I have a RS485 communication that I talk over with boost::asio::serial_port. I'm testing what happens when there is no connection. The first time the timer cancels the operation. The second time the program just hangs on io.run(). I'm confused, because I create a new fresh timer, reset io and try to have a clean plate before I start to read anything from the wire.
boost::asio::io_context io;
boost::asio::serial_port port;
std::size_t readUntil(std::vector<char>& buffer, char delim, std::chrono::microseconds timeout) {
using boost::system::error_code;
error_code read_result {};
size_t msglen = 0;
io.reset();
boost::asio::system_timer timer(io, timeout);
boost::asio::async_read_until(port, boost::asio::dynamic_buffer(buffer), delim, [&](error_code ec, size_t n) {
timer.cancel();
read_result = ec;
msglen = n;
}
);
timer.async_wait([&](error_code ec) {
if (!ec) {
port.cancel();
throw exception::read_exception(exception::read_exception::Code::TIME_OUT);
}
});
io.run(); // Hangs here, the second time, not the first
if (read_result) {
std::stringstream sstream;
sstream << read_result;
throw exception::read_exception(exception::read_exception::Code::PORT, sstream.str());
}
return msglen;
}
int main() {
//set up port options (baudrate etc)
for(size_t i = 0; i<10; i++) {
std::vector<char> buffer;
readUntil(buffer, '\', std::chrono::microseconds(1000));
}
}
i have a question about maximum size of buffer in handler function which is called in boost::bind method.
I have a tcp socket client:
chat_client(boost::asio::io_service& io_service,
tcp::resolver::iterator endpoint_iterator)
: io_service_(io_service),
socket_(io_service),
t(io_service)
{
boost::asio::async_connect(socket_, endpoint_iterator,
boost::bind(&chat_client::handle_connect, this,
boost::asio::placeholders::error));
}
in chat_client class, i create a method to write request to socket buffer
void set_timer(boost::posix_time::ptime time, boost::function<void(const
boost::system::error_code&)> handler)
{
t.expires_at(time);
t.async_wait(handler);
}
void write(const chat_message& msg)
{
set_timer(boost::posix_time::microsec_clock::universal_time() +
boost::posix_time::seconds(1),
boost::bind(&chat_client::do_write, this, msg,
boost::asio::placeholders::error));
io_service_.run();
}
void do_write(chat_message msg, const boost::system::error_code& error)
{
std::cout << "dcm" << std::endl;
bool write_in_progress = !write_msgs_.empty();
write_msgs_.push_back(msg);
if (!write_in_progress)
{
boost::asio::async_write(socket_,
boost::asio::buffer(write_msgs_.front().data(),
write_msgs_.front().length()),
boost::bind(&chat_client::handle_write, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
}
void handle_write(const boost::system::error_code& error, size_t
bytes_transferred)
{
if (!error)
{
write_msgs_.pop_front();
if (!write_msgs_.empty())
{
boost::asio::async_write(socket_,
boost::asio::buffer(write_msgs_.front().data(),
write_msgs_.front().length()),
boost::bind(&chat_client::handle_write, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
}
else
{
do_close();
}
}
My request content is packaged in an instance of chat_message class. And here is chat_message class:
class chat_message
{
public:
enum { header_length = 7 };
enum { max_body_length = 0x1FFFFF };
chat_message()
: body_length_(0)
{
}
const char* data() const
{
return data_;
}
char* data()
{
return data_;
}
size_t length() const
{
return header_length + body_length_;
}
const char* body() const
{
return data_ + header_length;
}
char* body()
{
return data_ + header_length;
}
size_t body_length() const
{
return body_length_;
}
void body_length(size_t new_length)
{
body_length_ = new_length;
if (body_length_ > max_body_length)
body_length_ = max_body_length;
}
bool decode_header()
{
using namespace std; // For strncat and atoi.
char header[header_length + 1] = "";
strncat(header, data_, header_length);
body_length_ = atoi(header);
if (body_length_ > max_body_length)
{
body_length_ = 0;
return false;
}
return true;
}
void encode_header()
{
using namespace std; // For sprintf and memcpy.
char header[header_length + 1] = "";
sprintf(header, "%4d", static_cast<int>(body_length_));
memcpy(data_, header, header_length);
}
private:
char data_[header_length + max_body_length];
size_t body_length_;
};
My issue is when i set max_body_length > 0xFFFFF, boost::bind() method in write() function lead to segmentation fault. So i doubt that, boost::bind() method has a maximum of buffersize. Can someone explain it for me? Thank you
The problem is not in boost::bind() but in the following:
char data_[header_length + max_body_length];
This line will compile alright but can crash when elements get accessed. I would strongly recommend not to use such a huge array of chars here. As one of the ways to keep it you might think about dynamic allocation. Or move from array at all. STL and BOOST libraries provide a lot of tools to safely handle strings and collections.
I need to write a dynamic library which should export three functions:
bool init_sender(const char* ip_addr, int port);
void cleanup_sender();
void send_command(const char* cmd, int len);
init_sender should connect to server synchronously and return true / false according to whether it was success or not.
cleanup_sender should wait for all commands to be completed and then returns.
send_command should send the specified command to the server asynchronously and return as fast as possible.
So I wrote the following code:
boost::asio::io_service g_io_service;
std::unique_ptr<boost::asio::io_service::work> g_work;
boost::asio::ip::tcp::socket g_sock(g_io_service);
boost::thread g_io_service_th;
void io_service_processor()
{
g_io_service.run();
}
bool __stdcall init_sender(const char* ip_addr, int port)
{
try
{
g_work = std::make_unique<boost::asio::io_service::work>(g_io_service);
boost::asio::ip::tcp::resolver resolver(g_io_service);
boost::asio::connect(g_sock, resolver.resolve({ ip_addr, std::to_string(port) }));
g_io_service_th = boost::thread(io_service_processor);
return true;
}
catch (const std::exception& ex)
{
return false;
}
}
void __stdcall cleanup_sender()
{
g_work.reset();
if (g_io_service_th.joinable())
{
g_io_service_th.join();
}
}
void async_write_cb(
const boost::system::error_code& error,
std::size_t bytes_transferred)
{
// TODO: implement
}
void __stdcall send_command(const char* cmd, int len)
{
boost::asio::async_write(g_sock, boost::asio::buffer(cmd, len), async_write_cb);
}
As far as I knew from boost asio documentation, all my command posted by async_write function call will be executed from one single thread (the one that contains run function call -- g_io_service_th in my case). Am I right? If so, it doesn't seem to be fully asynchronous to me. What could I do to change this behavior and send several commands at the same time from several threads? Should I create boost::thread_group like this
for (int i = 0; i < pool_size; ++i)
{
_thread_group.create_thread(boost::bind(&boost::asio::io_service::run, &_io_service));
}
or is there any other way?
You're asking a bit question and there's a lot to learn. Probably the most important thing to understand is how to use a work object.
edit: reference to async_write restriction:
http://www.boost.org/doc/libs/1_59_0/doc/html/boost_asio/reference/async_write/overload1.html
quoting from the documentation:
This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's async_write_some function, or any other composed operations that perform writes) until this operation completes.
Your asio thread code should look something like this:
#include <iostream>
#include <vector>
#include <boost/asio.hpp>
#include <thread>
struct service_loop
{
using io_service = boost::asio::io_service;
io_service& get_io_service() {
return _io_service;
}
service_loop(size_t threads = 1)
: _strand(_io_service)
, _work(_io_service)
, _socket(_io_service)
{
for(size_t i = 0 ; i < threads ; ++i)
add_thread();
}
~service_loop() {
stop();
}
// adding buffered sequential writes...
void write(const char* data, size_t length)
{
_strand.dispatch([this, v = std::vector<char>(data, data + length)] {
_write_buffer.insert(std::end(_write_buffer), v.begin(), v.end());
check_write();
});
}
private:
std::vector<char> _write_buffer;
bool _writing;
void check_write()
{
if (!_writing and !_write_buffer.empty()) {
auto pv = std::make_shared<std::vector<char>>(std::move(_write_buffer));
_writing = true;
_write_buffer.clear();
boost::asio::async_write(_socket,
boost::asio::buffer(*pv),
[this, pv] (const boost::system::error_code& ec, size_t written) {
_strand.dispatch(std::bind(&service_loop::handle_write,
this,
ec,
written));
});
}
}
void handle_write(const boost::system::error_code& ec, size_t written)
{
_writing = false;
if (ec) {
// handle error somehow
}
else {
check_write();
}
}
private:
io_service _io_service;
io_service::strand _strand;
io_service::work _work;
std::vector<std::thread> _threads;
boost::asio::ip::tcp::socket _socket;
void add_thread()
{
_threads.emplace_back(std::bind(&service_loop::run_thread, this));
}
void stop()
{
_io_service.stop();
for(auto& t : _threads) {
if(t.joinable()) t.join();
}
}
void run_thread()
{
while(!_io_service.stopped())
{
try {
_io_service.run();
}
catch(const std::exception& e) {
// report exceptions here
}
}
}
};
using namespace std;
auto main() -> int
{
service_loop sl;
sl.write("hello", 5);
sl.write(" world", 6);
std::this_thread::sleep_for(std::chrono::seconds(10));
return 0;
}
I am implementing a small distributed system that consists N machines. Each of them receives some data from some remote server and then propagates the data to other n-1 fellow machines. I am using the Boost Asio async_read and async_write to implement this. I set up a test cluster of N=30 machines. When I tried smaller datesets (receiving 75KB to 750KB per machine), the program always worked. But when I moved on to just a slightly larger dataset (7.5MB), I observed strange behavior: at the beginning, reads and writes happened as expected, but after a while, some machines hanged while others finished, the number of machines that hanged varied with each run. I tried to print out some messages in each handler and found that for those machines that hanged, async_read basically could not successfully read after a while, therefore nothing could proceed afterwards. I checked the remote servers, and they all finished writing. I have tried out using strand to control the order of execution of async reads and writes, and I also tried using different io_services for read and write. None of them solved the problem. I am pretty desperate. Can anyone help me?
Here is the code for the class that does the read and propagation:
const int TRANS_TUPLE_SIZE=15;
const int TRANS_BUFFER_SIZE=5120/TRANS_TUPLE_SIZE*TRANS_TUPLE_SIZE;
class Asio_Trans_Broadcaster
{
private:
char buffer[TRANS_BUFFER_SIZE];
int node_id;
int mpi_size;
int mpi_rank;
boost::asio::ip::tcp::socket* dbsocket;
boost::asio::ip::tcp::socket** sender_sockets;
int n_send;
boost::mutex mutex;
bool done;
public:
Asio_Trans_Broadcaster(boost::asio::ip::tcp::socket* dbskt, boost::asio::ip::tcp::socket** senderskts,
int msize, int mrank, int id)
{
dbsocket=dbskt;
count=0;
node_id=id;
mpi_size=mpi_rank=-1;
sender_sockets=senderskts;
mpi_size=msize;
mpi_rank=mrank;
n_send=-1;
done=false;
}
static std::size_t completion_condition(const boost::system::error_code& error, std::size_t bytes_transferred)
{
int remain=bytes_transferred%TRANS_TUPLE_SIZE;
if(remain==0 && bytes_transferred>0)
return 0;
else
return TRANS_BUFFER_SIZE-bytes_transferred;
}
void write_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
int n=-1;
mutex.lock();
n_send--;
n=n_send;
mutex.unlock();
fprintf(stdout, "~~~~~~ #%d, write_handler: %d bytes, copies_to_send: %d\n",
node_id, bytes_transferred, n);
if(n==0 && !done)
boost::asio::async_read(*dbsocket,
boost::asio::buffer(buffer, TRANS_BUFFER_SIZE),
Asio_Trans_Broadcaster::completion_condition, boost::bind(&Asio_Trans_Broadcaster::broadcast_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
void broadcast_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
fprintf(stdout, "#%d, broadcast_handler: %d bytes, mpi_size:%d, mpi_rank: %d\n", node_id, bytes_transferred, mpi_size, mpi_rank);
if (!ec)
{
int pos=0;
while(pos<bytes_transferred && pos<TRANS_BUFFER_SIZE)
{
int id=-1;
memcpy(&id, &buffer[pos], 4);
if(id<0)
{
done=true;
fprintf(stdout, "#%d, broadcast_handler: done!\n", mpi_rank);
break;
}
pos+=TRANS_TUPLE_SIZE;
}
mutex.lock();
n_send=mpi_size-1;
mutex.unlock();
for(int i=0; i<mpi_size; i++)
if(i!=mpi_rank)
{
boost::asio::async_write(*sender_sockets[i], boost::asio::buffer(buffer, bytes_transferred),
boost::bind(&Asio_Trans_Broadcaster::write_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
}
else
{
cerr<<mpi_rank<<" error: "<<ec.message()<<endl;
delete this;
}
}
void broadcast()
{
boost::asio::async_read(*dbsocket,
boost::asio::buffer(buffer, TRANS_BUFFER_SIZE),
Asio_Trans_Broadcaster::completion_condition, boost::bind(&Asio_Trans_Broadcaster::broadcast_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
};
Here is the main code running on each machine:
int N=30;
boost::asio::io_service* sender_io_service=new boost::asio::io_service();
boost::asio::io_service::work* p_work=new boost::asio::io_service::work(*sender_io_service);
boost::thread_group send_thread_pool;
for(int i=0; i<NUM_THREADS; i++)
{
send_thread_pool.create_thread( boost::bind( & boost::asio::io_service::run, sender_io_service ) );
}
boost::asio::io_service* receiver_io_service=new boost::asio::io_service();
shared_ptr<boost::asio::io_service::work> p_work2(new boost::asio::io_service::work(*receiver_io_service));
boost::thread_group thread_pool2;
thread_pool2.create_thread( boost::bind( & boost::asio::io_service::run, receiver_io_service) );
boost::asio::ip::tcp::socket* receiver_socket;
//establish nonblocking connection with remote server
AsioConnectToRemote(5000, 1, receiver_io_service, receiver_socket, true);
boost::asio::ip::tcp::socket* send_sockets[N];
//establish blocking connection with other machines
hadoopNodes = SetupAsioConnectionsWIthOthers(sender_io_service, send_sockets, hostFileName, mpi_rank, mpi_size, 3000, false);
Asio_Trans_Broadcaster* db_receiver=new Asio_Trans_Broadcaster(receiver_socket, send_sockets,
mpi_size, mpi_rank, mpi_rank);
db_receiver->broadcast();
p_work2.reset();
thread_pool2.join_all();
delete p_work;
send_thread_pool.join_all();
I don't know what your code is trying to achieve. There are too many missing bits.
Of course, if the task is to asynchronously send/receive traffic on network sockets, Asio is just the thing for that. It's hard to see what's special about your code.
I'd suggest to clean up the more obvious problems:
there's (almost) no error handling (check your error_code-s!)
unless you're on a funny platform, your format strings should use %lu for size_t
why do you mess around with raw arrays, with possibly bad sizes, when you can just have a vector?
never assume the size of objects if you can use sizeof:
memcpy(&id, &trans_buffer[pos], sizeof(id));
come to think of it, it looks like the indexing of buffer is unsafe anyways:
while(pos < bytes_transferred && pos < TRANS_BUFFER_SIZE)
{
int id = -1;
memcpy(&id, &buffer[pos], sizeof(id));
If e.g. pos == TRANS_BUFFER_SIZE-1 here the memcpy invokes Undefined Behavour...
why is there so much new going on? You're inviting a hairy class of bugs into your code. As if memory management wasn't the achilles heel of lowlevel coding. Use values, or shared pointers. Never delete this. Ever[1]
why is there so much repeated code? Why is one thread pool named after sender and the other thread_pool2? Which contains 1 thread. Eh? Why do you have one work item as a raw pointer, the other as a shared_ptr?
You could just just:
struct service_wrap {
service_wrap(int threads) {
while(threads--)
pool.create_thread(boost::bind(&boost::asio::io_service::run, boost::ref(io_service)));
}
~service_wrap() {
io_service.post(boost::bind(&service_wrap::stop, this));
pool.join_all();
}
private: // mind the initialization order!
boost::asio::io_service io_service;
boost::optional<boost::asio::io_service::work> work;
boost::thread_group pool;
void stop() {
work = boost::none;
}
};
So you can simply write:
service_wrap senders(NUM_THREADS);
service_wrap receivers(1);
Wow. Did you see that? No more chance of error. If you fix one pool, you fix the other automatically. No more delete the first, .reset() the second work item. In short: no more messy code, and less complexity.
Use exception safe locking guards:
int local_n_send = -1; // not clear naming
{
boost::lock_guard<boost::mutex> lk(mutex);
n_send--;
local_n_send = n_send;
}
the body of broadcast is completely repeated in write_handler(). Why not just call it:
if(local_n_send == 0 && !done)
broadcast();
I think there's still a race condition - not a data race on the access to n_send itself, but the decision to re-broadcast might be wrong if n_send reaches zero after the the lock is released. Now, since broadcast() does only an async operation, you can just do it under the lock and get rid of the race condition:
void write_handler(const error_code &ec, size_t bytes_transferred) {
boost::lock_guard<boost::mutex> lk(mutex);
if(!(done || --n_send))
broadcast();
}
Woop woop. That's three lines of code now. Less code is less bugs.
My guess would be that if you diligently scrub the code like this, you will inevitably find your clues. Think of it like you would look for a lost wedding-ring: you wouldn't leave a mess lying around. Instead, you'd go from room to room and tidy it all up. Throw everything "out" first if need be.
Iff you can make this thing self-contained /and/ reproducible, I'll even debug it further for you!
Cheers
Here's a starting point that I made while looking at the code: Compiling on Coliru
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/array.hpp>
#include <boost/make_shared.hpp>
#include <boost/ptr_container/ptr_vector.hpp>
#include <iostream>
const/*expr*/ int TRANS_TUPLE_SIZE = 15;
const/*expr*/ int TRANS_BUFFER_SIZE = 5120 / TRANS_TUPLE_SIZE * TRANS_TUPLE_SIZE;
namespace AsioTrans
{
using boost::system::error_code;
using namespace boost::asio;
typedef ip::tcp::socket socket_t;
typedef boost::ptr_vector<socket_t> socket_list;
class Broadcaster
{
private:
boost::array<char, TRANS_BUFFER_SIZE> trans_buffer;
int node_id;
int mpi_rank;
socket_t& dbsocket;
socket_list& sender_sockets;
int n_send;
boost::mutex mutex;
bool done;
public:
Broadcaster(
socket_t& dbskt,
socket_list& senderskts,
int mrank,
int id) :
node_id(id),
mpi_rank(mrank),
dbsocket(dbskt),
sender_sockets(senderskts),
n_send(-1),
done(false)
{
// count=0;
}
static size_t completion_condition(const error_code& error, size_t bytes_transferred)
{
// TODO FIXME handler error_code here
int remain = bytes_transferred % TRANS_TUPLE_SIZE;
if(bytes_transferred && !remain)
{
return 0;
}
else
{
return TRANS_BUFFER_SIZE - bytes_transferred;
}
}
void write_handler(const error_code &ec, size_t bytes_transferred)
{
// TODO handle errors
// TODO check bytes_transferred
boost::lock_guard<boost::mutex> lk(mutex);
if(!(done || --n_send))
broadcast();
}
void broadcast_handler(const error_code &ec, size_t bytes_transferred)
{
fprintf(stdout, "#%d, broadcast_handler: %lu bytes, mpi_size:%lu, mpi_rank: %d\n", node_id, bytes_transferred, sender_sockets.size(), mpi_rank);
if(!ec)
{
for(size_t pos = 0; (pos < bytes_transferred && pos < TRANS_BUFFER_SIZE); pos += TRANS_TUPLE_SIZE)
{
int id = -1;
memcpy(&id, &trans_buffer[pos], sizeof(id));
if(id < 0)
{
done = true;
fprintf(stdout, "#%d, broadcast_handler: done!\n", mpi_rank);
break;
}
}
{
boost::lock_guard<boost::mutex> lk(mutex);
n_send = sender_sockets.size() - 1;
}
for(int i = 0; size_t(i) < sender_sockets.size(); i++)
{
if(i != mpi_rank)
{
async_write(
sender_sockets[i],
buffer(trans_buffer, bytes_transferred),
boost::bind(&Broadcaster::write_handler, this, placeholders::error, placeholders::bytes_transferred));
}
}
}
else
{
std::cerr << mpi_rank << " error: " << ec.message() << std::endl;
delete this;
}
}
void broadcast()
{
async_read(
dbsocket,
buffer(trans_buffer),
Broadcaster::completion_condition,
boost::bind(&Broadcaster::broadcast_handler, this,
placeholders::error,
placeholders::bytes_transferred));
}
};
struct service_wrap {
service_wrap(int threads) {
while(threads--)
_pool.create_thread(boost::bind(&io_service::run, boost::ref(_service)));
}
~service_wrap() {
_service.post(boost::bind(&service_wrap::stop, this));
_pool.join_all();
}
io_service& service() { return _service; }
private: // mind the initialization order!
io_service _service;
boost::optional<io_service::work> _work;
boost::thread_group _pool;
void stop() {
_work = boost::none;
}
};
extern void AsioConnectToRemote(int, int, io_service&, socket_t&, bool);
extern void SetupAsioConnectionsWIthOthers(io_service&, socket_list&, std::string, int, bool);
}
int main()
{
using namespace AsioTrans;
// there's no use in increasing #threads unless there are blocking operations
service_wrap senders(boost::thread::hardware_concurrency());
service_wrap receivers(1);
socket_t receiver_socket(receivers.service());
AsioConnectToRemote(5000, 1, receivers.service(), receiver_socket, true);
socket_list send_sockets(30);
/*hadoopNodes =*/ SetupAsioConnectionsWIthOthers(senders.service(), send_sockets, "hostFileName", 3000, false);
int mpi_rank = send_sockets.size();
AsioTrans::Broadcaster db_receiver(receiver_socket, send_sockets, mpi_rank, mpi_rank);
db_receiver.broadcast();
}
[1] No exceptions. Except when there's an exception to the no-exceptions rule. Exception-ception.
I apologise for the length of code posted here. I am trying to create a class that uses boost::process to spawn a process, feed it some data on its stdin and to capture all its stdout & stderr.
The subprocess' stdin may be lengthy as might the stdout; The target machine does not have vast amounts of memory so each of these needs to be handled in chunks.
I have read endless examples of usage of boost::process, but have found nothing that answers all these questions together. I have tried combining these examples without success. I'm obviously missing something. I would be grateful for any help.
What happens is that the child process is successfully spawned but nothing happens. The parent process halt on the line marked THUS *.
The class defined:
class CommandProcessor {
public:
explicit CommandProcessor(const std::string &executable_path, bool slow) :
executable_path_(executable_path), slow_(slow), in_(io_service_, ::dup(STDIN_FILENO)), out_(io_service_, ::dup(STDOUT_FILENO)), err_(io_service_, ::dup(STDERR_FILENO)) {
}
private:
void begin_write_stdin();
void end_write_stdin(const boost::system::error_code &ec, std::size_t bytes_transferred);
void begin_read_stdout();
void end_read_stdout(const boost::system::error_code &ec, std::size_t bytes_transferred);
void begin_read_stderr();
void end_read_stderr(const boost::system::error_code &ec, std::size_t bytes_transferred);
public:
void execute_command(const Command& command);
private:
boost::filesystem::path executable_path_;bool slow_;
boost::asio::io_service io_service_;
boost::asio::posix::stream_descriptor in_;
boost::asio::posix::stream_descriptor out_;
boost::asio::posix::stream_descriptor err_;
std::string stdout_;
std::string stderr_;
std::string stdin_buffer_;
std::array<char, 4096> stdout_buffer_;
std::array<char, 4096> stderr_buffer_;
std::vector<std::string>::const_iterator stdin_it_;
std::vector<std::string>::const_iterator stdin_end_;
};
The code (for brevity I include only the bits giving me trouble):
void CommandProcessor::begin_write_stdin() {
if (stdin_buffer_.size() == 0) {
for (; stdin_it_ != stdin_end_; stdin_it_++) {
if (stdin_buffer_.size() + stdin_it_->size() > 4096) {
break;
}
stdin_buffer_ += *stdin_it_;
}
}
if (stdin_buffer_.size() == 0) {
return;
}
in_.async_write_some(boost::asio::buffer(stdin_buffer_),
boost::bind(&CommandProcessor::end_write_stdin, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred));
}
void CommandProcessor::end_write_stdin(const boost::system::error_code &ec, std::size_t bytes_transferred __attribute__((unused))) {
if (!ec) {
stdin_it_++;
if (stdin_it_ != stdin_end_) {
begin_write_stdin();
}
}
in_.close();
}
void CommandProcessor::begin_read_stdout() {
out_.async_read_some(boost::asio::buffer(stdout_buffer_),
boost::bind(&CommandProcessor::end_read_stdout, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred));
}
void CommandProcessor::end_read_stdout(const boost::system::error_code &ec, std::size_t bytes_transferred __attribute__((unused))) {
if (!ec) {
stdout_ += stdout_buffer_.data();
begin_read_stdout();
}
out_.close();
}
void CommandProcessor::begin_read_stderr() {
err_.async_read_some(boost::asio::buffer(stderr_buffer_), boost::bind(&CommandProcessor::end_read_stderr, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred));
}
void CommandProcessor::end_read_stderr(const boost::system::error_code &ec, std::size_t bytes_transferred __attribute__((unused))) {
if (!ec) {
stderr_ += stderr_buffer_.data();
begin_read_stderr();
}
err_.close();
}
void CommandProcessor::execute_command(const Command& command) {
boost::process::context ctx;
ctx.stdin_behavior = boost::process::capture_stream();
ctx.stdout_behavior = boost::process::capture_stream();
ctx.stderr_behavior = boost::process::capture_stream();
stdin_it_ = command.for_stdin_.begin();
stdin_end_ = command.for_stdin_.end();
boost::process::child child(boost::process::launch((executable_path_ / command.executable_name_).string(), command.executable_name_ + command.arguments_, ctx));
boost::process::pistream &child_stdout(child.get_stdout());
**** Halts in next statement
in_.assign(child_stdout.handle().release());
boost::process::pistream &child_stderr(child.get_stderr());
err_.assign(child_stderr.handle().release());
boost::process::postream &child_stdin = child.get_stdin();
out_.assign(child_stdin.handle().release());
begin_read_stdout();
begin_read_stderr();
begin_write_stdin();
boost::process::status child_status(child.wait());
if (child_status.exited()) {
if (child_status.exit_status() == 0) {
throw ProcessorException((boost::format("Exec status %d on %s") % child_status.exit_status() % (executable_path_ / command.executable_name_).string()).str());
}
} else {
throw ProcessorException((boost::format("Exec failure on %s") % (executable_path_ / command.executable_name_).string()).str());
}
}