A Program to Find Absolute Euler Pseudoprimes - c++

I am now trying to make a program to find the Absolute Euler Pseudoprimes ('AEPSP' in short, not Euler-Jacobi Pseudoprimes), with the definition that n is an AEPSP if
a(n-1)/2 ≡ ±1 (mod n)
for all positive integers a satisfying that the GCD of a and n is 1.
I used a C++ code to generate AEPSPs, which is based on a code to generate Carmichael numbers:
#include <iostream>
#include <cmath>
#include <algorithm>
#include <numeric>
using namespace std;
unsigned int bm(unsigned int a, unsigned int n, unsigned int p){
unsigned long long b;
switch (n) {
case 0:
return 1;
case 1:
return a % p;
default:
b = bm(a,n/2,p);
b = (b*b) % p;
if (n % 2 == 1) b = (b*a) % p;
return b;
}
}
int numc(unsigned int n){
int a, s;
int found = 0;
if (n % 2 == 0) return 0;
s = sqrt(n);
a = 2;
while (a < n) {
if (a > s && !found) {
return 0;
}
if (gcd(a, n) > 1) {
found = 1;
}
else {
if (bm(a, (n-1)/2, n) != 1) {
return 0;
}
}
a++;
}
return 1;
}
int main(void) {
unsigned int n;
for (n = 3; n < 1e9; n += 2){
if (numc(n)) printf("%u\n",n);
}
return 0;
}
Yet, the program is very slow. It generates AEPSPs up to 1.5e6 in 20 minutes. Does anyone have any ideas on optimizing the program?
Any help is most appreciated. :)

I've come up with a different algorithm, based on sieving for primes upfront while simultaneously marking off non-squarefree numbers. I've applied a few optimizations to pack the information into memory a bit tighter, to help with cache-friendliness as well. Here is the code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#define PRIME_BIT (1UL << 31)
#define SQUARE_BIT (1UL << 30)
#define FACTOR_MASK (SQUARE_BIT - 1)
void sieve(uint64_t size, uint32_t *buffer) {
for (uint64_t i = 3; i * i < size; i += 2) {
if (buffer[i/2] & PRIME_BIT) {
for (uint64_t j = i * i; j < size; j += 2 * i) {
buffer[j/2] &= SQUARE_BIT;
buffer[j/2] |= i;
}
for (uint64_t j = i * i; j < size; j += 2 * i * i) {
buffer[j/2] |= SQUARE_BIT;
}
}
}
}
int main(int argc, char **argv) {
if (argc < 2) {
printf("Usage: prog LIMIT\n");
return 1;
}
uint64_t size = atoi(argv[1]);
uint32_t *buffer = malloc(size * sizeof(uint32_t) / 2);
memset(buffer, 0x80, size * sizeof(uint32_t) / 2);
sieve(size, buffer);
for (uint64_t i = 5; i < size; i += 4) {
if (buffer[i/2] & PRIME_BIT)
continue;
if (buffer[i/2] & SQUARE_BIT)
continue;
uint64_t num = i;
uint64_t factor;
while (num > 1) {
if (buffer[num/2] & PRIME_BIT)
factor = num;
else
factor = buffer[num/2] & FACTOR_MASK;
if ((i / 2) % (factor - 1) != 0) {
break;
}
num /= factor;
}
if (num == 1)
printf("Found pseudo-prime: %ld\n", i);
}
}
This produces the pseudo-primes up to 1.5e6 in about 8ms on my machine, and for 2e9 it takes 1.8sec.
The time complexity of the solution is O(n log n) - the sieve is O(n log n), and for each number we either do constant time checks or do a divisibility test for each of its factors, which there are at most log n. So, the main loop is also O(n log n), resulting in O(n log n) overall.

Related

The next prime number

Among the given input of two numbers, check if the second number is exactly the next prime number of the first number. If so return "YES" else "NO".
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int nextPrime(int x){
int y =x;
for(int i=2; i <=sqrt(y); i++){
if(y%i == 0){
y = y+2;
nextPrime(y);
return (y);
}
}
return y;
}
int main()
{
int n,m, x(0);
cin >> n >> m;
x = n+2;
if(n = 2 && m == 3){
cout << "YES\n";
exit(0);
}
nextPrime(x) == m ? cout << "YES\n" : cout << "NO\n";
return 0;
}
Where is my code running wrong? It only returns true if next number is either +2 or +4.
Maybe it has something to do with return statement.
I can tell you two things you are doing wrong:
Enter 2 4 and you will check 4, 6, 8, 10, 12, 14, 16, 18, ... for primality forever.
The other thing is
y = y+2;
nextPrime(y);
return (y);
should just be
return nextPrime(y + 2);
Beyond that your loop is highly inefficient:
for(int i=2; i <=sqrt(y); i++){
Handle even numbers as special case and then use
for(int i=3; i * i <= y; i += 2){
Using a different primality test would also be faster. For example Miller-Rabin primality test:
#include <iostream>
#include <cstdint>
#include <array>
#include <ranges>
#include <cassert>
#include <bitset>
#include <bit>
// square and multiply algorithm for a^d mod n
uint32_t pow_n(uint32_t a, uint32_t d, uint32_t n) {
if (d == 0) __builtin_unreachable();
unsigned shift = std::countl_zero(d) + 1;
uint32_t t = a;
int32_t m = d << shift;
for (unsigned i = 32 - shift; i > 0; --i) {
t = ((uint64_t)t * t) % n;
if (m < 0) t = ((uint64_t)t * a) % n;
m <<= 1;
}
return t;
}
bool test(uint32_t n, unsigned s, uint32_t d, uint32_t a) {
uint32_t x = pow_n(a, d, n);
//std::cout << " x = " << x << std::endl;
if (x == 1 || x == n - 1) return true;
for (unsigned i = 1; i < s; ++i) {
x = ((uint64_t)x * x) % n;
if (x == n - 1) return true;
}
return false;
}
bool is_prime(uint32_t n) {
static const std::array witnesses{2u, 3u, 5u, 7u, 11u};
static const std::array bounds{
2'047u, 1'373'653u, 25'326'001u, 3'215'031'751u, UINT_MAX
};
static_assert(witnesses.size() == bounds.size());
if (n == 2) return true; // 2 is prime
if (n % 2 == 0) return false; // other even numbers are not
if (n <= witnesses.back()) { // I know the first few primes
return (std::ranges::find(witnesses, n) != std::end(witnesses));
}
// write n = 2^s * d + 1 with d odd
unsigned s = 0;
uint32_t d = n - 1;
while (d % 2 == 0) {
++s;
d /= 2;
}
// test widtnesses until the bounds say it's a sure thing
auto it = bounds.cbegin();
for (auto a : witnesses) {
//std::cout << a << " ";
if (!test(n, s, d, a)) return false;
if (n < *it++) return true;
}
return true;
}
And yes, that is an awful lot of code but it runs very few times.
Something to do with the return statement
I would say so
y = y+2;
nextPrime(y);
return (y);
can be replaced with
return nextPrime(y + 2);
Your version calls nextPrime but fails to do anything with the return value, instead it just returns y.
It would be more usual to code the nextPrime function with another loop, instead of writing a recursive function.

C++ Bitset algorithm

I am given a nxn grid with filled with 1 or 0. I want to count the number of subgrids where the corner tiles are all 1s. My solution goes through all pairs of rows and counts the number of matching 1s then it uses the formula numOf1s * (numOf1s-1)/2 and adds to the result. However, when I submit my solution on https://cses.fi/problemset/task/2137, there is no output on inputs with n = 3000 (probably caused by some error). What could the error be?
int main()
{
int n; cin>> n;
vector<bitset<3000>> grid(n);
for(int i=0;i<n;i++){
cin >> grid[i];
}
long result = 0;
for(int i=0;i<n-1;i++){
for(int j=i+1;j<n;j++){
int count = (grid[i]&grid[j]).count();
result += (count*(count-1))/2;
}
}
cout << result;
}
This solution will cause a time limit exceeded. bitset::count() is O(n) in worst case. The total complexity of your code is O(n^3). In the worst-case the number of operations would be 3000^3 > 10^10 which is too large.
I'm not sure this solution is the best you can come up with, but it is based on the original solution, with a homebrew alternative for the bitset. This allows me to work with 64 bits blocks, and using a fast popcnt(). An hardware version would be even better, as it would be to work with AVX registers, but this should be more portable and it works on cses.fi. Basically instead of generating a long intersection bitset and later count the number of ones, the function count_common() makes a piece of the intersection and immediately uses it just to count the ones.
The stream extractor could be probably improved, saving some more time.
#include <iostream>
#include <array>
#include <cstdint>
#include <climits>
uint64_t popcnt(uint64_t v) {
v = v - ((v >> 1) & (uint64_t)~(uint64_t)0 / 3);
v = (v & (uint64_t)~(uint64_t)0 / 15 * 3) + ((v >> 2) & (uint64_t)~(uint64_t)0 / 15 * 3);
v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0 / 255 * 15;
uint64_t c = (uint64_t)(v * ((uint64_t)~(uint64_t)0 / 255)) >> (sizeof(uint64_t) - 1) * CHAR_BIT;
return c;
}
struct line {
uint64_t cells_[47] = { 0 }; // 3000/64 = 47
uint64_t& operator[](int pos) { return cells_[pos]; }
const uint64_t& operator[](int pos) const { return cells_[pos]; }
};
uint64_t count_common(const line& a, const line& b) {
uint64_t u = 0;
for (int i = 0; i < 47; ++i) {
u += popcnt(a[i] & b[i]);
}
return u;
}
std::istream& operator>>(std::istream& is, line& ln) {
is >> std::ws;
int pos = 0;
uint64_t val = 0;
while (true) {
char ch = is.get();
if (is && ch == '\n') {
break;
}
if (ch == '1') {
val |= 1LL << (63 - pos % 64);
}
if ((pos + 1) % 64 == 0) {
ln[pos / 64] = val;
val = 0;
}
++pos;
}
if (pos % 64 != 0) {
ln[pos / 64] = val;
}
return is;
}
struct grid {
int n_;
std::array<line, 3000> data_;
line& operator[](int r) {
return data_[r];
}
};
std::istream& operator>>(std::istream& is, grid& g) {
is >> g.n_;
for (int r = 0; r < g.n_; ++r) {
is >> g[r];
}
return is;
}
int main()
{
grid g;
std::cin >> g;
uint64_t count = 0;
for (int r1 = 0; r1 < g.n_; ++r1) {
for (int r2 = r1 + 1; r2 < g.n_; ++r2) {
uint64_t n = count_common(g[r1], g[r2]);
count += n * (n - 1) / 2;
}
}
std::cout << count << '\n';
return 0;
}

Big primes loop with GMP library C++

It's the first time that I use the gmp library, so I'm really lost, I've found a code implementing the "miller rabin primality test" in c++ but I wanted to be able to apply it to integers with arbitrary precision so I installed the GMP library.
The problem is, I've got no idea of how GMP library actually works (I've read trough a few pages of the manual but I understand very little about it also since I haven't even studied object oriented programming), I want to adapt the primality test to be able to input integers 'num' of about 1000-2000 digits, here's the code:
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <gmpxx.h>
#include <gmp.h>
#define ll long long
using namespace std;
/*
* calculates (a * b) % c taking into account that a * b might overflow
*/
ll mulmod(ll a, ll b, ll mod)
{
ll x = 0,y = a % mod;
while (b > 0)
{
if (b % 2 == 1)
{
x = (x + y) % mod;
}
y = (y * 2) % mod;
b /= 2;
}
return x % mod;
}
/*
* modular exponentiation
*/
ll modulo(ll base, ll exponent, ll mod)
{
ll x = 1;
ll y = base;
while (exponent > 0)
{
if (exponent % 2 == 1)
x = (x * y) % mod;
y = (y * y) % mod;
exponent = exponent / 2;
}
return x % mod;
}
/*
* Miller-Rabin primality test, iteration signifies the accuracy
*/
bool Miller(ll p,int iteration)
{
if (p < 2)
{
return false;
}
if (p != 2 && p % 2==0)
{
return false;
}
ll s = p - 1;
while (s % 2 == 0)
{
s /= 2;
}
for (int i = 0; i < iteration; i++)
{
ll a = rand() % (p - 1) + 1, temp = s;
ll mod = modulo(a, temp, p);
while (temp != p - 1 && mod != 1 && mod != p - 1)
{
mod = mulmod(mod, mod, p);
temp *= 2;
}
if (mod != p - 1 && temp % 2 == 0)
{
return false;
}
}
return true;
}
//Main
int main()
{
int w=0;
int iteration = 5;
mpz_t num;
cout<<"Enter integer to loop: ";
cin>>num;
if (num % 2 == 0)
num=num+1;
while (w==0) {
if (Miller(num, iteration)) {
cout<<num<<" is prime"<<endl;
w=1;
}
else
num=num+2;
}
system ("PAUSE");
return 0;
}
(If I define num to be 'long long' the program works just fine, but I have no idea how I should adapt the whole thing to "match" num being defined as 'mpz_t' instead, also I didn't mention it but the program basically takes an initial integer value and loops it by adding 2 if the integer is composite until it becomes a prime number)

Refactoring C to C++ for Bernoulli Number calculation

Rosettacode has an article for the calculation of Bernoulli numbers. Unfortunately it does not provide an example in C++, only one in C (as of December 27, 2016).
I am not familiar with C, but a lot of it is recognizable. How could this program be adapted for C++?
#include <stdlib.h>
#include <gmp.h>
#define mpq_for(buf, op, n)\
do {\
size_t i;\
for (i = 0; i < (n); ++i)\
mpq_##op(buf[i]);\
} while (0)
void bernoulli(mpq_t rop, unsigned int n)
{
unsigned int m, j;
mpq_t *a = malloc(sizeof(mpq_t) * (n + 1));
mpq_for(a, init, n + 1);
for (m = 0; m <= n; ++m) {
mpq_set_ui(a[m], 1, m + 1);
for (j = m; j > 0; --j) {
mpq_sub(a[j-1], a[j], a[j-1]);
mpq_set_ui(rop, j, 1);
mpq_mul(a[j-1], a[j-1], rop);
}
}
mpq_set(rop, a[0]);
mpq_for(a, clear, n + 1);
free(a);
}
int main(void)
{
mpq_t rop;
mpz_t n, d;
mpq_init(rop);
mpz_inits(n, d, NULL);
unsigned int i;
for (i = 0; i <= 60; ++i) {
bernoulli(rop, i);
if (mpq_cmp_ui(rop, 0, 1)) {
mpq_get_num(n, rop);
mpq_get_den(d, rop);
gmp_printf("B(%-2u) = %44Zd / %Zd\n", i, n, d);
}
}
mpz_clears(n, d, NULL);
mpq_clear(rop);
return 0;
}
Thanks! Even general recommendations are helpful!
It would work on C++ without changing almost anything I guess, anyway there are a few things you could change:
malloc for new: mpg_t * a = new mpg_t[n+1];
or: mpq_t * a = (mpq_t *) malloc(sizeof(mpq_t) * (n + 1));
NULL for nullptr
Most C libraries have been renamed (and deprecated) from: something.h to csomething
#include <stdlib.h> is now #include <cstdlib>
You could write (included in cstdint header):
for (uint32_t i = 0; i <= 60; ++i) { /* ... */ }
instead of:
unsigned int i;
for (i = 0; i <= 60; ++i) { /* ... */ }
Basically any C code will run on C++
For minimum refraction to OOB, just create a class called bernoully (for example) which will contain the bernoulli function and the macro,
That's it!

Mod power or totient logic issue

Here is some code I adapted that deals with the euler totient function and a power mod function. Every n, f2 is always 3 instead of a variety of numbers. Does anyone see an error? phi(n) and modpow(n) both seem to work fine.
#include <iostream>
using namespace std;
int gcd(int a, int b)
{
while (b != 0)
{
int c = a % b;
a = b;
b = c;
}
return a;
}
int phi(int n)
{
int x = 0;
for (int i=1; i<=n; i++)
{
if (gcd(n, i) == 1)
x++;
}
return x;
}
int modpow(int base, int exp, int mod) // from stackoverflow
{
base %= mod;
long long result = 1;
while (exp > 0)
{
if (exp & 1)
result = (result * base) % mod;
base = (base * base) % mod;
exp >>= 1;
}
return result;
}
int f2(int n) // f(f(n)) mod n
{
long long a = modpow(2, n, phi(n)) + 1;
return (modpow(2, a, n) + 1) % n;
}
// ...
int main()
{
int n = 520001;
while (true)
{
cout << "f2 " << f2(n) << endl;
if (f2(n) == 0)
{
// ...
}
n += 2;
}
return 0;
}
Values of f2(n) should be 9, 458278, 379578, ...
base*base will exceed the size of an int if base >= 65536. Try this fix, seems to work:
int modpow(int base, int exp, int mod) // from stackoverflow
{
base %= mod;
long long result = 1;
while (exp > 0)
{
if (exp & 1)
result = (result * base) % mod;
base = (int)(((long long)base * (long long)base) % mod);
exp >>= 1;
}
return (int) result;
}