BOOST_PP_SEQ_FOR_EACH cannot expand as expected - c++

Code as below or on godbolt.
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/seq/for_each.hpp>
#include <boost/preprocessor/seq/seq.hpp>
#include <boost/preprocessor/seq/transform.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#define APPLY_MACRO(state, macro, elem) macro(elem)
// (type)(name) --> type
#define PARAM_TYPE(seq) \
BOOST_PP_SEQ_ELEM(0, seq)
// ((type1)(name1))((type2)(name2))...((typeN)(nameN)) -> type1, type2, ... , typeN
#define PARAMS_TYPE_ENUM(seq) \
BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(APPLY_MACRO, PARAM_TYPE, seq))
#define PARAMS_TYPE_ENUM2(r, data, seq) \
BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(APPLY_MACRO, PARAM_TYPE, seq))
PARAMS_TYPE_ENUM ( ((typename)(T)) ((bool)(b)) ) // test -> typename, bool
PARAMS_TYPE_ENUM2(,, ((typename)(T)) ((bool)(b)) ) // test -> typename, bool
BOOST_PP_SEQ_FOR_EACH( APPLY_MACRO, PARAMS_TYPE_ENUM, ( ((typename)(T)) ((bool)(b)) ) ) // cannot expand
BOOST_PP_SEQ_FOR_EACH( PARAMS_TYPE_ENUM2, _, ( ((typename)(T)) ((bool)(b)) ) ) // typename, bool
BOOST_PP_SEQ_FOR_EACH(macro, data, seq) will expand to
macro(r, data, a) macro(r, data, b) macro(r, data, c)
I came up with this APPLY_MACRO as the 'macro' in BOOST_PP_SEQ_FOR_EACH and use the real macro (e.g. PARAM_TYPE and PARAMS_TYPE_ENUM) that takes an element in the seq as the 'data'.
But the second to last line cannot expand as expected. It expands to
APPLY_MACRO(1, PARAM_TYPE, (typename)(T)), APPLY_MACRO(2, PARAM_TYPE, (bool)(b))
The last line which is the traditional way expands as expected.
Why can't the second to last line be expanded to "typename, bool"? Is this APPLY_MACRO + PARAMS_TYPE_ENUM as data a wrong practice for BOOST_PP_SEQ_FOR_EACH?

You can't apply one macro twice. The macro is "painted blue".
BOOST_PP_SEQ_FOR_EACH( APPLY_MACRO, ...
# APPLY_MACRO is expanded inside PP_SEQ_FOR_EACH
> APPLY_MACRO(..., PARAMS_TYPE_ENUM, elem) PARAMS_TYPE_ENUM(elem)
> PARAMS_TYPE_ENUM(elem)
> BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(APPLY_MACRO, ....
# You can't expand again same macro.
> APPLY_MACRO(...)
Use a different name, or explore how boost does it with _R macros like BOOST_PP_SEQ_FOR_EACH_R.

Related

Can we nest #define and #if in C language?

I want to write the following code but it can't be compiled.
(core code piece)
void g();
#define MACRO(x) \
#if (x == 0) \
g(); \
#else \
h(); \
#endif
MACRO(0)
I think the reason may be that #if and #else must be placed in different lines but #define statement can only have one line. I don't know how can I fix the code. Can anyone help me? Thank you very much!
Update: This question occurs when I want to export a list of functions, each of which has one or more internal implementation. All the implementations may be of best perforamance depending on the parameters. See the code below.
void fun_1_algo_1(int x);
void fun_1_algo_2(int x);
void fun_2_algo_1(int x);
void fun_2_algo_2(int x);
// fun_1 and fun_2 both have two implementations.
// If x > 1, algo_1 is faster; otherwise algo_2 is faster
void fun_3_aogo_1(int x);
void fun_4_aogo_1(int x);
#define CHECK(x) .... //check if x is a legal number
#define Export(i) \
void fun_##i(int x) { \
CHECK(x); \
#if (i >= 1 && i <= 2) \
if (x > 1) fun_##i##_algo_1(x); \
else fun_##i##_algo_2(x); \
#else \
fun_##i##_algo_1(x); \
#endif \
}
Export(1)
Export(2)
Export(3)
Export(4)
In this example, I can't change #if to if because fun_3_algo_2(x) is undefined. The exported function will be used as a library.
No, you can't do that. You could approximate a solution using templates though.
// generic template to call h() for all values of x
template<uint32_t x>
struct func_chooser {
static inline void f()
{ h(); }
};
// specialise for the zero case (calls g())
template<>
struct func_chooser<0> {
static inline void f()
{ g(); }
};
// the macro just defers to the template
#define MACRO(x) \
func_chooser<x>::f();
Is there a reason you need the inner test to be a macro?
#define MACRO(x) ((x) == 0 ? g() : h())
will give you the behavior you want, and if you call it with a constant
MACRO(0)
the optimizer will constant fold and dead code eliminate it (so you'll end up with just a single call in the executable.) The only real drawback of this is that you can call it with a non-constant and it will compile to a test and two calls.
If you really need to do this in the preprocessor, you can use various token-pasting tricks to build macros that "evaluate" expressions by defining lots of macros covering every possible combination. BOOST_PP exists which may do a lot of this for you, or you can define a minimal set that meets your needs. In your case, something like:
#define IF1OR2ELSE_1(T, F) T
#define IF1OR2ELSE_2(T, F) T
#define IF1OR2ELSE_3(T, F) F
#define IF1OR2ELSE_4(T, F) F
#define IF1OR2ELSE_(I, T, F) IF1OR2ELSE_##I(T, F)
#define IF1OR2ELSE(I, T, F) IF1OR2ELSE_(I, T, F)
#define Export(i) \
void fun_##i(int x) { \
CHECK(x); \
IF1OR2ELSE(i, \
if (x > 1) fun_##i##_algo_1(x); \
else fun_##i##_algo_2(x); , \
fun_##i##_algo_1(x); \
) \
}
Export(1)
Export(2)
Export(3)
Export(4)
should do the trick. The basic idea is that the macro IF1OR2ELSE will expand to either its 2nd or 3rd argument depending on whether the first argument is 1 or 2 -- note that that is a token not a value, so something like 1U is not the same as 1.
You can generalize the above by building a bunch of helper macros that evaluate expressions (like BOOST_PP does)
#define IFELSE_true(T, F) T
#define IFELSE_false(T, F) F
#define IFELSE_(C, T, F) IFELSE_##C(T, F)
#define IFELSE(C, T, F) IFELSE_(C, T, F)
#define EQ_0_0 true
#define EQ_0_1 false
#define EQ_0_2 false
... many (100s?) of these for many different values
#define EQ_4_4 true
#define EQ_(A,B) EQ_##A##_##B
#define EQ(A,B) EQ(A, B)
#define OR_true_true true
#define OR_true_false true
#define OR_false_true true
#define OR_false_false false
#define OR_(A, B) OR_##A##_##B
#define OR(A, B) OR_(A, B)
now you can use
IFELSE(OR(EQ(i,1), EQ(i, 2)),
..code for i == 1 or i == 2 ,
..code for other cases
)
in your macros.
No, you cannot use #if (or any other preprocessor directive) inside a #define. Just use an ordinary if and let the compiler optimize out the unused code branch as needed.
#define MACRO(x) \
{ \
if (x == 0) \
g(); \
else \
h(); \
}
#endif
MACRO(0)

C++ or macro magic to generate method and forward arguments

I would like to create a magical macro, or anything, that would generate a something like this:
MAGICAL_MACRO(return_type, method_name, ...)
should work like this:
MAGICAL_MACRO(void, Foo, int a, int b)
->
virtual void Foo(int a, int b)
{
_obj->Foo(a, b);
}
Is this possible? I am afraid it is not.
Two questions: Are you open to a slightly different syntax for the arguments of MAGIC_MACRO? And can you use the Boost.Preprocessor header-only library?
If both answers are "yes", I have a solution for you:
#define MAGICAL_MACRO(Type, Name, ...) \
virtual Type Name(MAGICAL_GENERATE_PARAMETERS(BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))) {\
_obj->Name(MAGICAL_GENERATE_ARGUMENTS(BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))); \
}
#define MAGICAL_GENERATE_PARAMETERS(Args) \
BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(MAGICAL_MAKE_PARAMETER, %%, Args))
#define MAGICAL_GENERATE_ARGUMENTS(Args) \
BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(MAGICAL_MAKE_ARGUMENT, %%, Args))
#define MAGICAL_MAKE_PARAMETER(s, Unused, Arg) \
BOOST_PP_TUPLE_ELEM(2, 0, Arg) BOOST_PP_TUPLE_ELEM(2, 1, Arg)
#define MAGICAL_MAKE_ARGUMENT(s, Unused, Arg) \
BOOST_PP_TUPLE_ELEM(2, 1, Arg)
Usage looks like this:
MAGICAL_MACRO(void, Foo, (int, a), (int, b))
[Live example]
The %% used in the macro definitions is just my way of indicating "this value is not used." You could use pretty much anything else there (unless it contains a comma).
The above solution will work as long as the types involved are not spelled with a comma. If they are, introduce a type alias for them (typedef or using). Note that it is possible to get around this within the preprocessor magic itself, but it complicates already ugly code.
If you don't mind changing the syntax for the macro arguments, you could use following trick which abuses declaration syntax:
#define MAGICAL_MACRO(return_type, method_name, ...) \
virtual return_type method_name(__VA_ARGS__)
{ \
_obj->method_name(__VA_ARGS__); \
}
MAGICAL_MACRO(void, foo, int(a), int(b))
That will expand to:
virtual void foo(int(a), int(b))
{
_obj->foo(int(a), int(b));
}
Where void func(int(a), int(b)) is completely equivalent to void func(int a, int b).
The extra casts (or constructor calls depending on argument types) are ugly, but both GCC and Clang (with -O0) seem to ignore them not only for primitive types/PODs, but also for non-POD classes even if their copy constructors have side effects:
#include <iostream>
struct A
{
int x;
A(int value) : x(value) {}
A(const A &o)
{
x = o.x;
std::cout << "copy";
}
};
void func(A a)
{
std::cout << a.x << '\n';
}
void func1(A a)
{
func(a);
}
void func2(A a)
{
func(A(a));
}
int main()
{
func1(1); // prints `copy1`
func2(2); // prints `copy2`
}
The code below is working for what you've asked for with up to 1024 arguments and without using additional stuff like boost. It defines an EVAL(...) and also a MAP(m, first, ...) macro to do recursion and to use for each iteration the macro m with the next parameter first.
It is mostly copied from C Pre-Processor Magic. It is also great explained there. You can also download these helper macros like EVAL(...) at this git repository, there are also a lot of explanation in the actual code. It is variadic so it takes the number of arguments you want.
But I changed the FIRST and the SECOND macro as it uses a Gnu extension like it is in the source I've copied it from.
To split arguments like int a into int and a I used this answer from SO.
Your macro will be:
#define MAGICAL_MACRO(return_type, method_name, ...) \
virtual return_type method_name(__VA_ARGS__) \
{ \
return _obj->method_name(EVAL(MAP(TYPE_NAME, __VA_ARGS__))); \
}
Examples and limitations:
MAGICAL_MACRO(void, FOO, int a, double b, char c);
--> virtual void FOO(int a, double b, char c) { return _obj->FOO(a , b , c); };
MAGICAL_MACRO(int, FOO, int a, double b, char c);
--> virtual int FOO(int a, double b, char c) { return _obj->FOO(a , b , c); } ;
MAGICAL_MACRO(void, FOO, int* a, double* b, char* c);
--> virtual void* FOO(int* a, double* b, char* c) { return _obj->FOO(* a , * b , * c); };
/* maybe not what you want: pointer are dereferenced */
All the other macros needed, note that type splitting need to be defined per macro here:
/* Define all types here */
#define SPLIT_int int COMMA
#define SPLIT_char char COMMA
#define SPLIT_float float COMMA
#define SPLIT_double double COMMA
#define FIRST_(a, ...) a
#define SECOND_(a, b, ...) b
#define FIRST(...) FIRST_(__VA_ARGS__,)
#define SECOND(...) SECOND_(__VA_ARGS__,)
#define EMPTY()
#define EVAL(...) EVAL1024(__VA_ARGS__)
#define EVAL1024(...) EVAL512(EVAL512(__VA_ARGS__))
#define EVAL512(...) EVAL256(EVAL256(__VA_ARGS__))
#define EVAL256(...) EVAL128(EVAL128(__VA_ARGS__))
#define EVAL128(...) EVAL64(EVAL64(__VA_ARGS__))
#define EVAL64(...) EVAL32(EVAL32(__VA_ARGS__))
#define EVAL32(...) EVAL16(EVAL16(__VA_ARGS__))
#define EVAL16(...) EVAL8(EVAL8(__VA_ARGS__))
#define EVAL8(...) EVAL4(EVAL4(__VA_ARGS__))
#define EVAL4(...) EVAL2(EVAL2(__VA_ARGS__))
#define EVAL2(...) EVAL1(EVAL1(__VA_ARGS__))
#define EVAL1(...) __VA_ARGS__
#define DEFER1(m) m EMPTY()
#define DEFER2(m) m EMPTY EMPTY()()
#define DEFER3(m) m EMPTY EMPTY EMPTY()()()
#define DEFER4(m) m EMPTY EMPTY EMPTY EMPTY()()()()
#define IS_PROBE(...) SECOND(__VA_ARGS__, 0)
#define PROBE() ~, 1
#define CAT(a,b) a ## b
#define NOT(x) IS_PROBE(CAT(_NOT_, x))
#define _NOT_0 PROBE()
#define BOOL(x) NOT(NOT(x))
#define IF_ELSE(condition) _IF_ELSE(BOOL(condition))
#define _IF_ELSE(condition) CAT(_IF_, condition)
#define _IF_1(...) __VA_ARGS__ _IF_1_ELSE
#define _IF_0(...) _IF_0_ELSE
#define _IF_1_ELSE(...)
#define _IF_0_ELSE(...) __VA_ARGS__
#define HAS_ARGS(...) BOOL(FIRST(_END_OF_ARGUMENTS_ __VA_ARGS__)())
#define _END_OF_ARGUMENTS_() 0
#define MAP(m, first, ...) \
m(first) \
IF_ELSE(HAS_ARGS(__VA_ARGS__))( \
COMMA DEFER2(_MAP)()(m, __VA_ARGS__) \
)( \
/* Do nothing, just terminate */ \
)
#define _MAP() MAP
#define COMMA ,
#define CALL(A,B) A B
#define SPLIT(D) EVAL1(CAT(SPLIT_, D))
#define TYPE_NAME(D) CALL(SECOND,(SPLIT(D)))

Boost preprocessor not expanding

I have the following code:
#include <boost/preprocessor.hpp>
#define ARGS(r, data, elem) \
BOOST_PP_COMMA_IF(BOOST_PP_SUB(r, 2)) \
BOOST_PP_SEQ_ELEM(0, elem) BOOST_PP_SEQ_ELEM(1, elem)
#define DEF_FUN(name, args) void name(BOOST_PP_SEQ_FOR_EACH(ARGS,,args));
#define DEF_FUNCTIONS_ELEM(r, data, elem) DEF_FUN(BOOST_PP_SEQ_ELEM(0, elem), BOOST_PP_SEQ_ELEM(1, elem))
#define DEF_FUNCTIONS(funSeqs) \
BOOST_PP_SEQ_FOR_EACH(DEF_FUNCTIONS_ELEM,, funSeqs)
DEF_FUNCTIONS_ELEM(2,, (fun0) (((int)(arg0)) ((char)(arg1))))
DEF_FUNCTIONS
(
((fun0) (((int)(arg0)) ((char)(arg1))))
((fun1) (((char)(arg0)) ((long)(arg1)) ((short)(arg2))))
((fun3) ())
)
When I preprocess this with Clang 3.2 or g++ 4.6.3, I get:
void fun0( int arg0 , char arg1 );
void fun0(BOOST_PP_SEQ_FOR_EACH(ARGS,,((int)(arg0)) ((char)(arg1))));
void fun1(BOOST_PP_SEQ_FOR_EACH(ARGS,,((char)(arg0)) ((long)(arg1)) ((short)(arg2))));
void fun3(BOOST_PP_SEQ_FOR_EACH(ARGS,,));
(I added line-breaks for clarity)
The question is, why is the inner BOOST_PP_SEQ_FOR_EACH not expanded?
Passing this output again expands the expected result.
EDIT: After a lot of searching I read that a macro wont expand if it's called twice, I think that's why.
EDIT: I should've used PP_SEQ_FOR_EACH_I, the R is not meant to be used as a subscript.
BOOST_PP_SEQ_FOR_EACH is not reentrant. There are only a few macros in Boost.PP that are reentrant(BOOST_PP_FOR, BOOST_PP_WHILE, and BOOST_PP_REPEAT). However, you can workaround it by using deferred expressions, like this:
#include <boost/preprocessor.hpp>
#define EXPAND(...) __VA_ARGS__
#define EMPTY()
#define DEFER(x) x EMPTY()
// An indirection macro to avoid direct recursion
#define BOOST_PP_SEQ_FOR_EACH_ID() BOOST_PP_SEQ_FOR_EACH
#define ARGS(r, data, elem) \
BOOST_PP_COMMA_IF(BOOST_PP_SUB(r, 2)) \
BOOST_PP_SEQ_ELEM(0, elem) BOOST_PP_SEQ_ELEM(1, elem)
// Defer BOOST_PP_SEQ_FOR_EACH_ID here
#define DEF_FUN(name, args) void name(DEFER(BOOST_PP_SEQ_FOR_EACH_ID)()(ARGS,,args));
#define DEF_FUNCTIONS_ELEM(r, data, elem) DEF_FUN(BOOST_PP_SEQ_ELEM(0, elem), BOOST_PP_SEQ_ELEM(1, elem))
// Add EXPAND here to apply another scan to expand the deferred expression
#define DEF_FUNCTIONS(funSeqs) \
EXPAND(BOOST_PP_SEQ_FOR_EACH(DEF_FUNCTIONS_ELEM,, funSeqs))
DEF_FUNCTIONS
(
((fun0) (((int)(arg0)) ((char)(arg1))))
((fun1) (((char)(arg0)) ((long)(arg1)) ((short)(arg2))))
((fun3) ())
)
#include <boost/preprocessor.hpp>
#define ARGS(r, data, index, elem) \
BOOST_PP_SEQ_ELEM(0, elem) BOOST_PP_SEQ_ELEM(1, elem) BOOST_PP_COMMA_IF(BOOST_PP_NOT_EQUAL(index, BOOST_PP_DEC(data)))
#define DEF_FUN(name, args) void name(BOOST_PP_SEQ_FOR_EACH_I(ARGS,BOOST_PP_SEQ_SIZE(args),args));
#define DEF_FUNCTIONS_ELEM(r, data, elem) DEF_FUN(BOOST_PP_SEQ_ELEM(0, elem), BOOST_PP_SEQ_ELEM(1, elem))
#define DEF_FUNCTIONS(funSeqs) \
BOOST_PP_SEQ_FOR_EACH(DEF_FUNCTIONS_ELEM,, funSeqs)
DEF_FUNCTIONS_ELEM(2,, (fun0) (((int)(arg0)) ((char)(arg1))))
DEF_FUNCTIONS
(
((fun0) (((int)(arg0)) ((char)(arg1))))
((fun1) (((char)(arg0)) ((long)(arg1)) ((short)(arg2))))
((fun3) ())
)

Generate multiple macro calls according to the number of arguments

I'm trying to call this function several times in a repeditive fashion.
template<class T>
void METADATA_METHODS_IMPL(std::string& metadata, const T &value, const std::string &key)
{
metadata += boost::format("%1%:%2%") % key % value();
}
I have written the following macro:
#define METADATA_METHODS_IMPL_1(md, v1)\
METADATA_METHODS_IMPL(md, v1, #v1);
#define METADATA_METHODS_IMPL_2(md, v1, v2)\
METADATA_METHODS_IMPL_1(md, v1)\
METADATA_METHODS_IMPL_1(md, v2)
#define METADATA_METHODS_IMPL_3(md, v1, v2, v3)\
METADATA_METHODS_IMPL_2(md, v1, v2)\
METADATA_METHODS_IMPL_1(md, v3)
and so on ...
I need to call METADATA_METHODS_IMPL_N where N is a number of arguments in __VA_ARGS__
#define METADATA_METHODS(...)\
std::string METADATA_METHODS_IMPL_FUNC()\
{\
std::string metadata;\
BOOST_PP_OVERLOAD(METADATA_METHODS_IMPL_,__VA_ARGS__)(metadata, __VA_ARGS__)\
return metadata;\
}
The code above (with BOOST_PP_OVERLOAD) gives me unsuitable result:
class X
{
std::string F1();
std::string F2();
std::string F3();
METADATA_METHODS(F1, F2, F3);
};
This results in
std::string METADATA_METHODS_IMPL_FUNC()
{
std::string metadata;
METADATA_METHODS_IMPL(metadata, F1, F2, F3, "F1", "F2", "F3");
METADATA_METHODS_IMPL(metadata, , "");
METADATA_METHODS_IMPL(metadata, , "");
return metadata;
};
And I want something like this:
std::string METADATA_METHODS_IMPL_FUNC()
{
std::string metadata;
METADATA_METHODS_IMPL(metadata, F1, "F1");
METADATA_METHODS_IMPL(metadata, F2, "F2");
METADATA_METHODS_IMPL(metadata, F3, "F3");
return metadata;
};
Does anyone know how to achieve the desired result?
Can I use Boost.preprocessor library to automagically generate METADATA_METHODS_IMPL_K for some K in [1 .. 10] using METADATA_METHODS_IMPL_1
Using these macros we can cause the preprocessor to keep rescanning and allow for recursive macros.
#define EVAL(...) EVAL3(EVAL3(EVAL3(__VA_ARGS__)))
#define EVAL3(...) EVAL2(EVAL2(EVAL2(__VA_ARGS__)))
#define EVAL2(...) EVAL1(EVAL1(EVAL1(__VA_ARGS__)))
#define EVAL1(...) EVAL0(EVAL0(EVAL0(__VA_ARGS__)))
#define EVAL0(...) __VA_ARGS__
We can define some helper functions to build up concepts.
#define CAT(a, ...) PRIMITIVE_CAT(a,__VA_ARGS__)
#define PRIMITIVE_CAT(a, ...) a ## __VA_ARGS__
#define EMPTY()
#define EAT(...)
#define IDENT(...) __VA_ARGS__
#define DEFER(id) id EMPTY()
#define OBSTRUCT(...) __VA_ARGS__ DEFER(EMPTY)()
#define I_TRUE(t,f) t
#define I_FALSE(t,f) f
#define I_IS_DONE(a,b,...) b
#define TRUE_DONE() ~, I_TRUE
#define IS_DONE(b) OBSTRUCT(I_IS_DONE)(CAT(TRUE_,b)(),I_FALSE)
And build this Macro Mapping function that carries the first parameter to each.
#define MM() MM_CALL
#define MM_NEXT(Macro,md,a,...) \
IS_DONE(a)( \
EAT \
, \
OBSTRUCT(MM)() \
) \
(Macro,md,a,__VA_ARGS__)
#define MM_CALL(Macro,md,a,...) \
Macro(md,a) \
MM_NEXT(Macro,md,__VA_ARGS__)
#define MacroMap(Macro,md,...) EVAL(MM_CALL(Macro,md,__VA_ARGS__,DONE))
After defining the implementation related functions
#define METADATA_METHODS_IMPL_MACRO(md,a) \
METADATA_METHODS_IMPL(md, a, #a);
#define METADATA_METHODS(md,...) \
MacroMap(METADATA_METHODS_IMPL_MACRO,md,__VA_ARGS__) \
return md
This:
METADATA_METHODS(metadata, F1, F2, F3);
Results in this (after adding some formatting):
METADATA_METHODS_IMPL(metadata, F1, "F1");
METADATA_METHODS_IMPL(metadata, F2, "F2");
METADATA_METHODS_IMPL(metadata, F3, "F3");
return metadata;

How to get function signature via preprocessor define written before it?

I want to create a define to parse function signature and using Boost Preprocessor create something like this:
MY_DEFINE std::string fun(int t, float b)
{
or at least:
MY_DEFINE(std::string)(fun)(int t, float b)
{
that would generate:
class fun_in
{
int t;
float b;
}
class fun_out
{
std::string value;
}
void my_fun_wrapper(int t, float b)
{
}
std::string fun(int t, float b)
{
my_fun_wrapper(t, b);
for each function with that define.
Is it possible to create such define wrapper for function of N incoming arguments and any return type via Boost Preprocessor?
Well, the preprocessor can't parse tokens without pre-telling it. So you will need to use a lot more parenthesis instead. Here's what it would look like:
DEFINE( (std::string)(fun)((int) a, (float) b) )
{
return "Hello World!";
}
Here's how to create the macro using boost(I assume you are familiar with its preprocessor library). First is to define some macros for handling parenthesis, because boost doesn't handle sequences with commas at all:
#define REM(...) __VA_ARGS__
#define EAT(...)
// Retrieve the type
#define TYPEOF(x) DETAIL_TYPEOF(DETAIL_TYPEOF_PROBE x,)
#define DETAIL_TYPEOF(...) DETAIL_TYPEOF_HEAD(__VA_ARGS__)
#define DETAIL_TYPEOF_HEAD(x, ...) REM x
#define DETAIL_TYPEOF_PROBE(...) (__VA_ARGS__),
// Strip off the type
#define STRIP(x) EAT x
// Show the type without parenthesis
#define PAIR(x) REM x
Next, you need to handle the args in three different ways. First, is to output them as member variable(like int a; float b;). Then as functions arguments(like (int a, float b)). Then finally as forward arguments to pass along to the other function(like (a, b)).
#define DETAIL_DEFINE_MEMBERS_EACH(r, data, x) PAIR(x);
#define DETAIL_DEFINE_ARGS_EACH(r, data, i, x) BOOST_PP_COMMA_IF(i) PAIR(x)
#define DETAIL_DEFINE_FORWARD_EACH(r, data, i, x) BOOST_PP_COMMA_IF(i) STRIP(x)
#define DETAIL_DEFINE_MEMBERS(args) BOOST_PP_SEQ_FOR_EACH(DETAIL_DEFINE_MEMBERS_EACH, data, BOOST_PP_VARIADIC_TO_SEQ args)
#define DETAIL_DEFINE_ARGS(args) BOOST_PP_SEQ_FOR_EACH_I(DETAIL_DEFINE_ARGS_EACH, data, BOOST_PP_VARIADIC_TO_SEQ args)
#define DETAIL_DEFINE_FORWARD(args) BOOST_PP_SEQ_FOR_EACH_I(DETAIL_DEFINE_FORWARD_EACH, data, BOOST_PP_VARIADIC_TO_SEQ args)
Next we create a DETAIL_DEFINE macro that take three parameters. The first is the name of the function, the arguments, and then the return value. This will produce the classes and functions, like you want:
#define DETAIL_DEFINE(name, args, ...) \
struct BOOST_PP_CAT(name, _in) \
{ \
DETAIL_DEFINE_MEMBERS(args) \
}; \
struct BOOST_PP_CAT(name, _out) \
{ \
__VA_ARGS__ value; \
}; \
__VA_ARGS__ BOOST_PP_CAT(name, _impl) DETAIL_DEFINE_ARGS(args) ; \
__VA_ARGS__ name DETAIL_DEFINE_ARGS(args) \
{ \
return BOOST_PP_CAT(name, _impl) DETAIL_DEFINE_FORWARD(args); \
} \
__VA_ARGS__ BOOST_PP_CAT(name, _impl) DETAIL_DEFINE_ARGS(args)
Finally, the DEFINE macro will parse out all the parenthesis and pass them to the DETAIL_DEFINE macro:
#define DEFINE(x) DETAIL_DEFINE(TYPEOF(STRIP(x)), (TYPEOF(STRIP(STRIP(x)))), TYPEOF(x))
So now when you write:
DEFINE( (std::string)(fun)((int) a, (float) b) )
{
return "Hello World!";
}
It should output:
struct fun_in
{
int a;
float b;
};
struct fun_out
{
std::string value;
};
std::string fun_impl(int a, float b);
std::string fun(int a, float b)
{
return fun_impl(a, b);
}
std::string fun_impl(int a, float b)
{
return "Hello World!";
}
Note that this won't work in MSVC, there are workarounds though. Also, you need to compile with the -DBOOST_PP_VARIADICS=1.
What was the purpose of the last comma in this macro ?
#define TYPEOF(x) DETAIL_TYPEOF(DETAIL_TYPEOF_PROBE x,)
I think it has an extra comma at the end , and can be coded as
#define TYPEOF(x) DETAIL_TYPEOF(DETAIL_TYPEOF_PROBE x)
checking how it will work without last comma in this macro
1.) first argument in DETAIL_DEFINE
STRIP( (std::string)(fun)((int) a, (float) b) ) --> (fun)((int) a, (float) b)
TYPEOF( (fun)((int)a, (float) b)) ) --> fun
2.) second argument in DETAIL_DEFINE
STRIP( STRIP( (std::string)(fun)((int)a, (float) b) ) ) --> ( ( int ) a , ( float ) b )
TYPEOF ( ( ( int ) a , ( float ) b ) ) --> ( int ) a , ( float ) b
3.) third argument in DETAIL_DEFINE
TYPEOF ( (std::string )( fun )(( int ) a , ( float ) b) ) --> std::string
result :
DETAIL_DEFINE ( fun , (( int ) a , ( float ) b), std::string )
BTW, for those with old boost without BOOST_PP_VARIADIC_TO_SEQ use
BOOST_PP_TUPLE_TO_SEQ like this :
#define BOOST_PP_VARIADIC_TO_SEQ(...) BOOST_PP_TUPLE_TO_SEQ(PP_NARG(__VA_ARGS__) , (__VA_ARGS__))
And PP_NARG you can find anywhere by googling , here it is :
//Original Author: Unknown, but well recognized recursive variadic macro
#define PP_NARG(...) PP_NARG_IMPL(__VA_ARGS__,PP_RSEQ_N())
#define PP_NARG_IMPL(...) PP_ARG_N(__VA_ARGS__)
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define PP_RSEQ_N() \
63,62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0