abs(int) function doesn't work as I'd expect [closed] - c++

Closed. This question is not reproducible or was caused by typos. It is not currently accepting answers.
This question was caused by a typo or a problem that can no longer be reproduced. While similar questions may be on-topic here, this one was resolved in a way less likely to help future readers.
Closed last month.
Improve this question
I have the following code:
#include <stdlib.h>
void Painter::draw_line(Point point_1, Point point_2, Color color)
{
// Bresenham Algorithm
if (point_1.x > point_2.x || (point_1.x == point_2.x && point_1.y > point_2.y))
{
swap(&point_1, &point_2);
}
int dx = abs((int)point_2.x - (int)point_1.x);
int sx = point_1.x < point_2.x ? 1 : -1;
int dy = abs((int)point_2.y - (int)point_1.y);
int sy = point_1.y < point_2.y ? 1 : -1;
int err = dx + dy;
while ((point_1.x != point_2.x) && (point_1.y != point_2.y))
{
draw_pixel(point_1, color);
if (2 * err >= dy)
{
err += dy;
point_1.x += sx;
}
if (2 * err <= dx)
{
err += dx;
point_1.y += sy;
}
}
}
It's supposed to calculate positions of pixels that will form a line.
The code above does not work properly - the lines are always horizontal. I found out that there is some issue with the abs function. When I replace the lines:
int dx = abs((int)point_2.x - (int)point_1.x);
int sx = point_1.x < point_2.x ? 1 : -1;
int dy = abs((int)point_2.y - (int)point_1.y);
int sy = point_1.y < point_2.y ? 1 : -1;
int err = dx + dy;
with
int dx = (int)point_2.x - (int)point_1.x >= 0 ? (int)point_2.x - (int)point_1.x : (int)point_1.x - (int)point_2.x;
int sx = point_1.x < point_2.x ? 1 : -1;
int dy = (int)point_2.y - (int)point_1.y <= 0 ? (int)point_2.y - (int)point_1.y : (int)point_1.y - (int)point_2.y;
int sy = point_1.y < point_2.y ? 1 : -1;
int err = dx + dy;
the program works properly!
Why is the version with abs not wroking properly?
For reference, here's my Point struct:
struct Point {
Point(uint16_t x, uint16_t y)
{
this->x = x;
this->y = y;
}
uint16_t x;
uint16_t y;
};

Found the mistake!
int dx = abs((int)point_2.x - (int)point_1.x);
int sx = point_1.x < point_2.x ? 1 : -1;
int dy = -abs((int)point_2.y - (int)point_1.y);
int sy = point_1.y < point_2.y ? 1 : -1;
int err = dx + dy;
A minus was missing in front of the third expression.

Related

Windows Console frame rate dropped after running program

As the title suggests I'm having an issue with my windows console application in c++. So far I've created a class, Console, to represent all of the functions I repeatedly use to construct a windows console.
I implemented a line drawing algorithm and had up to 500 fps when filling the screen with magenta characters and drawing a line in white.
However, I implemented a triangle drawing algorithm next (just three line drawing calls consecutively) and was surprised to find out that the frame rate dropped to about 20. I removed this code again but the bad frame rate persisted. I really don't know why this has happend because I've essentially ended up not changing anything.
For reference, here is the Console code (without header):
Console::Console(int width, int height):
m_handle(GetStdHandle(STD_OUTPUT_HANDLE)),
m_width(width),
m_height(height),
m_screen({ 0, 0, 1, 1 }),
m_title(L"Demo"),
m_buffer(new CHAR_INFO[(size_t)m_width * (size_t)m_height])
{
memset(m_buffer, 0, sizeof(CHAR_INFO) * m_width * m_height);
}
Console::~Console()
{
if (m_buffer)
delete[] m_buffer;
}
int Console::Construct(int char_w, int char_h)
{
if (m_handle == INVALID_HANDLE_VALUE)
return BAD_HANDLE;
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
COORD screen_coord = { (short)m_width, (short)m_height };
if (!SetConsoleScreenBufferSize(m_handle, screen_coord))
return SCREEN_BUFFER_SIZE_ERROR;
CONSOLE_FONT_INFOEX cinfo;
cinfo.cbSize = sizeof(cinfo);
cinfo.dwFontSize.X = (short)char_w;
cinfo.dwFontSize.Y = (short)char_h;
cinfo.FontFamily = FF_DONTCARE;
cinfo.FontWeight = FW_NORMAL;
cinfo.nFont = 0;
wcscpy_s(cinfo.FaceName, L"Consolas");
if (!SetCurrentConsoleFontEx(m_handle, false, &cinfo))
return CONSOLE_FONT_ERROR;
CONSOLE_SCREEN_BUFFER_INFO cbuffinfo;
if (!GetConsoleScreenBufferInfo(m_handle, &cbuffinfo))
return GET_BUFFER_INFO_ERROR;
if (cbuffinfo.dwMaximumWindowSize.X < m_width)
return HORIZONTAL_SIZE_TOO_LARGE_ERROR;
if (cbuffinfo.dwMaximumWindowSize.Y < m_height)
return VERTICAL_SIZE_TOO_LARGE_ERROR;
m_screen = { 0, 0, (short)m_width - 1, (short)m_height - 1 };
if (!SetConsoleWindowInfo(m_handle, true, &m_screen))
return WINDOW_INFO_ERROR;
if (!SetConsoleCtrlHandler((PHANDLER_ROUTINE)HandleClose, true))
return CLOSE_HANDLER_ERROR;
return OK;
}
void Console::Start()
{
active = true;
std::thread t(&Console::DoLoop, this);
t.join();
}
void Console::DoLoop()
{
if (!OnCreate())
active = false;
std::chrono::high_resolution_clock::time_point t1, t2;
t1 = std::chrono::high_resolution_clock::now();
t2 = t1;
while (active)
{
t2 = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> diff = t2 - t1;
t1 = t2;
float dt = diff.count();
if (!OnUpdate(dt))
active = false;
wchar_t title_buff[256];
swprintf_s(title_buff, L"Console Application - %s - FPS: %3.2f", m_title.c_str(), 1.0f / dt);
SetConsoleTitle(title_buff);
WriteConsoleOutput(m_handle, m_buffer, { (short)m_width, (short)m_height }, { 0, 0 }, &m_screen);
}
finished.notify_one();
}
void Console::Fill(int x, int y, short glyph, short color)
{
if (x < 0 || y < 0 || x >= m_width || y >= m_height) return;
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
void Console::Fill(int x1, int y1, int x2, int y2, short glyph, short color)
{
if (x1 < 0) x1 = 0;
if (y1 < 0) y1 = 0;
if (x1 >= m_width) return;
if (y1 >= m_height) return;
if (x2 >= m_width) x2 = m_width - 1;
if (y2 >= m_height) y2 = m_height - 1;
if (x2 < 0) return;
if (y2 < 0) return;
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Clear(short glyph, short color)
{
for (int x = 0; x < m_width; x++)
{
for (int y = 0; y < m_height; y++)
{
CHAR_INFO& ci = m_buffer[y * m_width + x];
ci.Char.UnicodeChar = glyph;
ci.Attributes = color;
}
}
}
void Console::Line(int x1, int y1, int x2, int y2, short glyph, short color)
{
int dx = x2 - x1;
int dy = y2 - y1;
int adx = dx > 0 ? dx : -dx;
int ady = dy > 0 ? dy : -dy;
int dy2 = dy + dy;
int dx2 = dx + dx;
int adx2 = dx2 > 0 ? dx2 : -dx2;
int ady2 = dy2 > 0 ? dy2 : -dy2;
if (adx > ady)
{
if (x1 > x2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sy = dy > 0 ? 1 : dy < 0 ? -1 : 0;
int err = ady;
for (int x = x1, y = y1; x <= x2; x++)
{
Fill(x, y, glyph, color);
err += ady2;
if (err > adx2)
{
err -= adx2;
y += sy;
}
}
}
else
{
if (y1 > y2)
{
int x = x1;
x1 = x2;
x2 = x;
dx = -dx;
dx2 = -dx2;
int y = y1;
y1 = y2;
y2 = y;
dy = -dy;
dy2 = -dy2;
}
int sx = dx > 0 ? 1 : dx < 0 ? -1 : 0;
int err = adx;
for (int x = x1, y = y1; y <= y2; y++)
{
Fill(x, y, glyph, color);
err += adx2;
if (err > ady2)
{
err -= ady2;
x += sx;
}
}
}
}
void Console::Triangle(int x1, int y1, int x2, int y2, int x3, int y3, short glyph, short color)
{
Line(x1, y1, x2, y2, glyph, color);
Line(x2, y2, x3, y3, glyph, color);
Line(x3, y3, x1, y1, glyph, color);
}
BOOL Console::HandleClose(DWORD evt)
{
if (evt == CTRL_CLOSE_EVENT)
{
active = false;
std::unique_lock<std::mutex> ul(lock);
finished.wait(ul);
}
return true;
}
Here is the very short main code:
class Game : public Console
{
public:
Game(int width, int height):
Console(width, height)
{
}
bool OnCreate() override
{
return true;
}
bool OnUpdate(float dt) override
{
Clear(GLYPH_SOLID, FG_BLACK);
//Triangle(20, 20, 300, 40, 150, 200);
return true;
}
};
int main()
{
Game game(400, 300);
int err = game.Construct(2, 2);
if (err == Console::OK)
game.Start();
}
The error constants are just defined integer codes in the header file.
If any additional code is needed please let me know. Thanks in advance!
EDIT:

Bresenham line algorithm drawing off lines

I am attempting to implement the Bresenham line algorithm in a c++ paint program.
It draws fine when x is increasing but it seems to do a weird algorithm
int dx = old_x - x;
int dy = old_y - y;
if (dx >= 0){
step_x = 1;
} else {
step_x = -1;
dx = fabs(dx);
}
if (dy >= 0){
step_y = 1;
} else {
step_y = -1;
dy = fabs(dy);
}
int dx2 = dx * 2;
int dy2 = dy * 2;
if (dx > dy){
err = dy2 - dx;
for (int i = 0; i <= dx; i++){
currTool.draw(old_x, old_y);
if (err >= 0){
err -= dx2;
old_y += step_y;
}
err += dy2;
old_x += step_y;
}
} else {
err = dx2 - dy;
for (int i = 0; i <= dy; i++){
currTool.draw(old_x, old_y);
if (err >= 0){
err -= dy2;
old_x += step_x;
}
err += dx2;
old_y += step_y;
}
}
I have tried multiple things, such as flipping the x, y I have rewritten the code following multiple examples and have had no luck.
This is the link to the site I converted
http://www.falloutsoftware.com/tutorials/dd/dd4.htm
Here is a picture of what is happening to my program

Calculating fast line end point

What i want is that, I have info of 2 points, the starting x,y and mid point x,y and i need to find end line like until some kind of border, like window
here is what I do:
//function for calculating the end point from one location, to specific end location
//like a bullet moving forward in a line
//x,y start location(mouse), x2,y2(rect point location one of the 4) mid point, qx,qy end point(shadow or triangle draw location)
void screenEnd(int x, int y, int x2, int y2, int*qx,int*qy)
{
x = x2-x;
y = y2-y;
float tx = x2,ty = y2;
float result = atan2((float)y,(float)x) * 180 / PI;
float tempx = cos ( result * PI / 180.0 );
float tempy = sin ( result * PI / 180.0 );
bool check = true;
//this part needs optimization
while(check)
{
if(tx < 0|| ty < 0|| tx > 1280 || ty > 720)
{
check = false;
}
else
{
tx += tempx;
ty += tempy;
}
}
*qx = tx;
*qy = ty;
}
what I do is just increase point until it reaches the end.
Is there any way faster?
A classic window clipping task.
Consider a parametric equation where p is the point (x,y).
p(0) = x, y
p(0.5) = x2, y2
p(1) = x+2*(x2-x), y + 2*(y2-y)
p(t) = p(0) + t*(p(1) - p(0))
clip window = 0,0 to 720, 1280 (suspect you really want 719,1279)
The segment to draw initially ranges from t=0.0 to t=1.0. The segment is tested against each of the 4 sides of the bounding box, potentially reducing the t range. Maybe even eliminating all together.
Follows is some old code, enough to get you going.
#include <math.h>
int cliptest(int dz, int z, double *t0, double *t1) {
if (dz < 0) {
double t = ((double) z) / dz;
if (t > *t1)
return 0;
if (t > *t0)
*t0 = t;
} else if (dz > 0) {
double t = ((double) z) / dz;
if (t < *t0)
return 0;
if (t < *t1)
*t1 = t;
} else {
if (z < 0)
return 0;
}
return 1;
}
int clipper(int *px0, int *py0, int *px1, int *py1, int minx, int miny,
int maxx, int maxy) {
double t0, t1;
int dx, dy;
t0 = 0.0;
t1 = 1.0;
dy = *py1 - *py0;
dx = *px1 - *px0;
if (cliptest(-dx, *px0 - minx, &t0, &t1)
&& cliptest(dx, maxx - *px0, &t0, &t1)
&& cliptest(-dy, *py0 - miny, &t0, &t1)
&& cliptest(dy, maxy - *py0, &t0, &t1)) {
if (t1 < 1.0) {
*px1 = round(*px0 + t1*dx);
*py1 = round(*py0 + t1*dy);
}
if (t0 > 0.0) {
*px0 = round(*px0 + t0*dx);
*py0 = round(*py0 + t0*dy);
}
return 1;
}
return 0;
}
int x0 = x;
int y0 = y;
int x1 = x + 2*(x2-x); // Form end point
int y1 = x + 2*(y2-y);
if (clipper(&x0, &y0, &x1, &y1, 0, 0, 720, 1280))
Draw(x0, y0, x1, y2);
else
Handle_LineTotallyClippedOut();

Midpoint Algorithm in drawing line c++

This midpoint algorithm in c++ win32 doesn't work. It draws nothing or only horizontal lines. What error(s) am I making?
void midPoint(HDC hdc)
{
double dx = end.getXPoint()-start.getXPoint();
double dy = end.getYPoint()-start.getYPoint();
double x = start.getXPoint();
double y = start.getYPoint();
SetPixel(hdc,x,y,color);
double d = dx - (dy/2);
double d1 = dx;
double d2 = abs(dx-dy);
while(x < end.getXPoint())
{
d = abs(((( y+0.5)-start.getYPoint())*dx) - (((x+1)-start.getXPoint())*dy));
if(d < 0)
{
x = x+1;
y = y+1;
}
else
{
x = x+1;
}
SetPixel(hdc,x,y,color);
}
}
Your d is never <0. Revise the formula for d, especially the ( and ).
d = abs(((( y+0.5)-start.getYPoint())*dx) - (((x+1)-start.getXPoint())*dy));
if(d < 0)
{
x = x+1;
y = y+1; // never executed
}
else
{
x = x+1; // horizontal line
}
SetPixel(hdc,x,y,color);
As you are taking the abs value in the calculation of d, it will never be less than 0. So the value of X is alone getting incremented and you are getting the horizontal line.

how to convert image in to matrix using opencv?

I am trying to make a program in OpenCV to convert an image into matrix form, with each value representing an image's pixel. I have converted the image into binary form and now I want to convert it's pixel values into a matrix.
If You need to use CvMat object, You may want to try to use cvCopy function. It takes CvArr* as its arguments, so both IPLImage and CvMat will fit. If You would leave the C API and go to something more modern, You can use cv::Mat object to load image into and use C++ threshold.
The question is why do You want to convert the format of matrix that you already have (IPLImage as well as all others are matrices already). If You want to have a matrix of bool type, use Matx or Mat_ template class for this.
First glance at your question raises more questions... try to specify a bit (I don't seem to be able to see your code example, I'm new to stackoverflow)
Such as, your open cv version and IDE (like codeblocks or Microsoft Visual Studio). But include it in your question. What I would also like to know, is what is the purpose of this? Why do you need a matrix and so forth :)
attempted answer
from what I can gather
"but I have installed OpenCV version 2.3.1 on Visual C++ 2010 – Ayesha Khan"
OpenCV uses the class called Mat, which you should have encountered a lot. This class is essentially a matrix already. If I remember correctly it is very similar to vectors, which I won't cover here.
so if you need to access any pixel value in, lets say.
Mat Img;
you would use a function in this instance of the class, as such
cout << Img.at<uchar>(x,y);
This will access and print the value of the pixel with the coordinates of x,y, to console. In this example I use uchar inside the pointy brackets <>. uchar is used for 8bit picures. You will have to change this if you work with images of more detail (more bits).
When using a binary picture, OpenCV will most likely will allocate the memory of 8bit, which means you need the example above.
I'd like to give more details, but not before you've specified what exactly it is that you are attempting to do.
Regards Scrub # Stackoverflow
Your code uses OpenCV version 1. I'll let someone else answer, since it's not my forte. In my opinion, the 2.0 template-based interface is much more intuitive, and it's my recommendation to use it for all new endeavors.
Have a look at the way I use imread() in this program...
Please inspect the type of value returned from imread()...
Also, search in the code for originalColor = imageArg(/*row*/chosenX, /*column*/chosenY); It's a way to index into the matrix returned from imread
// HW1 Intro to Digital Image Processing
// used OpenCV 2.3.1 and VS2010 SP1 to develop this solution
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <cassert>
using namespace cv;
Mat_<Vec3b> image;
int discreteAngles = 512;
void on_mouse(int eventCode, int centerX, int centerY, int flags, void* params);
int str2int(const std::string &str);
int main(int argc, char* argv[])
{
// command itself is one element of argument array...
if(argc != 1 && argc != 3)
{
std::cout << "Expecting two arguments to the application: angular granularity as a whole number and a file name." << std::endl;
exit(0);
}
std::string discreteAnglesStr, fileName;
if(argc == 3)
{
discreteAnglesStr = argv[1];
fileName = argv[2];
}
else
{
discreteAnglesStr = "64";
fileName = "boats.tif";
}
try
{
discreteAngles = str2int(discreteAnglesStr);
auto image_ = imread(fileName);
int channels = image_.channels();
assert(channels == 3);
image = image_;
if(image.rows == 0)
throw new std::exception();
auto originalImageStr = "Original Image";
namedWindow(originalImageStr);
setMouseCallback(originalImageStr, on_mouse);
imshow(originalImageStr, image);
}
catch(std::exception e)
{
std::cout << "could not load image." << std::endl;
}
waitKey(0);
return -1;
}
// borrowed from http://stackoverflow.com/q/194465/90475, courtesy of Luka Marinko
int str2int(const std::string &str)
{
std::stringstream ss(str);
int num;
if((ss >> num).fail())
{
throw new std::exception("could not parse user input!");
}
return num;
}
double compute_max_madius(int imageRows, int imageCols, int centerX, int centerY)
{
auto otherX = imageCols - centerX;
auto otherY = imageRows - centerY;
auto a = sqrt((double)centerX * centerX + centerY * centerY);
auto b = sqrt((double)otherX * otherX + centerY * centerY);
auto c = sqrt((double)centerX * centerX + otherY * otherY);
auto d = sqrt((double)otherX * otherX + otherY * otherY);
return max(max(a,b), max(c,d));
}
Vec3b interpolate_with_nearest(const Mat_<Vec3b>& imageArg, double x, double y)
{
auto x0 = static_cast<int>(floor(x)); auto y0 = static_cast<int>(floor(y));
auto x1 = static_cast<int>(ceil(x)); auto y1 = static_cast<int>(ceil(y));
// Rolls over to the other side, esp. for angles
if(x0 < 0) x0 = imageArg.rows - 1;
if(y0 < 0) y0 = imageArg.cols - 1;
if (x1 == imageArg.rows) x1 = 0;
if (y1 == imageArg.cols) y1 = 0;
int chosenX, chosenY;
if (x - x0 < 0.5) chosenX = x0; else chosenX = x1;
if (y - y0 < 0.5) chosenY = y0; else chosenY = y1;
Vec3b originalColor = Vec3b(0, 0, 0);
if (chosenX >= 0 && chosenX < imageArg.rows &&
chosenY >= 0 && chosenY < imageArg.cols)
{
originalColor = imageArg(/*row*/chosenX, /*column*/chosenY);
}
return originalColor;
}
Vec3b interpolate_with_bilinear(const Mat_<Vec3b>& imageArg, double x, double y)
{
auto x0 = static_cast<int>(floor(x)); auto y0 = static_cast<int>(floor(y));
auto x1 = static_cast<int>(ceil(x)); auto y1 = static_cast<int>(ceil(y));
// Rolls over to the other side, esp. for angles
if(x0 < 0) x0 = imageArg.rows - 1;
if(y0 < 0) y0 = imageArg.cols - 1;
if (x1 == imageArg.rows) x1 = 0;
if (y1 == imageArg.cols) y1 = 0;
if (!(
x0 >= 0 && x0 < imageArg.rows &&
x1 >= 0 && x1 < imageArg.rows &&
y0 >= 0 && y0 < imageArg.cols &&
y1 >= 0 && y1 < imageArg.cols))
return Vec3b(0, 0, 0);
auto f00 = imageArg(x0, y0);
auto f01 = imageArg(x0, y1);
auto f10 = imageArg(x1, y0);
auto f11 = imageArg(x1, y1);
auto b1 = f00;
auto b2 = f10 - f00;
auto b3 = f01 - f00;
auto b4 = f00 + f11 - f01 - f10;
x = x - x0;
y = y - y0;
return b1 + b2 * x + b3 * y + b4 * x * y;
}
void on_mouse(int eventCode, int centerX, int centerY, int flags, void* params)
{
if(eventCode == 0)
return;
switch( eventCode )
{
case CV_EVENT_LBUTTONDOWN:
{
std::cout << "Center was (" << centerX << ", " << centerY << ")" << std::endl;
auto maxRadiusXY = compute_max_madius(image.rows, image.cols, centerX, centerY);
int discreteRadii = static_cast<int>(floor(maxRadiusXY));
Mat_<Vec3b> polarImg1;
polarImg1.create(/*rows*/discreteRadii, /*cols*/discreteAngles);
Mat_<Vec3b> polarImg2;
polarImg2.create(/*rows*/discreteRadii, /*cols*/discreteAngles);
for (int radius = 0; radius < discreteRadii; radius++) // radii
{
for (int discreteAngle = 0; discreteAngle < discreteAngles; discreteAngle++) // discreteAngles
{
// 3
auto angleRad = discreteAngle * 2.0 * CV_PI / discreteAngles;
// 2
auto xTranslated = cos(angleRad) * radius;
auto yTranslated = sin(angleRad) * radius;
// 1
auto x = centerX + xTranslated;
auto y = centerY - yTranslated;
polarImg1(/*row*/ radius, /*column*/ discreteAngle) = interpolate_with_nearest(image, /*row*/y, /*column*/x);
polarImg2(/*row*/ radius, /*column*/ discreteAngle) = interpolate_with_bilinear(image, /*row*/y, /*column*/x);
}
}
auto polarImage1Str = "Polar (nearest)";
namedWindow(polarImage1Str);
imshow(polarImage1Str, polarImg1);
auto polarImage2Str = "Polar (bilinear)";
namedWindow(polarImage2Str);
imshow(polarImage2Str, polarImg2);
Mat_<Vec3b> reprocessedImg1;
reprocessedImg1.create(Size(image.rows, image.cols));
Mat_<Vec3b> reprocessedImg2;
reprocessedImg2.create(Size(image.rows, image.cols));
for(int y = 0; y < image.rows; y++)
{
for(int x = 0; x < image.cols; x++)
{
// 1
auto xTranslated = x - centerX;
auto yTranslated = -(y - centerY);
// 2
auto radius = sqrt((double)xTranslated * xTranslated + yTranslated * yTranslated);
double angleRad;
if(xTranslated != 0)
{
angleRad = atan((double)abs(yTranslated) / abs(xTranslated));
// I Quadrant
if (xTranslated > 0 && yTranslated > 0)
angleRad = angleRad;
// II Quadrant
if (xTranslated < 0 && yTranslated > 0)
angleRad = CV_PI - angleRad;
// III Quadrant
if (xTranslated < 0 && yTranslated < 0)
angleRad = CV_PI + angleRad;
/// IV Quadrant
if (xTranslated > 0 && yTranslated < 0)
angleRad = 2 * CV_PI - angleRad;
if (yTranslated == 0)
if (xTranslated > 0) angleRad = 0;
else angleRad = CV_PI;
}
else
{
if (yTranslated > 0) angleRad = CV_PI / 2;
else angleRad = 3 * CV_PI / 2;
}
// 3
auto discreteAngle = angleRad * discreteAngles / (2.0 * CV_PI);
reprocessedImg1(/*row*/ y, /*column*/ x) = interpolate_with_nearest(polarImg1, /*row*/radius, /*column*/discreteAngle);
reprocessedImg2(/*row*/ y, /*column*/ x) = interpolate_with_bilinear(polarImg2, /*row*/radius, /*column*/discreteAngle);
}
}
auto reprocessedImg1Str = "Re-processed (nearest)";
namedWindow(reprocessedImg1Str);
imshow(reprocessedImg1Str, reprocessedImg1);
auto reprocessedImg2Str = "Re-processed (bilinear)";
namedWindow(reprocessedImg2Str);
imshow(reprocessedImg2Str, reprocessedImg2);
} break;
}
}