Whether projection fields improve query performance in Dynamodb? - amazon-web-services

I use Dynamodb to store User data. Each user has many fields like age, gender, first/last name, address etc. I need to support a query API which response first, last, middle name only, without other fields.
In order to provide a better performance, I have two solutions:
Create a GSI which only includes those query fields. It will make each row very small.
Query the table with projection fields parameter including those query fields.
The item size is 1KB with 20 attributes. 1MB is the maximum data returned from one query. So I should receive 1024 items from querying the main index. If I use field projection to reduce the number of fields, will it give me more items in the response?
Based on dynamodb only response maximum 1MB data, which solution is better for me to use?

What you are trying to achieve is called "Sparse indexes".
Without knowing the table traffic pattern and historical amount of data. Another consideration is the amount of RCU (read capacity units) used for the operation.
FilterExpression is applied after a Query finishes, but before the results are returned.
Link to Documentation
With that in mind, the amount of RCU used by the FilterExpression solution will grow based on the number of fields/data the item has.
You are increasing your costs over time and need to worry about the item size and amount of fields it has.
A review of how RCU works:
DynamoDB read requests can be either strongly consistent, eventually consistent, or transactional.
A strongly consistent read request of an item up to 4 KB requires one read request unit.
An eventually consistent read request of an item up to 4 KB requires one-half read request unit.
A transactional read request of an item up to 4 KB requires two read request units.
Link to documentation
You can use GSI to have a separate throughput and control the used RCU capacity. The amount of data that will be transferred can be predictable. The RCU utilization will be based on the index entries only (first, last, middle and name)
You will need to update your application to use the new index and work with eventually consistent reads. GSI doesn't have support for a strongly consistent read.
Global secondary indexes support eventually consistent reads, each of which consume one half of a read capacity unit. This means that a single global secondary index query can retrieve up to 2 × 4 KB = 8 KB per read capacity unit.
For global secondary index queries, DynamoDB calculates the provisioned read activity in the same way as it does for queries against tables. The only difference is that the calculation is based on the sizes of the index entries, rather than the size of the item in the base table.
Link to documentation
Returning to your question: "which solution is better for me to use?"
Do you need strongly consistent reads? You need to use the table base index with FilterExpression. Otherwise, use GSI.
A good reading is this article: When to use (and when not to use) DynamoDB Filter Expressions

First of all it's important to note that DynamoDBs 1MB limit is not a blocker, it's there for performance reasons.
Your use case seems to want to unnecessarily reduce your payload to below the 1MB limit. However, you should just introduce pagination.
DynamoDB paginates the results from Query operations. With pagination, the Query results are divided into "pages" of data that are 1 MB in size (or less). An application can process the first page of results, then the second page, and so on.
The LastEvaluatedKey from a Query response should be used as the ExclusiveStartKey for the next Query request. If there is not a LastEvaluatedKey element in a Query response, then you have retrieved the final page of results. If LastEvaluatedKey is not empty, it does not necessarily mean that there is more data in the result set. The only way to know when you have reached the end of the result set is when LastEvaluatedKey is empty.
Ref
GSI or ProjectionExpression
This ultimately depends on what you need. For example, if you simply just want certain attributes and the base tables keys are suitable for your access patterns then I would 100% use a ProjectionExpression and paginate the results until I have all the data.
You should only create a GSI should the keys of the base table not suit your access pattern needs. GSI will increase your table costs and you will be storing more data and consuming extra throughput when your use-case doesn't need to.

Related

Cost of adding a Global secondary Index to an existing DynamoDB Table

There is an existing table in DynamoDB with few billion records and I want to add a Global Secondary Index (GSI) to it. Does this consume any Read Request Units (RRU) from the table capacity OR a Write Request Units (WRU) for the index. I am interested to understand any costing involved related to this operation.
I am aware of the storage costs involved with respect to GSI (post creation).
Enabling a GSI won't cause more RRUs to be consumed on the base table. It uses a similar mechanism to DynamoDB streams for the replication to the underlying index table.
The GSI will consume its own Write Request Units when changes are written to it. Reading from the GSI also causes RRUs for that index to be consumed.
For cost estimation, you can focus on the number and size of items replicated to the index and the frequency of changes.
Adding GSI won't use any RCUs. it only uses WRUs and no. of WRUs depends on size of data and projection attributes. for any data up to 1 KB, it uses 1 WRUs. here is the official document from AWS: using global secondary indexs

DynamoDB read/write capacity explanation

I want to ask regarding the read/write capacity logic from DynamoDB. I looked at their documentation here https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
and I also googled how they are related to the items in the db but I don't understand their definition.
So in my case,
I have a table like this
Hash key called user_id and sort key called flag_key
each item would be like this
{user_id: 'user-1', flag_key: 'refresh_token', flag_value: 'some-random-refresh-token'}
or
{user_id: 'user-1', flag_key: 'roles', flag_value: ['role-a', 'role-b']}
and other things similar to the above.
Now if I want to query 3 things e.g. refresh_token, roles, and login_history
I would query the dynamoDB 3 times.
So my question is,
does DynamoDB charge me 3 read capacity for that? Even though the combined items are less than 4KB?
Yes, if you make 3 different queries, you will use 3 RCU minimum.
However, since you are retrieving items for the same partition key, you may use a single query operation. As long as you make a single query and it returns all the data you need and that data is less than 4KB in total you will only use 1 RCU (read capacity unit).

Dynamo DB Query and Scan Behavior Question

I thought of this scenario in querying/scanning in DynamoDB table.
What if i want to get a single data in a table and i have 20k data in that table, and the data that im looking for is at 19k th row. Im using Scan with a limit 1000 for example. Does it consume throughput even though for the 19th time it does not returned any Item?. For Instance,
I have a User table:
type UserTable{
userId:ID!
username:String,
password:String
}
then my query
var params = {
TableName: "UserTable",
FilterExpression: "username = :username",
ExpressionAttributeValues: {
":username": username
},
Limit: 1000
};
How to effectively handle this?
According to the doc
A Scan operation always scans the entire table or secondary index. It
then filters out values to provide the result you want, essentially
adding the extra step of removing data from the result set.
Performance
If possible, you should avoid using a Scan operation on a large table
or index with a filter that removes many results. Also, as a table or
index grows, the Scan operation slows
Read units
The Scan operation examines every item for the requested values and can
use up the provisioned throughput for a large table or index in a
single operation. For faster response times, design your tables and
indexes so that your applications can use Query instead of Scan
For better performance an less read unit consumption i advice you create GSI using it with query
A Scan operation will look at entire table and visits all records to find out which of them matches your filter criteria. So it will consume throughput enough to retrieve all the visited records. Scan operation is also very slow, especially if the table size is large.
To your second question, you can create a Secondary Index on the table with UserName as Hash key. Then you can convert the scan operation to a Query. That way it will only consume throughput enough for fetching one record.
Read about Secondary Indices Here

DynamoDB ConsistentRead for Global Indexes

I have next table structure:
ID string `dynamodbav:"id,omitempty"`
Type string `dynamodbav:"type,omitempty"`
Value string `dynamodbav:"value,omitempty"`
Token string `dynamodbav:"token,omitempty"`
Status int `dynamodbav:"status,omitempty"`
ActionID string `dynamodbav:"action_id,omitempty"`
CreatedAt time.Time `dynamodbav:"created_at,omitempty"`
UpdatedAt time.Time `dynamodbav:"updated_at,omitempty"`
ValidationToken string `dynamodbav:"validation_token,omitempty"`
and I have 2 Global Secondary Indexes for Value(ValueIndex) filed and Token(TokenIndex) field. Later somewhere in the internal logic I perform the Update of this entity and immediate read of this entity by one of this indexes(ValueIndex or TokenIndex) and I see the expected problem that data is not ready(I mean not yet updated). I can't use ConsistentRead for this cases, because this is Global Secondary Index and it doesn't support this options. As a result I can't run my load tests over this logic, because data is not ready when tests go in 10-20-30 threads. So my question - is it possible to solve this problem somewhere? or should I reorganize my table and split it to 2-3 different tables and move filed like Value, Token to HASH key or SORT key?
GSIs are updated asynchronously from the table they are indexing. The updates to a GSI typically occur in well under a second. So, if you're after immediate read of a GSI after insert / update / delete, then there is the potential to get stale data. This is how GSIs work - nothing you can do about that. However, you need to be really mindful of three things:
Make sure you keep your GSI lean - that is, only project the absolute minimum attributes that you need. Less data to write will make it quicker.
Ensure that your GSIs have the correct provisioned throughput. If it doesn't, it may not be able to keep up with activity in the table and therefore you'll get long delays in the GSI being kept in sync.
If an update causes the keys in the GSI to be updated, you'll need 2 units of throughput provisioned per update. In essence, DynamoDB will delete the item then insert a new item with the keys updated. So, even though your table has 100 provisioned writes, if every single write causes an update to your GSI key, you'll need to provision 200 write units.
Once you've tuned your DynamoDB setup and you still absolutely cannot handle the brief delay in GSIs, you'll probably need to use different technology. For example, even if you decided to split your table into multiple tables, it'll have the same (if not worse) impact. You'll update one table, then try to read the data from another table and you haven't yet inserted the values into a different table.
I suspect that once you tune DynamoDB for your situation, you'll get pretty damn close you what you want.

Indexing notifications table in DynamoDB

I am going to implement a notification system, and I am trying to figure out a good way to store notifications within a database. I have a web application that uses a PostgreSQL database, but a relational database does not seem ideal for this use case; I want to support various types of notifications, each including different data, though a subset of the data is common for all types of notifications. Therefore I was thinking that a NoSQL database is probably better than trying to normalize a schema in a relational database, as this would be quite tricky.
My application is hosted in Amazon Web Services (AWS), and I have been looking a bit at DynamoDB for storing the notifications. This is because it is managed, so I do not have to deal with the operations of it. Ideally, I'd like to have used MongoDB, but I'd really prefer not having to deal with the operations of the database myself. I have been trying to come up with a way to do what I want in DynamoDB, but I have been struggling, and therefore I have a few questions.
Suppose that I want to store the following data for each notification:
An ID
User ID of the receiver of the notification
Notification type
Timestamp
Whether or not it has been read/seen
Meta data about the notification/event (no querying necessary for this)
Now, I would like to be able to query for the most recent X notifications for a given user. Also, in another query, I'd like to fetch the number of unread notifications for a particular user. I am trying to figure out a way that I can index my table to be able to do this efficiently.
I can rule out simply having a hash primary key, as I would not be doing lookups by simply a hash key. I don't know if a "hash and range primary key" would help me here, as I don't know which attribute to put as the range key. Could I have a unique notification ID as the hash key and the user ID as the range key? Would that allow me to do lookups only by the range key, i.e. without providing the hash key? Then perhaps a secondary index could help me to sort by the timestamp, if this is even possible.
I also looked at global secondary indexes, but the problem with these are that when querying the index, DynamoDB can only return attributes that are projected into the index - and since I would want all attributes to be returned, then I would effectively have to duplicate all of my data, which seems rather ridiculous.
How can I index my notifications table to support my use case? Is it even possible, or do you have any other recommendations?
Motivation Note: When using a Cloud Storage like DynamoDB we have to be aware of the Storage Model because that will directly impact
your performance, scalability, and financial costs. It is different
than working with a local database because you pay not only for the
data that you store but also the operations that you perform against
the data. Deleting a record is a WRITE operation for example, so if
you don't have an efficient plan for clean up (and your case being
Time Series Data specially needs one), you will pay the price. Your
Data Model will not show problems when dealing with small data volume
but can definitely ruin your plans when you need to scale. That being
said, decisions like creating (or not) an index, defining proper
attributes for your keys, creating table segmentation, and etc will
make the entire difference down the road. Choosing DynamoDB (or more
generically speaking, a Key-Value store) as any other architectural
decision comes with a trade-off, you need to clearly understand
certain concepts about the Storage Model to be able to use the tool
efficiently, choosing the right keys is indeed important but only the
tip of the iceberg. For example, if you overlook the fact that you are
dealing with Time Series Data, no matter what primary keys or index
you define, your provisioned throughput will not be optimized because
it is spread throughout your entire table (and its partitions) and NOT
ONLY THE DATA THAT IS FREQUENTLY ACCESSED, meaning that unused data is
directly impacting your throughput just because it is part of the same
table. This leads to cases where the
ProvisionedThroughputExceededException is thrown "unexpectedly" when
you know for sure that your provisioned throughput should be enough for your
demand, however, the TABLE PARTITION that is being unevenly accessed
has reached its limits (more details here).
The post below has more details, but I wanted to give you some motivation to read through it and understand that although you can certainly find an easier solution for now, it might mean starting from the scratch in the near future when you hit a wall (the "wall" might come as high financial costs, limitations on performance and scalability, or a combination of all).
Q: Could I have a unique notification ID as the hash key and the user ID as the range key? Would that allow me to do lookups only by the range key, i.e. without providing the hash key?
A: DynamoDB is a Key-Value storage meaning that the most efficient queries use the entire Key (Hash or Hash-Range). Using the Scan operation to actually perform a query just because you don't have your Key is definitely a sign of deficiency in your Data Model in regards to your requirements. There are a few things to consider and many options to avoid this problem (more details below).
Now before moving on, I would suggest you reading this quick post to clearly understand the difference between Hash Key and Hash+Range Key:
DynamoDB: When to use what PK type?
Your case is a typical Time Series Data scenario where your records become obsolete as the time goes by. There are two main factors you need to be careful about:
Make sure your tables have even access patterns
If you put all your notifications in a single table and the most recent ones are accessed more frequently, your provisioned throughput will not be used efficiently.
You should group the most accessed items in a single table so the provisioned throughput can be properly adjusted for the required access. Additionally, make sure you properly define a Hash Key that will allow even distribution of your data across multiple partitions.
The obsolete data is deleted with the most efficient way (effort, performance and cost wise)
The documentation suggests segmenting the data in different tables so you can delete or backup the entire table once the records become obsolete (see more details below).
Here is the section from the documentation that explains best practices related to Time Series Data:
Understand Access Patterns for Time Series Data
For each table that you create, you specify the throughput
requirements. DynamoDB allocates and reserves resources to handle your
throughput requirements with sustained low latency. When you design
your application and tables, you should consider your application's
access pattern to make the most efficient use of your table's
resources.
Suppose you design a table to track customer behavior on your site,
such as URLs that they click. You might design the table with hash and
range type primary key with Customer ID as the hash attribute and
date/time as the range attribute. In this application, customer data
grows indefinitely over time; however, the applications might show
uneven access pattern across all the items in the table where the
latest customer data is more relevant and your application might
access the latest items more frequently and as time passes these items
are less accessed, eventually the older items are rarely accessed. If
this is a known access pattern, you could take it into consideration
when designing your table schema. Instead of storing all items in a
single table, you could use multiple tables to store these items. For
example, you could create tables to store monthly or weekly data. For
the table storing data from the latest month or week, where data
access rate is high, request higher throughput and for tables storing
older data, you could dial down the throughput and save on resources.
You can save on resources by storing "hot" items in one table with
higher throughput settings, and "cold" items in another table with
lower throughput settings. You can remove old items by simply deleting
the tables. You can optionally backup these tables to other storage
options such as Amazon Simple Storage Service (Amazon S3). Deleting an
entire table is significantly more efficient than removing items
one-by-one, which essentially doubles the write throughput as you do
as many delete operations as put operations.
Source:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html#GuidelinesForTables.TimeSeriesDataAccessPatterns
For example, You could have your tables segmented by month:
Notifications_April, Notifications_May, etc
Q: I would like to be able to query for the most recent X notifications for a given user.
A: I would suggest using the Query operation and querying using only the Hash Key (UserId) having the Range Key to sort the notifications by the Timestamp (Date and Time).
Hash Key: UserId
Range Key: Timestamp
Note: A better solution would be the Hash Key to not only have the UserId but also another concatenated information that you could calculate before querying to make sure your Hash Key grants you even access patterns to your data. For example, you can start to have hot partitions if notifications from specific users are more accessed than others... having an additional information in the Hash Key would mitigate this risk.
Q: I'd like to fetch the number of unread notifications for a particular user.
A: Create a Global Secondary Index as a Sparse Index having the UserId as the Hash Key and Unread as the Range Key.
Example:
Index Name: Notifications_April_Unread
Hash Key: UserId
Range Key : Unuread
When you query this index by Hash Key (UserId) you would automatically have all unread notifications with no unnecessary scans through notifications which are not relevant to this case. Keep in mind that the original Primary Key from the table is automatically projected into the index, so in case you need to get more information about the notification you can always resort to those attributes to perform a GetItem or BatchGetItem on the original table.
Note: You can explore the idea of using different attributes other than the 'Unread' flag, the important thing is to keep in mind that a Sparse Index can help you on this Use Case (more details below).
Detailed Explanation:
I would have a sparse index to make sure that you can query a reduced dataset to do the count. In your case you can have an attribute "unread" to flag if the notification was read or not, and use that attribute to create the Sparse Index. When the user reads the notification you simply remove that attribute from the notification so it doesn't show up in the index anymore. Here are some guidelines from the documentation that clearly apply to your scenario:
Take Advantage of Sparse Indexes
For any item in a table, DynamoDB will only write a corresponding
index entry if the index range key
attribute value is present in the item. If the range key attribute
does not appear in every table item, the index is said to be sparse.
[...]
To track open orders, you can create an index on CustomerId (hash) and
IsOpen (range). Only those orders in the table with IsOpen defined
will appear in the index. Your application can then quickly and
efficiently find the orders that are still open by querying the index.
If you had thousands of orders, for example, but only a small number
that are open, the application can query the index and return the
OrderId of each open order. Your application will perform
significantly fewer reads than it would take to scan the entire
CustomerOrders table. [...]
Instead of writing an arbitrary value into the IsOpen attribute, you
can use a different attribute that will result in a useful sort order
in the index. To do this, you can create an OrderOpenDate attribute
and set it to the date on which the order was placed (and still delete
the attribute once the order is fulfilled), and create the OpenOrders
index with the schema CustomerId (hash) and OrderOpenDate (range).
This way when you query your index, the items will be returned in a
more useful sort order.[...]
Such a query can be very efficient, because the number of items in the
index will be significantly fewer than the number of items in the
table. In addition, the fewer table attributes you project into the
index, the fewer read capacity units you will consume from the index.
Source:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForGSI.html#GuidelinesForGSI.SparseIndexes
Find below some references to the operations that you will need to programmatically create and delete tables:
Create Table
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
Delete Table
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
I'm an active user of DynamoDB and here is what I would do... Firstly, I'm assuming that you need to access notifications individually (e.g. to mark them as read/seen), in addition to getting the latest notifications by user_id.
Table design:
NotificationsTable
id - Hash key
user_id
timestamp
...
UserNotificationsIndex (Global Secondary Index)
user_id - Hash key
timestamp - Range key
id
When you query the UserNotificationsIndex, you set the user_id of the user whose notifications you want and ScanIndexForward to false, and DynamoDB will return the notification ids for that user in reverse chronological order. You can optionally set a limit on how many results you want returned, or get a max of 1 MB.
With regards to projecting attributes, you'll either have to project the attributes you need into the index, or you can simply project the id and then write "hydrate" functionality in your code that does a look up on each ID and returns the specific fields that you need.
If you really don't like that, here is an alternate solution for you... Set your id as your timestamp. For example, I would use the # of milliseconds since a custom epoch (e.g. Jan 1, 2015). Here is an alternate table design:
NotificationsTable
user_id - Hash key
id/timestamp - Range key
Now you can query the NotificationsTable directly, setting the user_id appropriately and setting ScanIndexForward to false on the sort of the Range key. Of course, this assumes that you won't have a collision where a user gets 2 notifications in the same millisecond. This should be unlikely, but I don't know the scale of your system.