tbl_name>, transformation_ctx="DataSink1",
additional_options=additionalOptions)
job.commit()
PS: I am currently using PARQUET format
Am i missing any Rights that has to be added to my job so that it can create partitions from the job itself?
I got it to work by adding useGlueParquetWriter: 'true' to the CATALOG table properties. And also I have added
format_options = {
'useGlueParquetWriter': True
}
in the write_dynamic_frame.from_catalog calls.
These steps got it to start working :)
I created a table in Athena without a crawler from S3 source. It is showing up in my datacatalog. However, when I try to access it through a python job in Glue ETL, it shows that it has no column or any data. The following error pops up when accessing a column: AttributeError: 'DataFrame' object has no attribute '<COLUMN-NAME>'.
I am trying to access the dynamic frame following the glue way:
datasource = glueContext.create_dynamic_frame.from_catalog(
database="datacatalog_database",
table_name="table_name",
transformation_ctx="datasource"
)
print(f"Count: {datasource.count()}")
print(f"Schema: {datasource.schema()}")
The above logs output: Count: 0 & Schema: StructType([], {}), where the Athena table shows I have around ~800,000 rows.
Sidenotes:
The ETL job concerned has AWSGlueServiceRole attached.
I tried Glue Visual Editor as well, it showed the datacatalog database/table concerned but sadly, same error.
It looks like the S3 bucket has multiple nested folders inside it. For Glue to read these folders you need to add a flag adding additional_options = {"recurse": True} to your from_catalog(). This will help to recursively read records from s3 files.
I have a lambda job which infrequently dumps a parquet file into an S3 bucket/Glue table using AWS Wrangler.
This Glue table appears to be increasing the table version number every time there is new data, even though the schema is unchanged.
I do not think the problem is with the lambda job/wrangler, since it deposits the parquet files as expected. I have also tested that code separately and it works as expected.
Something is going on with the Glue data catalogue table that makes it increase versions despite no changes to the schema.
I have checked for differences in the underlying parquet files to see if there are some schema, data type etc changes between updates, and there are none.
I have checked for differences between the Glue table versions via the console and AWS CLI (aws glue get-table-versions) and found no differences there either (only the UpdateTime and VersionId changes).
I have tried to recreate my setup with the same code and do not find this issue. I have tried to delete and recreate the Glue table in the same place, but the issue reoccurs.
Question: What could be causing my Glue table version numbers to increase when there are no schema changes?
Note:
The code in question looks like this. It's part of a bigger function (this is really just generating logs of what the main lambda function is doing). It works fine on its own and doesn't use variables etc from the rest of the code. I don't see how this could be the issue but including it here anyway.
#other functions do some things when triggered by a new file in another s3 bucket
#this function is just logging which files were processed. It's the Glue table from these log files which is having issues with the version number increasing every time a new log file is added.
import aws-wrangler as wr
def log(resource, filename):
log_df = build_log(resource, filename) # for building the log df, just columns of date, time, file used etc
wr.s3.to_parquet(
df=log_df,
path=log_path(), #s3 bucket where parquet logs are being put
dataset=True,
catalog_versioning=False,
database="MYDB",
partition_cols=['date'],
table='log',
mode='append'
)
This is, I think due to partitioning. You are partitioning based on date, so I guess for every day of time unit a new partition will be added. The new partitions are the reason why the table version is being incremented.
I have started researching into Redshift. It is defined as a "Database" service in AWS. From what I have learnt so far, we can create tables and ingest data from S3 or from external sources like Hive into Redhshift database (cluster). Also, we can use JDBC connection to query these tables.
My questions are -
Is there a place within Redshift cluster where we can store our queries run it periodically (like Daily)?
Can we store our query in a S3 location and use that to create output to another S3 location?
Can we load a DB2 table unload file with a mixture of binary and string fields to Redshift directly, or do we need a intermediate process to make the data into something like a CSV?
I have done some Googling about this. If you have link to resources, that will be very helpful. Thank you.
I used cursor method using psycopg2 function in python. The sample code is given below. You have to set all the redshift credentials in env_vars files.
you can set your queries using cursor.execute. here I mension one update query so you can set your query in this place (you can set multiple queries). After that you have to set this python file into crontab or any other autorun application for running your queries periodically.
import psycopg2
import sys
import env_vars
conn_string = "dbname=%s port=%s user=%s password=%s host=%s " %(env_vars.RedshiftVariables.REDSHIFT_DW ,env_vars.RedshiftVariables.REDSHIFT_PORT ,env_vars.RedshiftVariables.REDSHIFT_USERNAME ,env_vars.RedshiftVariables.REDSHIFT_PASSWORD,env_vars.RedshiftVariables.REDSHIFT_HOST)
conn = psycopg2.connect(conn_string);
cursor = conn.cursor();
cursor.execute("""UPDATE database.demo_table SET Device_id = '123' where Device = 'IPHONE' or Device = 'Apple'; """);
conn.commit();
conn.close();
I have a Spark batch job which is executed hourly. Each run generates and stores new data in S3 with the directory naming pattern DATA/YEAR=?/MONTH=?/DATE=?/datafile.
After uploading the data to S3, I want to investigate it using Athena. Also, I would like to visualize them in QuickSight by connecting to Athena as a data source.
The problem is that after each run of my Spark batch, the newly generated data stored in S3 will not be discovered by Athena, unless I manually run the query MSCK REPAIR TABLE.
Is there a way to make Athena update the data automatically, so that I can create a fully automatic data visualization pipeline?
There are a number of ways to schedule this task. How do you schedule your workflows? Do you use a system like Airflow, Luigi, Azkaban, cron, or using an AWS Data pipeline?
From any of these, you should be able to fire off the following CLI command.
$ aws athena start-query-execution --query-string "MSCK REPAIR TABLE some_database.some_table" --result-configuration "OutputLocation=s3://SOMEPLACE"
Another option would be AWS Lambda. You could have a function that calls MSCK REPAIR TABLE some_database.some_table in response to a new upload to S3.
An example Lambda Function could be written as such:
import boto3
def lambda_handler(event, context):
bucket_name = 'some_bucket'
client = boto3.client('athena')
config = {
'OutputLocation': 's3://' + bucket_name + '/',
'EncryptionConfiguration': {'EncryptionOption': 'SSE_S3'}
}
# Query Execution Parameters
sql = 'MSCK REPAIR TABLE some_database.some_table'
context = {'Database': 'some_database'}
client.start_query_execution(QueryString = sql,
QueryExecutionContext = context,
ResultConfiguration = config)
You would then configure a trigger to execute your Lambda function when new data are added under the DATA/ prefix in your bucket.
Ultimately, explicitly rebuilding the partitions after you run your Spark Job using a job scheduler has the advantage of being self documenting. On the other hand, AWS Lambda is convenient for jobs like this one.
You should be running ADD PARTITION instead:
aws athena start-query-execution --query-string "ALTER TABLE ADD PARTITION..."
Which adds a the newly created partition from your S3 location
Athena leverages Hive for partitioning data.
To create a table with partitions, you must define it during the CREATE TABLE statement. Use PARTITIONED BY to define the keys by which to partition data.
There's multiple ways to solve the issue and get the table updated:
Call MSCK REPAIR TABLE. This will scan ALL data. It's costly as every file is read in full (at least it's fully charged by AWS). Also it's painfully slow. In short: Don't do it!
Create partitions by your own by calling ALTER TABLE ADD PARTITION abc .... This is good in a sense no data is scanned and costs are low. Also the query is fast, so no problems here. It's also a good choice if you have very cluttered file structure without any common pattern (which doesn't seem it's your case as it's a nicely organised S3 key pattern). There's also downsides to this approach: A) It's hard to maintain B) All partitions will to be stored in GLUE catalog. This can become an issue when you have a lot of partitions as they need to be read out and passed to Athena and EMRs Hadoop infrastructure.
Use partition projection. There's two different styles you might want to evaluate. Here's the variant with does create the partitions for Hadoop at query time. This means there's no GLUE catalog entries send over the network and thus large amounts of partitions can be handled quicker. The downside is you might 'hit' some partitions that might not exist. These will of course be ignored, but internally all partitions that COULD match your query will be generated - no matter if they are on S3 or not (so always add partition filters to your query!). If done correctly, this option is a fire and forget approach as there's no updates needed.
CREATE EXTERNAL TABLE `mydb`.`mytable`
(
...
)
PARTITIONED BY (
`YEAR` int,
`MONTH` int,
`DATE` int)
...
LOCATION
's3://DATA/'
TBLPROPERTIES(
"projection.enabled" = "true",
"projection.account.type" = "integer",
"projection.account.range" = "1,50",
"projection.YEAR.type" = "integer",
"projection.YEAR.range" = "2020,2025",
"projection.MONTH.type" = "integer",
"projection.MONTH.range" = "1,12",
"projection.DATE.type" = "integer",
"projection.DATE.range" = "1,31",
"storage.location.template" = "s3://DATA/YEAR=${YEAR}/MONTH=${MONTH}/DATE=${DATE}/"
);
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
Just to list all options: You can also use GLUE crawlers. But it doesn't seemed to be a favourable approach as it's not as flexible as advertised.
You get more control on GLUE using Glue Data Catalog API directly, which might be an alternative to approach #2 if you have a lot of automated scripts
that do the preparation work to setup your table.
In short:
If your application is SQL centric, you like the leanest approach with no scripts, use partition projection
If you have many partitions, use partition projection
If you have a few partitions or partitions do not have a generic pattern, use approach #2
If you're script heavy and scripts do most of the work anyway and are easier to handle for you, consider approach #5
If you're confused and have no clue where to start - try partition projection first! It should fit 95% of the use cases.