I am playing around with C++ and I wanted to compile some peace of code with test code in
Catch2. Catch2 is built with gcc.
Just Clang works fine because it seems to use libstdc++ for compilation and linking. When I changed libc++ I got undefined references by the linker. Adding -lc++ I could reduce the number of undefined references. Only with Catch2 linker problems persisted.
Did I forget something? Is the hope modules where for example somebody is providing a library in form of c++ module?
Related
I got a problem with the new ABI introduced for C++11 in GCC. After upgrading to GCC 5.3 my project does no longer compile. The error messages I get are simple:
undefined reference to `tokenize(std::__cxx11::basic_string' ...more characters
or
undefined reference to `extract(std::string const&)'
So, it looks like I messed something up and GCC is unable to decide whether I want the old ABI or the new one (the __cxx11:: part is missing from some error messages, and present in others)?
I tried several solutions to resolve the issue:
passing -D_GLIBCXX_USE_CXX11_ABI=0 to GCC,
passing -D_GLIBCXX_USE_CXX11_ABI=1 to GCC,
setting the macro directly in source code,
setting the abi_tag attribute on the declarations GCC complained about when passed the -Wabi-tag flag,
Unfortunately, neither of them worked (i.e. allowed the code to compile). The one thing I know is that only functions returning std::string or taking it as a parameter fail to link. Which is to be expected, given what I read about the problem on the Internet. I was unable to reproduce the issue in a simple, example program to present it here.
Is there any obvious solution to my problem, that I am missing?
This error indicates that you're linking to some code or library that has not been recompiled by gcc 5.3, and was compiled by an earlier version of gcc, using the earlier version of the ABI.
If you are linking with some external libraries, besides the standard C++ library, those external libraries need to be recompiled (and reinstalled).
If you are not linking with any external libraries, and you are only linking together your own code, some of your source modules must not've been recompiled yet. Recompile everything. Make sure to wipe all existing object modules, with make clean, or the equivalent for whatever build system you're using.
I'm having an odd linking problem with Boost (version 1.58). I'm building with g++ 4.8 on Ubuntu 15.10.
I get the following error:
undefined reference to
'boost::program_options::options_description::options_description(std::string
const&, unsigned int, unsigned int)' collect2: error: ld returned 1
exit status
What's strange is that all other symbols from lboost_program_options are found; options_description is the only undefined reference. If I comment out uses of options_description but keep uses of positional_options_description (which I'm also using) then the whole program compiles and links flawlessly. I am linking with -lboost_program_options, and if I remove this then as expected there are 8 missing boost::options_description symbols.
For a long time linking has worked correctly. Without any build system changes that I'm aware of it suddenly broke. The only systems level change was an upgrade to Ubuntu 15.10, which I don't think should have affected anything.
Any thoughts or suggestions appreciated.
Update: After lots of fiddling I got this working again, although I'm not sure what did it. I'm still interested in any answers to what could cause this type of behavior though.
Check that the ABI is compatible (you're using the same compiler version and flags used when compiling the boost libraries).
On Ubuntu, this means using stock GCC with libstdc++.
If you can't, compile your own Boost System and Boost Program Options binaries using your preferred flags.
Similar things prevent code samples from linking on http://coliru.stacked-crooked.com if your compiler is not the same as used when compiling boost there.
I had a similar problem after upgrading to Ubuntu 15.10 with a different symbol missing in a lib belonging to boost::program_options.
It helped to simply clean up the whole project by throwing away all object files etc. and recompiling it from scratch.
I've downloaded Boost Binaries from here. My project depends on boost_system and boost_filesystem, and builds correctly if I add the proper dependencies to Linker Options when using Visual Studio for compilation, but I'm now trying to compile under Code::Blocks (MinGW compiler) and running into the following:
"directve `/FAILIFMISMATCH:"_MSC_VER=1800" /FAILIFMISMATCH:"_ITERATOR_DEBUG_LEVEL=0" /FAILIFMISMATCH:"RuntimeLibrary=MD_DynamicRelease" /DEFAULTLIB:"msvcprt" /DEFAULTLIB:"uuid.lib" /DEFAULTLIB:"uuid.lib" "
Though that's a warning, it keeps me from finding the dependencies, because my project fails to build with undefined reference to 'boost::system::generic_category()' and plenty of other related undefined references.
Question: Should I compile Boost from source using MinGW, in order to solve my problem?
Of course, I'm using the proper libraries for my build configuration (Release, dynamic runtime library).
I'm making an answser based on the comments posted below my question, just to make things proper.
So, building boost from the source code using the same compiler (I used TDM-GCC with gcc 4.8.1) did solve the linking issues.
As noted by Rup, one "can't mix C++ compiled with GCC and Visual Studio: they have different C++ ABI implementations, and generate different 'manglings' of identifier names so that linker symbols won't match up."
Additional reference: Interoperability of Libraries Created by Different Compiler Brands
I'm writing a program in C++ on Linux using the Boost library. I have a wild memory read that's causing a problem so I'd like to compile using the mudflap library. However, at the link stage I get hundreds of undefined references: things such as
mpl_::int_<3>::value
__gnu_cxx::__numeric_traits_floating<long double>::__max_exponent10
vtable for boost::gregorian::bad_weekday
typeinfo for boost::detail::sp_counted_impl_p<boost::detail::future_object<void> >
What am I missing?
The version of boost is 1.49 and of gcc is 4.7.0 (CVS 20120505).
In case your C++ file reduces to some definitions after the preprocessor run, it might help to add some public variable. At least it helped for me.
I've been trying to move a project over from Xcode to Linux (Ubuntu x86 for now, but hopefully the statically-linked executable will run on an x86 CentOS machine? I hope I hope?). I have the whole project compiling but it fails at the linking stage-- it's giving me undefined references for all functions defined by IPP. This is probably something really small and silly but I've been beating my head over this for a couple days now and I can't get it to work.
Here's the compile statement (I also have a makefile that's generating the same errors):
g++ -static
/opt/intel/ipp/6.0.1.071/ia32/lib/libippiemerged.a
/opt/intel/ipp/6.0.1.071/ia32/lib/libippimerged.a
/opt/intel/ipp/6.0.1.071/ia32/lib/libippsemerged.a
/opt/intel/ipp/6.0.1.071/ia32/lib/libippsmerged.a
/opt/intel/ipp/6.0.1.071/ia32/lib/libippcore.a
-pthread -I /opt/intel/ipp/6.0.1.071/ia32/include
-I tools/include -o main main.cpp pick_peak.cpp
get_starting_segments.cpp
get_segment_timing_differences.cpp
recast_and_normalize_wave_file.cpp
rhythm_score.cpp pitch_score.cpp
pitch_curve.cpp
tools/source/LocalBuffer.cpp
tools/source/wave.cpp distance.cpp
...and here is the beginning of the long list of linker errors:
./main.o: In function `main':
main.cpp:(.text+0x13f): undefined reference to `ippsMalloc_16s'
main.cpp:(.text+0x166): undefined reference to `ippsMalloc_32f'
main.cpp:(.text+0x213): undefined reference to `ippsMalloc_16s'
Any ideas? FWIW, these are the IPP dependencies in my Xcode project that builds, links, and runs without a problem: "-lippiemerged",
"-lippimerged",
"-lippsemerged",
"-lippsmerged",
"-lippcore",
Thanks!
Your linking problem is likely due to the fact that your link line is completely backwards: archive libraries should follow source and object files on command line, not precede them. To understand why the order matters, read this.
Also note that on Linux statically linked executables are significantly less portable than dynamically linked ones. In general, if you link system libraries dynamically on an older Linux system, it will work on all newer systems (I use ancient RedHat 6.2, and I haven't seen a system on which my executable will not run). This is not true for completely static executables; they may crash in all kinds of "interesting" ways when moved to a system with a different libc from the one against which they were linked.
I had problems with linking code with the v 6 of the ipp; using the v11 version of the compiler (with the included updates to the ipp) mysteriously fixed them. Granted, that was with a windows platform, but I was getting 8u versions of functions to compile and no 32f versions, despite both being listed as valid in the documentation.