Is it possible to have a function like std::invoke, but this function calls all arguments of the given function automatically with the default constructed types?
#include <iostream>
#include <functional>
// e.g. for a single arg
struct Test{
void operator()(int i) {
std::cout << std::to_string(i) << "\n";
}
};
int main(){
Test test;
std::invoke(test, {}); // this doesn't work, would like it to call with default constructed int (0).
return 0;
}
I would like something like
int main()
{
Test test;
invoke_with_defaults(test); // prints 0
return 0;
}
You need a class with a templated conversion operator, returning {} for any type:
struct DefaultConstruct
{
DefaultConstruct() = default;
DefaultConstruct(const DefaultConstruct &) = delete;
DefaultConstruct &operator=(const DefaultConstruct &) = delete;
template <typename T> operator T() && {return {};}
};
int main()
{
Test test;
std::invoke(test, DefaultConstruct{});
}
It's then possible to write a template that automatically determines how many of those have to be passed:
template <typename F, typename ...P>
decltype(auto) InvokeDefault(F &&func)
{
if constexpr (std::is_invocable_v<F, P...>)
return std::invoke(std::forward<F>(func), P{}...);
else
return InvokeDefault<F, P..., DefaultConstruct>(std::forward<F>(func));
}
int main()
{
Test test;
InvokeDefault(test);
}
And if the argument isn't callable at all, you get a compilation error after exceeding some implementation-defined limit (on Clang I got up to 256).
Initializer lists like {} cannot be forwarded as a parameter due not work due to language restrictions.
But you can mimick {} by wrapping it into a Defaulter class which can be passed around:
#include <iostream>
#include <functional>
// e.g. for a single arg
struct Test{
void operator()(int i) {
std::cout << std::to_string(i) << "\n";
}
};
struct Defaulter{
template<typename T>
operator T(){
return {};
}
};
int main(){
Test test;
std::invoke(test, Defaulter{});
return 0;
}
You could use something like this to create a tuple of all of the argument types, and then pass a default constructed instance of it to std::apply. The specialisation list would need to be quite long though to cover all of the const, volatile, noexcept, and ref-qualified variants though, and of course it cannot work with template or overloaded functions.
Eg:
template <typename T>
struct arg_extractor : arg_extractor<decltype(&T::operator())> {
};
template <typename R, typename... Args>
struct arg_extractor<R (*)(Args...)> {
using type = std::tuple<R, Args...>;
};
template <typename R, typename C, typename... Args>
struct arg_extractor<R (C::*)(Args...)> {
using type = std::tuple<R, Args...>;
};
template <typename R, typename C, typename... Args>
struct arg_extractor<R (C::*)(Args...) const> {
using type = std::tuple<R, Args...>;
};
template <typename R, typename C, typename... Args>
struct arg_extractor<R (C::*)(Args...) noexcept> {
using type = std::tuple<R, Args...>;
};
template <typename R, typename C, typename... Args>
struct arg_extractor<R (C::*)(Args...) const noexcept> {
using type = std::tuple<R, Args...>;
};
// All the rest...
template <typename T>
using arg_extractor_t = typename arg_extractor<T>::type;
Related
Is it possible to create a standalone template function which has a template parameter auto MEMFN (a member function pointer), and has the same return and parameter types as MEMFN has?
So, if MEMFN's type is
RETURN (OBJECT::*)(PARAMETERS...)
then the desired function is this:
template <auto MEMFN>
RETURN foo(OBJECT &, PARAMETERS...);
My problem is how to extract PARAMETERS... from MEMFN's type (RETURN and OBJECT are easy to do).
So I can call this function like this:
Object o;
foo<&Object::func>(o, <parameters>...);
As for request from n.m., here is a stripped down example from an actual code:
#include <utility>
template <typename RETURN, typename OBJECT, typename ...PARAMETERS>
struct Wrapper {
template <RETURN (OBJECT::*MEMFN)(PARAMETERS...)>
RETURN foo(PARAMETERS... parameters) {
// do whatever with MEMFN, parameters, etc. here, not part of the problem
}
};
struct Object {
template <auto MEMFN, typename RETURN, typename OBJECT, typename ...PARAMETERS>
RETURN call(OBJECT &&object, PARAMETERS &&...parameters) {
// here, MEMFN parameters and PARAMETERS must be the same
// Wrapper actually not created here, it is accessed by other means
Wrapper<RETURN, typename std::decay<OBJECT>::type, PARAMETERS...> w;
return w.template foo<MEMFN>(std::forward<PARAMETERS>(parameters)...);
}
};
struct Foo {
void fn(int);
};
int main() {
Object o;
Foo f;
o.call<&Foo::fn, void, Foo &, int>(f, 42);
// this is wanted instead:
// o.call<&Foo::fn>(f, 42);
}
Yes we can:
template <auto MemFn>
struct fooHelper;
template <typename Ret, typename Obj, typename ... Args, Ret (Obj::*MemFn)(Args...)>
struct fooHelper<MemFn>
{
static Ret call(Obj& obj, Args... args) {
return (obj.*MemFn)(args...);
}
};
template <auto MemFn, typename ... Args>
auto foo(Args ... args)
{
return fooHelper<MemFn>::call(args...);
}
Another way to define foo which doesn't introduce a brand new parameter pack is:
template <auto MemFn>
auto& foo = fooHelper<MemFn>::call;
Example usage:
#include <iostream>
struct moo
{
int doit (int x, int y) { return x + y; }
};
int main()
{
moo m;
std::cout << foo<&moo::doit>(m, 1, 2) << "\n";
}
(Perfect forwarding omitted for simplicity)
If you relax your demand on being standalone you can do something like:
#include <iostream>
template <auto MEMFN, class = decltype(MEMFN)>
struct S;
template <auto MEMFN, class Ret, class T, class... Args>
struct S<MEMFN, Ret (T::*)(Args...)> {
static Ret foo(T &o, Args... args) {
(o.*MEMFN)(args...);
}
};
struct A {
void foo(int a, int b) {
std::cout << a << " " << b << std::endl;
}
};
int main() {
A a;
S<&A::foo>::foo(a, 1, 2);
}
[live demo]
If no then you gonna have to have a patience to create a function overloads for each possible number of parameters:
#include <type_traits>
#include <tuple>
#include <iostream>
template <class, std::size_t>
struct DeduceParam;
template <class Ret, class T, class... Args, std::size_t N>
struct DeduceParam<Ret (T::*)(Args...), N> {
using type = std::tuple_element_t<N, std::tuple<Args...>>;
};
template <class>
struct DeduceResultAndType;
template <class Ret, class T, class... Args>
struct DeduceResultAndType<Ret (T::*)(Args...)> {
using result = Ret;
using type = T;
static constexpr decltype(sizeof(T)) size = sizeof...(Args);
};
template <auto MEMFN, class DRAT = DeduceResultAndType<decltype(MEMFN)>, std::enable_if_t<DRAT::size == 1>* = nullptr>
typename DRAT::result foo(typename DRAT::type o, typename DeduceParam<decltype(MEMFN), 0>::type param1) {
}
template <auto MEMFN, class DRAT = DeduceResultAndType<decltype(MEMFN)>, std::enable_if_t<DRAT::size == 2>* = nullptr>
typename DRAT::result foo(typename DRAT::type o, typename DeduceParam<decltype(MEMFN), 0>::type param1,
typename DeduceParam<decltype(MEMFN), 1>::type param2) {
}
struct A {
void foo(int a, int b) {
std::cout << a << " " << b << std::endl;
}
};
int main() {
A a;
foo<&A::foo>(a, 1, 2);
}
I want to have a generic function (or method) that accepts arguments of different types. If the provided type has 'one' method, the function should use it. If it has 'two' method, the function should use it instead.
Here's the invalid code:
#include <iostream>
template<typename Type> void func(Type t)
{
t.one();
}
template<typename Type> void func(Type t) // redefinition!
{
t.two();
}
class One
{
void one(void) const
{
std::cout << "one" << std::endl;
}
};
class Two
{
void two(void) const
{
std::cout << "two" << std::endl;
}
};
int main(int argc, char* argv[])
{
func(One()); // should print "one"
func(Two()); // should print "two"
return 0;
}
Is it possible to achieve using SFINAE? Is it possible to achieve using type_traits?
Clarification:
I would be more happy if this would be possible using SFINAE. The best-case scenario is: use first template, if it fails use the second one.
Checking for method existence is only an example. What I really want is also checking for compatibility with other classes.
The task could be rephrased:
If the class supports the first interface, use it.
If the first interface fails, use the second interface.
If both fail, report an error.
Yes, it's possible. In C++11 an onward it's even relatively easy.
#include <iostream>
#include <type_traits>
template<class, typename = void>
struct func_dispatch_tag :
std::integral_constant<int, 0> {};
template<class C>
struct func_dispatch_tag<C,
std::enable_if_t<std::is_same<decltype(&C::one), void (C::*)() const>::value>
> : std::integral_constant<int, 1> {};
template<class C>
struct func_dispatch_tag<C,
std::enable_if_t<std::is_same<decltype(&C::two), void (C::*)() const>::value>
> : std::integral_constant<int, 2> {};
template<class C>
void func(C const&, std::integral_constant<int, 0>) {
std::cout << "fallback!\n";
}
template<class C>
void func(C const &c, std::integral_constant<int, 1>) {
c.one();
}
template<class C>
void func(C const &c, std::integral_constant<int, 2>) {
c.two();
}
template<class C>
void func(C const &c) {
func(c, func_dispatch_tag<C>{});
}
struct One
{
void one(void) const
{
std::cout << "one\n";
}
};
struct Two
{
void two(void) const
{
std::cout << "two\n";
}
};
struct Three {};
int main(int argc, char* argv[])
{
func(One()); // should print "one"
func(Two()); // should print "two"
func(Three());
return 0;
}
Important points:
We SFINAE on the second parameter of func_dispatch_tag. The compiler looks at all the template specializations which result in the parameters <C, void>. Since any of the latter is "more specialized" when SF doesn't occur (i.e when std::enable_if_t is void), it gets chosen.
The chosen specialization of the trait defines a tag which we do a tag dispatch on. Tag dispatch depends on function overloading, instead of function template specialization (that cannot be partially specialized).
You can define a fallback function (like I did), or static_assert. The number of tags we can define is limited only by the range of an int, so extending to other members is just a matter of adding another func_dispatch_tag specialization.
The member must be accessible, or SF will occur. Also, a class that has both members will result in ambiguity. Bear that in mind.
Here's another way. There's a little more boilerplate, but in the actual expression of the different implementations of func() it could be argued that the 'list of tests that passed' is more expressive.
Food for thought anyway.
Code is c++11. c++14 and 17 would be more succinct.
#include <iostream>
#include <type_traits>
#include <tuple>
// boilerplate required prior to c++17
namespace notstd {
using namespace std;
template<typename... Ts> struct make_void { typedef void type;};
template<typename... Ts> using void_t = typename make_void<Ts...>::type;
}
// test for having member function one()
template<class T, class Enable = notstd::void_t<>> struct has_one : std::false_type {};
template<class T> struct has_one<T, notstd::void_t<decltype(std::declval<T>().one())>> : std::true_type {};
//test for having member function two()
template<class T, class Enable = notstd::void_t<>> struct has_two : std::false_type {};
template<class T> struct has_two<T, notstd::void_t<decltype(std::declval<T>().two())>> : std::true_type {};
// a type collection of tests that pass
template<template <class...> class...Tests> struct passes_tests {
};
// meta-function to append a type
template<class Existing, template <class...> class Additional> struct append_pass;
template< template <class...> class...Tests, template <class...> class Additional>
struct append_pass<passes_tests<Tests...>, Additional> {
using type = passes_tests<Tests..., Additional>;
};
//
// meta-functions to compute a list of types of test that pass
//
namespace detail
{
template<class Previous, class T, template<class...> class Test, template<class...> class...Rest>
struct which_tests_pass_impl
{
using on_pass = typename append_pass<Previous, Test>::type;
using on_fail = Previous;
using this_term = typename std::conditional< Test<T>::value, on_pass, on_fail >::type;
using type = typename which_tests_pass_impl<this_term, T, Rest...>::type;
};
template<class Previous, class T, template<class...> class Test>
struct which_tests_pass_impl<Previous, T, Test>
{
using on_pass = typename append_pass<Previous, Test>::type;
using on_fail = Previous;
using this_term = typename std::conditional< Test<T>::value, on_pass, on_fail >::type;
using type = this_term;
};
}
template<class Type, template<class...> class...Tests> struct which_tests_pass
{
using type = typename detail::which_tests_pass_impl<passes_tests<>, Type, Tests...>::type;
};
//
// various implementations of func()
//
namespace detail
{
template<class T>
void func(T t, passes_tests<has_one>)
{
t.one();
}
template<class T>
void func(T t, passes_tests<has_one, has_two>)
{
t.one();
}
template<class T>
void func(T t, passes_tests<has_two>)
{
t.two();
}
template<class T>
void func(T t, passes_tests<>)
{
// do nothing
}
}
template<class T>
void func(T t)
{
detail::func(t, typename which_tests_pass<T, has_one, has_two>::type());
}
//
// some types
//
struct One
{
void one(void) const
{
std::cout << "one" << std::endl;
}
};
struct Two
{
void two(void) const
{
std::cout << "two" << std::endl;
}
};
// test
int main(int argc, char* argv[])
{
func(One()); // should print "one"
func(Two()); // should print "two"
return 0;
}
The code below
handles member function constness correctly
is agnostic of the functions return types
prints a comprehensive error on failure
It could be even shorter with C++14, where you don't have to specify the return types of implemented functions and have templated variable declarations. If you want to handle rvalue overloads correctly, you need to provide another overload to as_memfun.
If testing for member functions alone is not enough, there is another approach in the last section, which offers far better customization options but is also lengthier to setup.
#include <utility>
#include <functional>
namespace detail {
template<typename T> struct _false : std::integral_constant<bool, false> { };
template<typename T> struct HasNone {
static_assert(_false<T>::value, "No valid method found");
};
template<typename T, typename R>
constexpr auto as_memfun (R (T::* arg) ())
-> R (T::*) ()
{ return arg; }
template<typename T, typename R>
constexpr auto as_memfun (R (T::* arg) () const)
-> R (T::*) () const
{ return arg; }
template<typename T> constexpr auto check_has_two(int)
-> decltype(as_memfun(&T::two))
{ return as_memfun(&T::two); }
template<typename T> constexpr auto check_has_two(...)
-> HasNone<T>;
template<typename T> constexpr auto check_has_one(int)
-> decltype(as_memfun(&T::one))
{ return as_memfun(&T::one); }
template<typename T> constexpr auto check_has_one(...)
-> decltype(check_has_two<T>(0))
{ return check_has_two<T>(0); }
template<typename T>
struct res { constexpr static auto detail = check_has_one<T>(0); };
}
template<typename T>
auto func(T t) -> decltype((t.*detail::res<T>::detail)()) {
return (t.*detail::res<T>::detail)();
}
And here are some test you would probably like to have
struct One {
void one();
};
struct Two {
void two();
};
struct TestBoth {
char one() const;
void two();
};
struct TestWilderStuff {
int one;
void two() const;
};
int main() {
func(One{});
func(Two{});
func(TestBoth{});
static_assert(decltype(func(TestBoth{})){} == 0, "Failed function selection");
func(TestWilderStuff{});
}
Since you seem to have more extensive constructions in mind than just testing for member function existence, here is the beginning of a vastly more powerful mechanism. You can use it as a drop-in replacement for the above solution and although it is far lengthier, it offers more customization and the possibility to do elaborate tests on your types in every step of the way.
#include <utility>
#include <functional>
namespace detail {
template<typename T> struct _false :
std::integral_constant<bool, false> { };
template<typename T> struct HasNone {
static_assert(_false<T>::value, "No valid method found");
};
// Generic meta templates used below
namespace Generics {
template<typename Getter, typename Else>
struct ChainGetter {
template<typename T> constexpr static auto get_(int)
-> decltype(Getter::template get<T>())
{ return Getter::template get<T>(); }
template<typename T> constexpr static auto get_(...)
-> decltype(Else::template get<T>())
{ return Else::template get<T>(); }
template<typename T> constexpr static auto get()
-> decltype(get_<T>(0))
{ return get_<T>(0); }
};
template<typename Getter, typename Test>
struct TestGetter {
template<typename T, typename R> using _type = R;
template<typename T> constexpr static auto get_()
-> decltype(Getter::template get<T>())
{ return Getter::template get<T>(); }
template<typename T> constexpr static auto test()
-> decltype(Test::template test<T>(get_<T>()));
template<typename T> constexpr static auto get()
-> _type<decltype(test<T>()),
decltype(get_<T>())
>
{ return get_<T>(); }
};
template<template<typename> class F>
struct FailGetter {
template<typename T>
constexpr static auto get() -> F<T>;
};
}
// Test only exists for member function pointer arguments
struct IsMemberFunctionTest {
template<typename _, typename T, typename R>
constexpr static void test (R (T::* arg) ());
template<typename _, typename T, typename R>
constexpr static void test (R (T::* arg) () const);
};
// Get member pointer to T::one
struct GetOne {
template<typename T>
constexpr static auto get() -> decltype(&T::one) { return &T::one; }
};
// Get member pointer to T::two
struct GetTwo {
template<typename T>
constexpr static auto get() -> decltype(&T::two) { return &T::two; }
};
using namespace Generics;
using getter_fail = FailGetter<HasNone>;
using get_two_tested = TestGetter<GetTwo, IsMemberFunctionTest>;
using getter_two = ChainGetter<get_two_tested, getter_fail>;
using get_one_tested = TestGetter<GetOne, IsMemberFunctionTest>;
using getter_one = ChainGetter<get_one_tested, getter_two>;
template<typename T>
struct result { constexpr static auto value = getter_one::template get<T>(); };
}
template<typename T>
auto func(T t) -> decltype((t.*detail::result<T>::value)()) {
return (t.*detail::result<T>::value)();
}
How does one take a templated pointer to a member function?
By templated I mean that the following types are not known in advance:
template param T is class of the pointer to member
template param R is the return type
variadic template param Args... are the parameters
Non-working code to illustrate the issue:
template <???>
void pmf_tparam() {}
// this works, but it's a function parameter, not a template parameter
template <class T, typename R, typename... Args>
void pmf_param(R (T::*pmf)(Args...)) {}
struct A {
void f(int) {}
};
int main() {
pmf_tparam<&A::f>(); // What I'm looking for
pmf_param(&A::f); // This works but that's not what I'm looking for
return 0;
}
Is it possible to achieve the desired behavior in C++11?
I don't think this notation is possible, yet. There is proposal P0127R1 to make this notation possible. The template would be declared something like this:
template <auto P> void pmf_tparam();
// ...
pmf_tparam<&S::member>();
pmf_tparam<&f>();
The proposal to add auto for non-type type parameters was voted into the C++ working paper in Oulu and the result was voted to become the CD leading towards C++17 also in Oulu. Without the auto type for the non-type parameter, you'd need to provide the type of the pointer:
template <typename T, T P> void pmf_tparam();
// ...
pmf_tparam<decltype(&S::member), &S::member>();
pmf_tparam<decltype(&f), &f>();
As you've not said really what you are after in the function, the simplest is:
struct A {
void bar() {
}
};
template <typename T>
void foo() {
// Here T is void (A::*)()
}
int main(void) {
foo<decltype(&A::bar)>();
}
However if you want the signature broken down, I'm not sure there is a way to resolve the types directly, however you can with a little indirection...
struct A {
void bar() {
std::cout << "Call A" << std::endl;
}
};
template <typename R, typename C, typename... Args>
struct composer {
using return_type = R;
using class_type = C;
using args_seq = std::tuple<Args...>;
using pf = R (C::*)(Args...);
};
template <typename C, typename C::pf M>
struct foo {
static_assert(std::is_same<C, composer<void, A>>::value, "not fp");
typename C::return_type call(typename C::class_type& inst) {
return (inst.*M)();
}
template <typename... Args>
typename C::return_type call(typename C::class_type& inst, Args&&... args) {
return (inst.*M)(std::forward<Args...>(args...));
}
};
template <class T, typename R, typename... Args>
constexpr auto compute(R (T::*pmf)(Args...)) {
return composer<R, T, Args...>{};
}
int main() {
foo<decltype(compute(&A::bar)), &A::bar> f;
A a;
f.call(a);
}
The above should do what you are after...
What you can do is
template <template T, T value>
void pmf_tparam() {}
and then
pmf_tparam<decltype(&A::f), &A::f>();
The problem is not knowing the type of the argument and wanting a template argument of that type.
With an additional decltype (still in the templated parameter), this works:
#include <iostream>
using namespace std;
template <typename T, T ptr>
void foo (){
ptr();
}
void noop() {
cout << "Hello" << endl;
}
int main() {
//Here have to use decltype first
foo<decltype(&noop), noop>();
return 0;
}
In my example I have a class Foo<T>. In my function test I need to get the template parameter of Foo otherwise the normal type. First I started to use std::conditional but forgot that the template parameters must all be valid, no matter which one is picked. Is the only way to create a type-specialisation for non-Foo types?
Example
#include <type_traits>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template <typename T>
void test(const T& a)
{
// actually I would have used !is_foo<T>::value for the first arg
// but this check is fine to minimise the example
using MY_TYPE = typename std::conditional<
std::is_same<T, int>::value,
T,
typename T::M>::type; // <---Error: error: type 'int' cannot be used prior to '::' because it has no members
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
Well you could make an UnFoo helper to get the right type for you:
template <typename T>
struct UnFoo {
using type = T;
};
template <typename T>
struct UnFoo<Foo<T>> {
using type = T;
};
template <typename T>
void test(const T& a)
{
using MY_TYPE = typename UnFoo<T>::type; //maybe with a helper to get rid of typename
}
Another option would be to write an overload for Foo<T> and have it delegate to the other function, but that depends on what your real test function does.
You can do some void_t magic to allow SFINAE to figure help you out:
#include <type_traits>
#include <iostream>
#include <typeinfo>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template<typename... Ts> struct make_void { typedef void type;};
template<typename... Ts> using void_t = typename make_void<Ts...>::type;
// primary template handles types that have no nested ::T member:
template< class T, class = void_t<> >
struct M_or_T { using type = T; };
// specialization recognizes types that do have a nested ::T member:
template< class T >
struct M_or_T<T, void_t<typename T::M>> { using type = typename T::M; };
template <typename T>
void test(const T& a)
{
using MY_TYPE = typename M_or_T<T>::type;
std::cout << typeid(MY_TYPE).name() << "\n";
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
What happens is that the second overload of M_or_T substitution fails for int (and for any type without a type member M) and thus the first overload is chosen. For types which have a type member M, a more specialized second overload is chosen.
#include <type_traits>
template <typename TYPE>
class Foo
{
public:
using M = TYPE;
};
template <typename T>
void test(const Foo<T>& a)
{
using MY_TYPE = Foo<T>::M;
testOther<MY_TYPE>(a);
}
template <typename T>
void test(const T& a)
{
using MY_TYPE = T;
testOther<MY_TYPE>(a);
}
template <typename T, typename S>
void testOther(const S& a)
{
// do stuff
}
int main()
{
test(Foo<int>()); // MY_TYPE must be int
test(int()); // MY_TYPE must be int
return 0;
}
I'm not exactly sure what you wanted, but I hope this is what you wanted. It might be a bit off. I didn't compile this.
Consider the following function:
template<class F>
void register_handler( F& f ) // any callable object
{
// find out T - the argument type of f
}
Here f is some callable object, accepting one argument. It may be a function pointer, an std::function or a result of std::bind.
The problem is, how to determine the argument type of f and do some actions based on that type?
An easy workaround would be to add the type to template explicitly, like
template<class T, class F> // T is the argument type of F
void register_handler( F& f )
but this seems an overkill because type F should already contain the necessary information about type T.
Assuming F is any callable type, you cannot get its argument type. Consider this:
struct callable
{
void operator() (int);
void operator() (float *);
void operator() (std::string const &);
void operator() (std::list<int> &);
};
the type of argument is an ambiguity here.
This blogpost shows how to implement some function type traits. These should work with everything callable (exception: polymorphic functors :P). You could iterate over the arguments, and use their type to do some sfinae or as a additional template argument.
Function traits as copied from blogpost:
#include <tuple>
// as seen on http://functionalcpp.wordpress.com/2013/08/05/function-traits/
template<class F>
struct function_traits;
// function pointer
template<class R, class... Args>
struct function_traits<R(*)(Args...)> : public function_traits<R(Args...)>
{};
template<class R, class... Args>
struct function_traits<R(Args...)>
{
using return_type = R;
static constexpr std::size_t arity = sizeof...(Args);
template <std::size_t N>
struct argument
{
static_assert(N < arity, "error: invalid parameter index.");
using type = typename std::tuple_element<N,std::tuple<Args...>>::type;
};
};
// member function pointer
template<class C, class R, class... Args>
struct function_traits<R(C::*)(Args...)> : public function_traits<R(C&,Args...)>
{};
// const member function pointer
template<class C, class R, class... Args>
struct function_traits<R(C::*)(Args...) const> : public function_traits<R(C&,Args...)>
{};
// member object pointer
template<class C, class R>
struct function_traits<R(C::*)> : public function_traits<R(C&)>
{};
// functor
template<class F>
struct function_traits
{
private:
using call_type = function_traits<decltype(&F::operator())>;
public:
using return_type = typename call_type::return_type;
static constexpr std::size_t arity = call_type::arity - 1;
template <std::size_t N>
struct argument
{
static_assert(N < arity, "error: invalid parameter index.");
using type = typename call_type::template argument<N+1>::type;
};
};
template<class F>
struct function_traits<F&> : public function_traits<F>
{};
template<class F>
struct function_traits<F&&> : public function_traits<F>
{};
Testcode:
#include <iostream>
class A
{
};
template <class T>
struct Functor
{
void operator()(const T& t)
{}
};
struct Register
{
//int parameters
template <class T>
static void RegisterFunctor(const T& /*functor*/, typename std::enable_if<std::is_same<typename function_traits<T>::template argument<0>::type, const int&>::value>::type* = 0)
{
std::cout << "Register int func" << std::endl;
}
//A parameters
template <class T>
static void RegisterFunctor(const T& /*functor*/, typename std::enable_if<std::is_same<typename function_traits<T>::template argument<0>::type, const A&>::value>::type* = 0)
{
std::cout << "Register int func" << std::endl;
}
};
void intFunc(const int&) {}
void aFunc(const A&){}
int main(int /*argc*/, char */*argv*/[])
{
Functor<int> intFunctor;
Functor<A> aFunctor;
Register::RegisterFunctor(intFunctor);
Register::RegisterFunctor(&intFunc);
Register::RegisterFunctor(aFunctor);
Register::RegisterFunctor(&aFunc);
return 0;
}
if F is a std::functionyou should be able to use the its member type and check with `std::is_same':
template<class F>
void register_handler( F& f ) // any callable object
{
// find out T - the argument type of f
if(std::is_same<int, F::argument_type>::value)
{ .... }
//etc .....
}
An up and running example here
but that kind of code can quickly become a mess to maintain.
You could use sfinae and test if your argument is convertible to a std::function with the required arguments:
#include <type_traits>
#include <functional>
#include <iostream>
class A
{
};
template <class T>
struct Functor
{
void operator()(const T& t)
{}
};
struct Register
{
//int parameters
template <class T>
static void RegisterFunctor(const T& /*functor*/, typename std::enable_if<std::is_constructible<typename std::function<void (int)>, T>::value >::type* = 0)
{
std::cout << "Register int func" << std::endl;
}
//A parameters
template <class T>
static void RegisterFunctor(const T& /*functor*/, typename std::enable_if<std::is_constructible<typename std::function<void (A)>, T>::value >::type* = 0)
{
std::cout << "Register a func" << std::endl;
}
};
void intFunc(int) {}
void aFunc(A){}
int main(int /*argc*/, char */*argv*/[])
{
Functor<int> intFunctor;
Functor<A> aFunctor;
Register::RegisterFunctor(intFunctor);
Register::RegisterFunctor(&intFunc);
Register::RegisterFunctor(aFunctor);
Register::RegisterFunctor(&aFunc);
return 0;
}