NOT operator in GMP for C++ - c++

Is there any way to negate every bit of a mpz_class variable in C++ e.g finding its bitwise complement? I'm looking for something like
mpz_class num = 0b1110101;
num = ~num; // num should now be 0b0001010
but using ~num returns (-1) * num - 1 and the cmp function doesn't really work as it doesn't change any of the values of the parameters and it just returns 1 or -1.

Something like this does what you said
num = ((mpz_class(1) << mpz_sizeinbase(num.get_mpz_t(), 2)) - 1 - num);
But if you are looking for an absolute fixed length, then instead
num = ((mpz_class(1) << LENGTH) - 1 - num);
for some suitable value of LENGTH. Of course if you have a fixed length then (mpz_class(1) << LENGTH) - 1 is a constant and can be precalculated.

Related

How do i convert an array with booleans to a byte in Arduino/C/C++?

I'm new in arduino programming (c/c+). And would like to convert a array with bool's to an byte like. The booleans repreprents a buttons here.
bool array[] = {0,1,1,0}; // needs to convert to 0b0110
// bool array[] = {1,0,0,0}; // needs to convert to 0b1000
// bool array[] = {true,true,false,true}; // needs to convert to 0b1101
void setup(){
byte b = convert(array); // 0b0110
}
byte convert(bool array[]){
byte b = 0b + 0 + 1 + 1 + 0; // <- wrong stuff here :(
return b;
}
I can't rewrite all your code right now, but I can lay out a basic algorithm. I think it'll help you.
You need something, either in a loop or hardcoded (if you really only have four bits). For brevity, I'm going to call your array a and I'll just hardcode the calculation so it's super-clear.
If you think of the entries of your array in bits, it's like this:
eights fours twos ones
{ 0 , 1 , 1 , 0 }
You get these values by using the left-shift operator << which doubles the value for each shift.
So with the leftmost member of your array as the most significant bit, you do it like this:
shift 3 shift 2 shift 1 no shift
uint8_t b = (a[0] << 3) + (a[1] << 2) + (a[2] << 1) + a[3];
so -> no eights one four one two no ones
6 = 0 + 4 + 1 + 0
Do you see the pattern? Each less significant bit is shifted by one LESS to the left, halving its total value. The sum of these values is your byte value (uint8_t).
There are other notations which have the same effect, but this one is the easiest to understand.
Now to the booleans. You could use the ternary operator and test each element, something like this:
uint8_t b = (
(a[0] ? 1 << 3 : 0) +
(a[1] ? 1 << 2 : 0) +
(a[2] ? 1 << 1 : 0) +
(a[3] ? 1 : 0 )
);
Once you see this pattern, you can do all sorts of cool bitwise constructions with it.

How shifting operator works in finding number of different bit in two integer?

i was trying to find out number of different bit in two number. i find a solution here but couldn't understand how it works.it right shifting with i and and doing and with 1. actually what is happening behind it? and why do loop through 32?
void solve(int A, int B)
{
int count = 0;
// since, the numbers are less than 2^31
// run the loop from '0' to '31' only
for (int i = 0; i < 32; i++) {
// right shift both the numbers by 'i' and
// check if the bit at the 0th position is different
if (((A >> i) & 1) != ((B >> i) & 1)) {
count++;
}
}
cout << "Number of different bits : " << count << endl;
}
The loop runs from 0 up to and including 31 (not through 32) because these are all of the possible bits that comprise a 32-bit integer and we need to check them all.
Inside the loop, the code
if (((A >> i) & 1) != ((B >> i) & 1)) {
count++;
}
works by shifting each of the two integers rightward by i (cutting off bits if i > 0), extracting the rightmost bit after the shift (& 1) and checking that they're the same (i.e. both 0 or both 1).
Let's walk through an example: solve(243, 2182). In binary:
243 = 11110011
2182 = 100010000110
diff bits = ^ ^^^ ^ ^
int bits = 00000000000000000000000000000000
i = 31 0
<-- loop direction
The indices of i that yield differences are 0, 2, 4, 5, 6 and 11 (we check from the right to the left--in the first iteration, i = 0 and nothing gets shifted, so & 1 gives us the rightmost bit, etc). The padding to the left of each number is all 0s in the above example.
Also, note that there are better ways to do this without a loop: take the XOR of the two numbers and run a popcount on them (count the bits that are set):
__builtin_popcount(243 ^ 2182); // => 6
Or, more portably:
std::bitset<CHAR_BIT * sizeof(int)>(243 ^ 2182).count()
Another note: best to avoid using namespace std;, return a value instead of producing a print side effect and give the method a clearer name than solve, for example bit_diff (I realize this is from geeksforgeeks).

What does "number>>1" mean in "binary(number >> 1)" (Decimal to Binary conversion)

This code converts decimal integer into binary. This is working perfectly. I know this has been done using recursion method...but I am not understanding how the parameter is working on the line 8 of this function. thanks in advance :) .
void binary(int number) {
int remainder;
if(number <= 1) {
cout << number;
return;
}
remainder = number%2;
binary(number >> 1);
cout << remainder;
}
In most "C inspired languages*", the operator >> represents the right (bitwise) shift operator. So the code
binary(number >> 1);
passes a value to the recursive call to binary(), which is shifted by one bit to the right (i.e. the same as integer division by 2).
The recursion stops when the number is <= 1, i.e. there are no more powers of 2 to divide the remaining number through by.
In the interim, the modulo 2 (% 2) remainder for the call is held over and written after the inner recursive call, so that it will retain the correct position in the power of 2.
e.g.
12 Decimal
/ 2 = 6 remainder 0 // printed fourth
/ 2 = 3 remainder 0 // printed third
/ 2 = 1 remainder 1 // printed second
> <= 1 so Print 1 // printed first
So 1100 will be printed.
* Wikipedias terminology

How to Calculate 2^x mod n = 1 in less than 1 second

I want to write the program that Calculate 2^x mod n = 1 we have n is an integer but, we should calculate x.I wrote the code but my code work too slow in big n.Can you suggest me a good way that work less than 1 second to solve this problem.
here is my code:
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
long long int n,cntr=1,cheak;
cin >> n;
while (1)
{
if (n % 2 == 0)
{
break;
}
cheak=pow(2, cntr);
if (cheak % n == 1)
break;
cntr++;
}
cout << cntr << endl;
}
Some suggested modifications to your current approach: Note: a better approach follows!
Change your long long int to unsigned long long int. This will give you one more bit.
Change while (1) to while (cntr < 64). The size of unsigned long long is likely only 64 bits. (It's guaranteed to be at least 64 bits, but not larger than that.) You would then need to check whether your loop succeeded, however.
Change cheak to calculate 2n as 1ull << cntr. Make sure to include the ull suffix, which says this is an unsigned long long.
The << operator shifts bits to the left. Shifting all the bits to the left by 1 doubles the integer value of the number, assuming no bits "shifted away" off the left of the value. So, 1 << n will compute 2n.
The suffix ull indicates an integer constant is an unsigned long long. If you omit this suffix, 1 will be treated as an integer, and shift values above 31 will not do what you want.
However, all of the above are merely refinements on your current approach. It's worth understanding those refinements to better understand the language. They don't, however, look at the bigger picture.
Modular multiplication allows you to find (A * B) mod C as ( (A mod C) * (B mod C) ) mod C. How does that help us here?
We can rewrite the entire algorithm in a way that only limits N and X to the precision of the machine integers, and not 2N:
int main()
{
unsigned int modulus;
unsigned int raised = 2;
int power = 1;
std::cin >> modulus;
if (modulus % 2 == 1)
{
while (raised % modulus != 1)
{
raised = ((unsigned long long)raised * 2) % modulus;
power++;
}
std::cout << power << std::endl;
} else
{
std::cout << "modulus must be odd" << std::endl;
}
}
The cast to unsigned long long above allows modulus to be as large as 232 - 1, assuming unsigned int is 32 bits, without the computation overflowing.
With this approach, I was able to very quickly find answers even for very large inputs. For example, 111111111 returns 667332. I verified 2677332 mod 111111111 == 1 using the arbitrary precision calculator bc.
It's very fast. It computed 22323860 mod 4294967293 == 1 in less than 0.07 seconds on my computer.
Epilog: This highlights an important principle in programming: Really, this was a math problem more than a programming problem. Finding an efficient solution required knowing more about the problem domain than it did knowing about C++. The actual C++ code was trivial once we identified the correct mathematical approach.
It often goes this way, whether it's the mathematics or some other algorithmic aspect. And, it shouldn't surprise you to learn that discrete mathematics is where many of our graph and set algorithms come from. The programming language itself is a small piece of the big picture.
For each k between 1 and ceil(sqrt(n)), compute 2^k mod n and 2^(k ceil(sqrt(n))) mod n. Then compute the modular inverse of each 2^k. Sort all of the inverse(2^k)s into an array foo and the 2^(k ceil(sqrt(n))s into an array bar. There will be at least one value in common between the two arrays; find it. Say inverse(2^a) = 2^(b ceil(sqrt(n))). Then 2^(a + b ceil(sqrt(n))) = 1 (mod n).
How's your professor's sense of humor?
#include <iostream>
int main() { std::cout << 0 << '\n'; }
always prints a correct answer to the problem as stated.
pow is quite expensive in calculations, but if you have 2 as its first argument, you can better do a shift left, as shift left is equal to multiplying by 2:
cheak = (1 << cntr);

algorithm to figure out how many bytes are required to hold an int

sorry for the stupid question, but how would I go about figuring out, mathematically or using c++, how many bytes it would take to store an integer.
If you mean from an information theory point of view, then the easy answer is:
log(number) / log(2)
(It doesn't matter if those are natural, binary, or common logarithms, because of the division by log(2), which calculates the logarithm with base 2.)
This reports the number of bits necessary to store your number.
If you're interested in how much memory is required for the efficient or usual encoding of your number in a specific language or environment, you'll need to do some research. :)
The typical C and C++ ranges for integers are:
char 1 byte
short 2 bytes
int 4 bytes
long 8 bytes
If you're interested in arbitrary-sized integers, special libraries are available, and every library will have its own internal storage mechanism, but they'll typically store numbers via 4- or 8- byte chunks up to the size of the number.
You could find the first power of 2 that's larger than your number, and divide that power by 8, then round the number up to the nearest integer. So for 1000, the power of 2 is 1024 or 2^10; divide 10 by 8 to get 1.25, and round up to 2. You need two bytes to hold 1000!
If you mean "how large is an int" then sizeof(int) is the answer.
If you mean "how small a type can I use to store values of this magnitude" then that's a bit more complex. If you already have the value in integer form, then presumably it fits in 4, 3, 2, or 1 bytes. For unsigned values, if it's 16777216 or over you need 4 bytes, 65536-16777216 requires 3 bytes, 256-65535 needs 2, and 0-255 fits in 1 byte. The formula for this comes from the fact that each byte can hold 8 bits, and each bit holds 2 digits, so 1 byte holds 2^8 values, ie. 256 (but starting at 0, so 0-255). 2 bytes therefore holds 2^16 values, ie. 65536, and so on.
You can generalise that beyond the normal 4 bytes used for a typical int if you like. If you need to accommodate signed integers as well as unsigned, bear in mind that 1 bit is effectively used to store whether it is positive or negative, so the magnitude is 1 power of 2 less.
You can calculate the number of bits you need iteratively from an integer by dividing it by two and discarding the remainder. Each division you can make and still have a non-zero value means you have one more bit of data in use - and every 8 bits you're using means 1 byte.
A quick way of calculating this is to use the shift right function and compare the result against zero.
int value = 23534; // or whatever
int bits = 0;
while (value)
{
value >> 1;
++bits;
}
std::cout << "Bits used = " << bits << std::endl;
std::cout << "Bytes used = " << (bits / 8) + 1 << std::endl;
This is basically the same question as "how many binary digits would it take to store a number x?" All you need is the logarithm.
A n-bit integer can store numbers up to 2n-1. So, given a number x, ceil(log2 x) gets you the number of digits you need.
It's exactly the same thing as figuring out how many decimal digits you need to write a number by hand. For example, log10 123456 = 5.09151220... , so ceil( log10(123456) ) = 6, six digits.
Since nobody put up the simplest code that works yet, I mind as well do it:
unsigned int get_number_of_bytes_needed(unsigned int N) {
unsigned int bytes = 0;
while(N) {
N >>= 8;
++bytes;
};
return bytes;
};
assuming sizeof(long int) = 4.
int nbytes( long int x )
{
unsigned long int n = (unsigned long int) x;
if (n <= 0xFFFF)
{
if (n <= 0xFF) return 1;
else return 2;
}
else
{
if (n <= 0xFFFFFF) return 3;
else return 4;
}
}
The shortest code way to do this is as follows:
int bytes = (int)Math.Log(num, 256) + 1;
The code is small enough to be inlined, which helps offset the "slow" FP code. Also, there are no branches, which can be expensive.
Try this code:
// works for num >= 0
int numberOfBytesForNumber(int num) {
if (num < 0)
return 0;
else if (num == 0)
return 1;
else if (num > 0) {
int n = 0;
while (num != 0) {
num >>= 8;
n++;
}
return n;
}
}
/**
* assumes i is non-negative.
* note that this returns 0 for 0, when perhaps it should be special cased?
*/
int numberOfBytesForNumber(int i) {
int bytes = 0;
int div = 1;
while(i / div) {
bytes++;
div *= 256;
}
if(i % 8 == 0) return bytes;
return bytes + 1;
}
This code runs at 447 million tests / sec on my laptop where i = 1 to 1E9. i is a signed int:
n = (i > 0xffffff || i < 0) ? 4 : (i < 0xffff) ? (i < 0xff) ? 1 : 2 : 3;
Python example: no logs or exponents, just bit shift.
Note: 0 counts as 0 bits and only positive ints are valid.
def bits(num):
"""Return the number of bits required to hold a int value."""
if not isinstance(num, int):
raise TypeError("Argument must be of type int.")
if num < 0:
raise ValueError("Argument cannot be less than 0.")
for i in count(start=0):
if num == 0:
return i
num = num >> 1