Why are members from multiple inheritances of same class template ambiguous? - c++

When inheriting from a class template multiple times, there is the problem that multiple inheritance of these template classes makes member functions ambiguous (also here), because apparently it is defined that way in the standard.
Question: Why is this defined ambiguous?
Example:
#include <iostream>
template <typename T>
class Base
{
T val;
public:
Base(T val) : val(val) {}
void print(T v)
{
std::cout << val << " " << v << std::endl;
}
};
class Child : public Base<int>, public Base<std::string>
{
public:
Child() : Base<int>(0), Base<std::string>("0"){}
// Necessary for successful compilation
// using Base<int>::print;
// using Base<std::string>::print;
};
int main()
{
Child c;
c.print(1);
c.print(std::string("1"));
return 0;
}
produces
error: request for member ‘print’ is ambiguous
38 | c.print(1);
| ^~~~~
39 | c.print(std::string("1"));
| ^~~~~
note: candidates are: ‘void Base<T>::print(T) [with T = std::__cxx11::basic_string<char>]’
note: ‘void Base<T>::print(T) [with T = int]’
Instead of manually spelling out, as suggested here and here,
using Base<int>::print;
using Base<std::string>::print;
I can just create a template:
template<typename T>
void print(T v)
{
this->Base<T>::print(v);
}
I understand that with this template I tell the compiler in which base class to look, but I fail to understand why that would be necessary in the first place.

Related

what is the way to remove the first element from a std::span<T>?

when reading the document of std::span, I see there is no method to remove the first element from the std::span<T>.
Can you suggest a way to solve my issue?
The large picture of my problem(I asked in another question: How to instantiatiate a std::basic_string_view with custom class T, I got is_trivial_v<_CharT> assert error) is that I would like to have a std::basic_string_view<Token>, while the Token is not a trivial class, so I can't use std::basic_string_view, and someone suggested me to use std::span<Token> instead.
Since the basic_string_view has a method named remove_prefix which remove the first element, while I also need such kinds of function because I would like to use std::span<Token> as a parser input, so the Tokens will be matched, and consumed one by one.
Thanks.
EDIT 2023-02-04
I try to derive a class named Span from std::span, and add the remove_prefix member function, but it looks like I still have build issues:
#include <string_view>
#include <vector>
#include <span>
// derived class, add remove_prefix function to std::span
template<typename T>
class Span : public std::span<T>
{
public:
// Inheriting constructors
using std::span<T>::span;
// add a public function which is similar to std::string_view::remove_prefix
constexpr void remove_prefix(std::size_t n) {
*this = subspan(n);
}
};
struct Token
{
Token(){};
Token(const Token& other)
{
lexeme = other.lexeme;
type = other.type;
}
std::string_view lexeme;
int type;
// equal operator
bool operator==(const Token& other)const {
return (this->lexeme == other.lexeme) ;
}
};
template <typename T>
struct Viewer;
template <>
struct Viewer<Token>
{
using type = Span<Token>; // std::span or derived class
};
template <>
struct Viewer<char>
{
using type = std::string_view;
};
template <typename T> using ViewerT = typename Viewer<T>::type;
template <typename T>
class Parser
{
using v = ViewerT<T>;
};
// a simple parser demo
template <typename Base, typename T>
struct parser_base {
using v = ViewerT<T>;
constexpr auto operator[](v& output) const noexcept;
};
template<typename T>
struct char_ final : public parser_base<char_<T>, T> {
using v = ViewerT<T>;
constexpr explicit char_(const T ch) noexcept
: ch(ch)
{}
constexpr inline bool visit(v& sv) const& noexcept {
if (!sv.empty() && sv.front() == ch) {
sv.remove_prefix(1);
return true;
}
return false;
}
private:
T ch;
};
template <typename Parser, typename T>
constexpr bool parse(Span<T> &input, Parser const& parser) noexcept {
return parser.visit(input);
}
int main()
{
Token kw_class;
kw_class.lexeme = "a";
std::vector<Token> token_stream;
token_stream.push_back(kw_class);
token_stream.push_back(kw_class);
token_stream.push_back(kw_class);
Span<Token> token_stream_view{&token_stream[0], 3};
auto p = char_(kw_class);
parse(token_stream_view, p);
return 0;
}
The build error looks like below:
[ 50.0%] g++.exe -Wall -std=c++20 -fexceptions -g -c F:\code\test_crtp_twoargs\main.cpp -o obj\Debug\main.o
F:\code\test_crtp_twoargs\main.cpp: In member function 'constexpr void Span<T>::remove_prefix(std::size_t)':
F:\code\test_crtp_twoargs\main.cpp:52:17: error: there are no arguments to 'subspan' that depend on a template parameter, so a declaration of 'subspan' must be available [-fpermissive]
52 | *this = subspan(n);
| ^~~~~~~
F:\code\test_crtp_twoargs\main.cpp:52:17: note: (if you use '-fpermissive', G++ will accept your code, but allowing the use of an undeclared name is deprecated)
F:\code\test_crtp_twoargs\main.cpp: In instantiation of 'constexpr void Span<T>::remove_prefix(std::size_t) [with T = Token; std::size_t = long long unsigned int]':
F:\code\test_crtp_twoargs\main.cpp:113:29: required from 'constexpr bool char_<T>::visit(v&) const & [with T = Token; v = Span<Token>]'
F:\code\test_crtp_twoargs\main.cpp:125:24: required from 'constexpr bool parse(Span<T>&, const Parser&) [with Parser = char_<Token>; T = Token]'
F:\code\test_crtp_twoargs\main.cpp:141:10: required from here
F:\code\test_crtp_twoargs\main.cpp:52:24: error: 'subspan' was not declared in this scope, and no declarations were found by argument-dependent lookup at the point of instantiation [-fpermissive]
52 | *this = subspan(n);
| ~~~~~~~^~~
F:\code\test_crtp_twoargs\main.cpp:52:24: note: declarations in dependent base 'std::span<Token, 18446744073709551615>' are not found by unqualified lookup
F:\code\test_crtp_twoargs\main.cpp:52:24: note: use 'this->subspan' instead
F:\code\test_crtp_twoargs\main.cpp:52:15: error: no match for 'operator=' (operand types are 'Span<Token>' and 'std::span<Token, 18446744073709551615>')
52 | *this = subspan(n);
| ~~~~~~^~~~~~~~~~~~
F:\code\test_crtp_twoargs\main.cpp:44:7: note: candidate: 'constexpr Span<Token>& Span<Token>::operator=(const Span<Token>&)'
44 | class Span : public std::span<T>
| ^~~~
F:\code\test_crtp_twoargs\main.cpp:44:7: note: no known conversion for argument 1 from 'std::span<Token, 18446744073709551615>' to 'const Span<Token>&'
F:\code\test_crtp_twoargs\main.cpp:44:7: note: candidate: 'constexpr Span<Token>& Span<Token>::operator=(Span<Token>&&)'
F:\code\test_crtp_twoargs\main.cpp:44:7: note: no known conversion for argument 1 from 'std::span<Token, 18446744073709551615>' to 'Span<Token>&&'
Any idea on how to fix this issue?
Also, I don't know how to make a general parse function:
template <typename Parser, typename T>
constexpr bool parse(Span<T> &input, Parser const& parser) noexcept {
return parser.visit(input);
}
Currently, the first argument of the parse should be a Viewer like type?
EDIT2023-02-05
Change the function as below, the above code can build correctly. This is from Benjamin Buch's answer.
constexpr void remove_prefix(std::size_t n) {
auto& self = static_cast<std::span<T>&>(*this);
self = self.subspan(n);
}
There is still one thing remains: How to generalize the parse function to accept both input types of std::string_view and Span<Token>?
If I change the parse function to this:
template <typename Parser, typename T>
constexpr bool parse(ViewerT<T> &input, Parser const& parser) noexcept {
return parser.visit(input);
}
I got such compile error:
[ 50.0%] g++.exe -Wall -std=c++20 -fexceptions -g -c F:\code\test_crtp_twoargs\main.cpp -o obj\Debug\main.o
F:\code\test_crtp_twoargs\main.cpp: In function 'int main()':
F:\code\test_crtp_twoargs\main.cpp:143:24: error: no matching function for call to 'parse(Span<Token>&, char_<Token>&)'
143 | bool result = parse(token_stream_view, p);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~
F:\code\test_crtp_twoargs\main.cpp:125:16: note: candidate: 'template<class Parser, class T> constexpr bool parse(ViewerT<T>&, const Parser&)'
125 | constexpr bool parse(ViewerT<T> &input, Parser const& parser) noexcept {
| ^~~~~
F:\code\test_crtp_twoargs\main.cpp:125:16: note: template argument deduction/substitution failed:
F:\code\test_crtp_twoargs\main.cpp:143:24: note: couldn't deduce template parameter 'T'
143 | bool result = parse(token_stream_view, p);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~
Any ideas?
Thanks.
BTW: I have to explicitly instantiation of the parse function call like:
bool result = parse<decltype(p), Token>(token_stream_view, p);
to workaround this issue.
Call subspan with 1 as only (template) argument to get a new span, which doesn't contain the first element.
If you use a span with a static extend, you need a new variable because the data type changes by subspan.
#include <string_view>
#include <iostream>
#include <span>
int main() {
std::span<char const, 12> text_a("a test-span");
std::cout << std::string_view(text_a) << '\n';
std::span<char const, 10> text_b = text_a.subspan<2>();
std::cout << std::string_view(text_b) << '\n';
}
If you have a dynamic extend, you can assign the result to the original variable.
#include <string_view>
#include <iostream>
#include <span>
int main() {
std::span<char const> text("a test-span");
std::cout << std::string_view(text) << '\n';
text = text.subspan(2);
std::cout << std::string_view(text) << '\n';
}
The implementation of a modifying inplace subspan version is only possible for spans with a dynamic extend. It can be implemented as a free function.
#include <string_view>
#include <iostream>
#include <span>
template <typename T>
constexpr void remove_front(std::span<T>& self, std::size_t const n) noexcept {
self = self.subspan(n);
}
int main() {
std::span<char const> text("a test-span");
std::cout << std::string_view(text) << '\n';
remove_front(text, 2);
std::cout << std::string_view(text) << '\n';
}
You can use your own spans derived from std::span if you prefer the dot-call.
#include <string_view>
#include <iostream>
#include <span>
template <typename T>
struct my_span: std::span<T> {
using std::span<T>::span;
constexpr void remove_front(std::size_t const n) noexcept {
auto& self = static_cast<std::span<T>&>(*this);
self = self.subspan(n);
}
};
int main() {
my_span<char const> my_text("a test-span");
std::cout << std::string_view(my_text) << '\n';
my_text.remove_front(2);
std::cout << std::string_view(my_text) << '\n';
}
You can also write a wrapper class to call via dot syntax. This way you can additionally implement cascadable modification calls by always returning the a reference modifier class.
#include <string_view>
#include <iostream>
#include <span>
template <typename T>
class span_modifier {
public:
constexpr span_modifier(std::span<T>& span) noexcept: span_(span) {}
constexpr span_modifier& remove_front(std::size_t const n) noexcept {
span_ = span_.subspan(n);
return *this;
}
private:
std::span<T>& span_;
};
template <typename T>
constexpr span_modifier<T> modify(std::span<T>& span) noexcept {
return span;
}
int main() {
std::span<char const> text("a test-span");
std::cout << std::string_view(text) << '\n';
modify(text).remove_front(2).remove_front(5);
std::cout << std::string_view(text) << '\n';
}
Note I use the template function modify to create an object of the wrapper class, because the names of classes cannot be overloaded. Therefore class names should always be a bit more specific. The function modify can also be overloaded for other data types, which then return a different wrapper class. This results in a simple intuitive and consistent interface for modification wrappers.
You can write remove_prefix of your version,
template <typename T>
constexpr void remove_prefix(std::span<T>& sp, std::size_t n) {
sp = sp.subspan(n);
}
Demo

c++ type traits : ensuring a subclass implements a method

There is a virtual class C.
I would like to ensure that any concrete subclass inheriting from C implements a function "get" (and have a clear compile time error if one does not)
Adding a virtual "get" function to C would not work in this case, as C subclasses could implement get functions of various signatures.
(in the particular case I am working on, pybind11 will be used to creates bindings of the subclasses, and pybind11 is robust of the "get" method of B to have a wide range of signatures)
Checking at compile time if a class has a function can be done with type traits, e.g.
template<class T>
using has_get =
decltype(std::declval<T&>().get(std::declval<int>()));
My question is where in the code should I add a static assert (or smthg else) to check the existence of the "get" function. Ideally, this should be part of C declaration, as things should be easy for new user code inheriting from it. It may also be that a completely different approach would be better, which I'd like to hear.
Not sure what standard you are using but with C++20 you can do something like this using concepts
template<typename T>
concept HasGet = requires (T a)
{
a.get();
};
template<HasGet T>
void foo(T x)
{
x.get();
}
struct Foo
{
int get() {
return 1;
}
};
struct Bar
{
};
int main()
{
foo(Foo{});
foo(Bar{});
}
Error:
<source>: In function 'int main()':
<source>:27:12: error: use of function 'void foo(T) [with T = Bar]' with unsatisfied constraints
27 | foo(Bar{});
| ^
<source>:8:6: note: declared here
8 | void foo(T x)
| ^~~
<source>:8:6: note: constraints not satisfied
<source>: In instantiation of 'void foo(T) [with T = Bar]':
<source>:27:12: required from here
<source>:2:9: required for the satisfaction of 'HasGet<T>' [with T = Bar]
<source>:2:18: in requirements with 'T a' [with T = Bar]
<source>:4:9: note: the required expression 'a.get()' is invalid
4 | a.get();
EDIT:
As C++14 is preferred, if I understand you requirements, this is something you can do in C++14
#include <type_traits>
#include <utility>
using namespace std;
template<typename... Ts>
using void_t = void;
template<typename T, typename = void>
struct has_get
: false_type
{};
template<typename T>
struct has_get<T, void_t<decltype(declval<T>().get())>>
: true_type
{};
template<typename T>
static constexpr auto has_get_v = has_get<T>::value;
struct P
{
};
struct C1 : P
{
int get()
{
return 1;
}
};
struct C2 : P
{
float get()
{
return 1.0F;
}
};
struct C3
{
bool get()
{
return true;
}
};
template<typename T>
enable_if_t<is_base_of<P, decay_t<T>>::value && has_get_v<decay_t<T>>> foo(T x)
{
x.get();
}
int main()
{
foo(C1{});
foo(C2{});
foo(C3{});
}
ERROR:
<source>: In function 'int main()':
<source>:61:11: error: no matching function for call to 'foo(C3)'
61 | foo(C3{});
| ^
<source>:52:77: note: candidate: 'template<class T> std::enable_if_t<(std::is_base_of<P, typename std::decay<_Tp>::type>::value && has_get<typename std::decay<_Tp>::type>::value)> foo(T)'
52 | enable_if_t<is_base_of<P, decay_t<T>>::value && has_get<decay_t<T>>::value> foo(T x)
| ^~~
<source>:52:77: note: template argument deduction/substitution failed:
In file included from <source>:1:
/opt/compiler-explorer/gcc-10.1.0/include/c++/10.1.0/type_traits: In substitution of 'template<bool _Cond, class _Tp> using enable_if_t = typename std::enable_if::type [with bool _Cond = false; _Tp = void]':
<source>:52:77: required by substitution of 'template<class T> std::enable_if_t<(std::is_base_of<P, typename std::decay<_Tp>::type>::value && has_get<typename std::decay<_Tp>::type>::value)> foo(T) [with T = C3]'
<source>:61:11: required from here
/opt/compiler-explorer/gcc-10.1.0/include/c++/10.1.0/type_traits:2554:11: error: no type named 'type' in 'struct std::enable_if<false, void>'
2554 | using enable_if_t = typename enable_if<_Cond, _Tp>::type;

Is there an analogue of keyword "where" from C# in C++?

I need to create a template class in C++. I need to make sure that the type for the template parameter will be a class with 1 int field and 1 string field (there can be more fields, but these are mandatory).
For example, in C# I could define an interface with methods or properties, like this:
interface MyInterface {
int GetSomeInteger();
string GetSomeString();
}
and then I could use it in my template class:
class MyClass<T> where T: MyInterface {}
Is there any way to do something like this in C++?
C++20 offers you the closest solution to C#:
#include <concepts>
template <class T>
concept MyInterface = requires(T x)
{
{ x.GetSomeInteger() } -> std::same_as<int>;
};
And then:
template <MyInterface T>
struct MyClass
{
// ...
};
The most common way of doing this in current versions of C++ is a technique known as "duck-typing".
It simply involves just using T as if it implements the interface and let the compiler fail if you use the class with an incompatible type.
template<typename T>
class MyClass<T> {
int foo() {
T val;
return val.GetSomeInteger();
}
};
class Valid {
public:
int GetSomeInteger() {return 0;}
};
class Invalid {
};
int main() {
// works fine
MyClass<Valid> a;
a.foo();
// fails to compile
MyClass<Invalid> b;
b.foo();
}
Mind you, there ARE ways of enforcing this a bit more formally, but the amount of code involved is often not worth the benefit.
C++20 has concepts. Some compilers already support them. For example the following with gcc (trunk) -std=c++2a -fconcepts:
#include <string>
#include <iostream>
#include <concepts>
template<typename T>
concept HasGetIntAndString = requires(T& a) {
{ a.GetSomeInteger() } -> std::same_as<int>;
{ a.GetSomeString() } -> std::same_as<std::string>;
};
template <HasGetIntAndString T>
void bar(const T& t){
std::cout << t.GetSomeInteger() << " " << t.GetSomeString();
}
struct foo {
int GetSomeInteger() const { return 42; }
std::string GetSomeString() const { return "some"; }
};
struct foo_not {
std::string GetSomeInteger() { return "some"; }
int GetSomeString() { return 42; }
};
int main(){
bar( foo{});
bar( foo_not{});
}
results in:
<source>: In function 'int main()':
<source>:28:19: error: use of function 'void bar(const T&) [with T = foo_not]' with unsatisfied constraints
28 | bar( foo_not{});
| ^
<source>:12:6: note: declared here
12 | void bar(const T& t){
| ^~~
<source>:12:6: note: constraints not satisfied
<source>: In instantiation of 'void bar(const T&) [with T = foo_not]':
<source>:28:19: required from here
<source>:6:9: required for the satisfaction of 'HasGetIntAndString<T>' [with T = foo_not]
<source>:6:30: in requirements with 'T& a' [with T = foo_not]
<source>:7:23: note: 'a.GetSomeInteger()' does not satisfy return-type-requirement
7 | { a.GetSomeInteger() } -> std::same_as<int>;
| ~~~~~~~~~~~~~~~~^~
<source>:8:22: note: 'a.GetSomeString()' does not satisfy return-type-requirement
8 | { a.GetSomeString() } -> std::same_as<std::string>;
| ~~~~~~~~~~~~~~~^~
cc1plus: note: set '-fconcepts-diagnostics-depth=' to at least 2 for more detail
Live Demo
Before C++20 you can use SFINAE. However, often it is simpler and more appropriate to not restrict the tempalte parameter more than necessary. If the template does call T::GetSomeInteger() but the type T has no such method, the template will already fail to compile without taking any further measures. SFINAE is mainly to provide nicer error messages.

Call type's tagged constructor if available, default otherwise

I'm trying to build up some code that wants to declare a local variable (say of type test, as shown below). Construction of that local variable should use a constructor that takes a special Tag argument if such a constructor exists, or the default constructor otherwise.
What we've been able to come up with is as follows, where we specialize to construct either a void argument or a Tag argument, but compilers don't like that:
#include <iostream>
using std::cout;
struct Tag { };
template <bool z>
struct helper {
using type = void;
};
template <>
struct helper<true> {
using type = Tag;
};
template <bool z>
static typename helper<z>::type get_arg() {
return typename helper<z>::type();
}
struct test {
test(void) { cout << "test(void)\n"; }
test(Tag x) { cout << "test(Tag)\n"; }
test(const test&) = delete;
test(test&&) = delete;
};
template <typename T>
void try_construct() {
// we would be selecting from one of these by template metaprogramming
T a{typename helper<false>::type()};
T b{typename helper<true>::type()};
T c{get_arg<false>()};
T d{get_arg<true>()};
// Then do stuff with the suitably-constructed instance of T
// . . .
}
int main(void) {
try_construct<test>();
return 0;
}
Compiler output:
$ g++ -std=c++11 -c foo.cpp
foo.cpp: In instantiation of 'void try_construct() [with T = test]':
foo.cpp:38:23: required from here
foo.cpp:30:37: error: no matching function for call to 'test::test(<brace-enclosed initializer list>)'
T a{typename helper<false>::type()};
^
foo.cpp:30:37: note: candidates are:
foo.cpp:22:3: note: test::test(Tag)
test(Tag x) { cout << "test(Tag)\n"; }
^
foo.cpp:22:3: note: no known conversion for argument 1 from 'void' to 'Tag'
foo.cpp:21:3: note: test::test()
test(void) { cout << "test(void)\n"; }
^
foo.cpp:21:3: note: candidate expects 0 arguments, 1 provided
foo.cpp:33:23: error: no matching function for call to 'test::test(<brace-enclosed initializer list>)'
T c{get_arg<false>()};
^
foo.cpp:33:23: note: candidates are:
foo.cpp:22:3: note: test::test(Tag)
test(Tag x) { cout << "test(Tag)\n"; }
^
foo.cpp:22:3: note: no known conversion for argument 1 from 'helper<false>::type {aka void}' to 'Tag'
foo.cpp:21:3: note: test::test()
test(void) { cout << "test(void)\n"; }
^
foo.cpp:21:3: note: candidate expects 0 arguments, 1 provided
We know how to test on the presence of the constructor, so I've left that our of the example. If that does end up being relevant in a solution taking a different approach, feel free to go that route.
Our ultimate goal is to require one of the default constructor or the Tag constructor, and neither of the copy or move constructors.
namespace details {
template<class T>
T maybe_tag_construct(std::true_type) {
return T(Tag{});
}
template<class T>
T maybe_tag_construct(std::false_type) {
return T();
}
}
template<class T>
T maybe_tag_construct() {
return details::maybe_tag_construct<T>( std::is_constructible<T, Tag>{} );
}
now auto t =maybe_tag_construct<test>(); constructs test from Tag iff it works.
It also does elided move construction before c++17, and in c++17 no move construction occurs.
In order to pass an instance of void around, you need the "regular void" proposal, which is on track for c++2a last I checked.
I think something along these lines works:
#include <type_traits>
template <typename T, bool B = std::is_constructible<Tag, T>> struct H;
template <typename T>
struct H<T, false> {
T t;
H() : t() {}
};
template <typename T>
struct H<T, true> {
T t;
H() : t(Tag) {}
};
try_construct() {
H<T> h;
h.t;
}

Clang++-3.7 CRTP compilation error "no named member" in parent's template argument

In the below code I am trying to use CRTP to use the static member "value" from the Child class in the Parent class. When compiling the code with g++ 5.2.1 with the "-pedantic" flag, I am able to compile as expected, and on execution both c.print_value(); and Child<int,4>::print_value(); print out 4.
#include <iostream>
template <typename DE>
struct Parent
{
static const int value = DE::value;
static void print_value ()
{
std::cout << "Value : " << value << '\n';
}
};
template <typename T, int N>
struct Child : Parent< Child<T,N> >
{
static const int value = N;
};
int
main ()
{
Child<int,4> c;
c.print_value();
Child<int,4>::print_value();
}
However when compiling the same code with clang++3.7, I encounter compilation failures.
crtp_clang_error.cpp:9:32: error: no member named 'value' in 'Child<int, 4>'
static const int value = DE::value;
~~~~^
crtp_clang_error.cpp:27:16: note: in instantiation of template class 'Parent<Child<int, 4> >' requested here
struct Child : Parent< Child<T,N> >
^
crtp_clang_error.cpp:38:16: note: in instantiation of template class 'Child<int, 4>' requested here
Child<int,4> c;
^
crtp_clang_error.cpp:40:3: error: no member named 'print_value' in 'Child<int, 4>'; did you mean 'Parent<Child<int, 4> >::print_value'?
Child<int,4>::print_value();
^~~~~~~~~~~~~~~~~~~~~~~~~
Parent<Child<int, 4> >::print_value
crtp_clang_error.cpp:11:15: note: 'Parent<Child<int, 4> >::print_value' declared here
static void print_value ()
I am not sure if this a Clang++ bug or a GCC hack. Would very much appreciate some insights.