Related
I am working on Linux with the GCC compiler. When my C++ program crashes I would like it to automatically generate a stacktrace.
My program is being run by many different users and it also runs on Linux, Windows and Macintosh (all versions are compiled using gcc).
I would like my program to be able to generate a stack trace when it crashes and the next time the user runs it, it will ask them if it is ok to send the stack trace to me so I can track down the problem. I can handle the sending the info to me but I don't know how to generate the trace string. Any ideas?
For Linux and I believe Mac OS X, if you're using gcc, or any compiler that uses glibc, you can use the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault. Documentation can be found in the libc manual.
Here's an example program that installs a SIGSEGV handler and prints a stacktrace to stderr when it segfaults. The baz() function here causes the segfault that triggers the handler:
#include <stdio.h>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
void handler(int sig) {
void *array[10];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, 10);
// print out all the frames to stderr
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
void baz() {
int *foo = (int*)-1; // make a bad pointer
printf("%d\n", *foo); // causes segfault
}
void bar() { baz(); }
void foo() { bar(); }
int main(int argc, char **argv) {
signal(SIGSEGV, handler); // install our handler
foo(); // this will call foo, bar, and baz. baz segfaults.
}
Compiling with -g -rdynamic gets you symbol info in your output, which glibc can use to make a nice stacktrace:
$ gcc -g -rdynamic ./test.c -o test
Executing this gets you this output:
$ ./test
Error: signal 11:
./test(handler+0x19)[0x400911]
/lib64/tls/libc.so.6[0x3a9b92e380]
./test(baz+0x14)[0x400962]
./test(bar+0xe)[0x400983]
./test(foo+0xe)[0x400993]
./test(main+0x28)[0x4009bd]
/lib64/tls/libc.so.6(__libc_start_main+0xdb)[0x3a9b91c4bb]
./test[0x40086a]
This shows the load module, offset, and function that each frame in the stack came from. Here you can see the signal handler on top of the stack, and the libc functions before main in addition to main, foo, bar, and baz.
It's even easier than "man backtrace", there's a little-documented library (GNU specific) distributed with glibc as libSegFault.so, which was I believe was written by Ulrich Drepper to support the program catchsegv (see "man catchsegv").
This gives us 3 possibilities. Instead of running "program -o hai":
Run within catchsegv:
$ catchsegv program -o hai
Link with libSegFault at runtime:
$ LD_PRELOAD=/lib/libSegFault.so program -o hai
Link with libSegFault at compile time:
$ gcc -g1 -lSegFault -o program program.cc
$ program -o hai
In all 3 cases, you will get clearer backtraces with less optimization (gcc -O0 or -O1) and debugging symbols (gcc -g). Otherwise, you may just end up with a pile of memory addresses.
You can also catch more signals for stack traces with something like:
$ export SEGFAULT_SIGNALS="all" # "all" signals
$ export SEGFAULT_SIGNALS="bus abrt" # SIGBUS and SIGABRT
The output will look something like this (notice the backtrace at the bottom):
*** Segmentation fault Register dump:
EAX: 0000000c EBX: 00000080 ECX:
00000000 EDX: 0000000c ESI:
bfdbf080 EDI: 080497e0 EBP:
bfdbee38 ESP: bfdbee20
EIP: 0805640f EFLAGS: 00010282
CS: 0073 DS: 007b ES: 007b FS:
0000 GS: 0033 SS: 007b
Trap: 0000000e Error: 00000004
OldMask: 00000000 ESP/signal:
bfdbee20 CR2: 00000024
FPUCW: ffff037f FPUSW: ffff0000
TAG: ffffffff IPOFF: 00000000
CSSEL: 0000 DATAOFF: 00000000
DATASEL: 0000
ST(0) 0000 0000000000000000 ST(1)
0000 0000000000000000 ST(2) 0000
0000000000000000 ST(3) 0000
0000000000000000 ST(4) 0000
0000000000000000 ST(5) 0000
0000000000000000 ST(6) 0000
0000000000000000 ST(7) 0000
0000000000000000
Backtrace:
/lib/libSegFault.so[0xb7f9e100]
??:0(??)[0xb7fa3400]
/usr/include/c++/4.3/bits/stl_queue.h:226(_ZNSt5queueISsSt5dequeISsSaISsEEE4pushERKSs)[0x805647a]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/player.cpp:73(_ZN6Player5inputESs)[0x805377c]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:159(_ZN6Socket4ReadEv)[0x8050698]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:413(_ZN12ServerSocket4ReadEv)[0x80507ad]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:300(_ZN12ServerSocket4pollEv)[0x8050b44]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/main.cpp:34(main)[0x8049a72]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe5)[0xb7d1b775]
/build/buildd/glibc-2.9/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8049801]
If you want to know the gory details, the best source is unfortunately the source: See http://sourceware.org/git/?p=glibc.git;a=blob;f=debug/segfault.c and its parent directory http://sourceware.org/git/?p=glibc.git;a=tree;f=debug
Linux
While the use of the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault has already been suggested, I see no mention of the intricacies necessary to ensure the resulting backtrace points to the actual location of the fault (at least for some architectures - x86 & ARM).
The first two entries in the stack frame chain when you get into the signal handler contain a return address inside the signal handler and one inside sigaction() in libc. The stack frame of the last function called before the signal (which is the location of the fault) is lost.
Code
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#ifndef __USE_GNU
#define __USE_GNU
#endif
#include <execinfo.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ucontext.h>
#include <unistd.h>
/* This structure mirrors the one found in /usr/include/asm/ucontext.h */
typedef struct _sig_ucontext {
unsigned long uc_flags;
ucontext_t *uc_link;
stack_t uc_stack;
sigcontext_t uc_mcontext;
sigset_t uc_sigmask;
} sig_ucontext_t;
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
void * array[50];
void * caller_address;
char ** messages;
int size, i;
sig_ucontext_t * uc;
uc = (sig_ucontext_t *)ucontext;
/* Get the address at the time the signal was raised */
#if defined(__i386__) // gcc specific
caller_address = (void *) uc->uc_mcontext.eip; // EIP: x86 specific
#elif defined(__x86_64__) // gcc specific
caller_address = (void *) uc->uc_mcontext.rip; // RIP: x86_64 specific
#else
#error Unsupported architecture. // TODO: Add support for other arch.
#endif
fprintf(stderr, "signal %d (%s), address is %p from %p\n",
sig_num, strsignal(sig_num), info->si_addr,
(void *)caller_address);
size = backtrace(array, 50);
/* overwrite sigaction with caller's address */
array[1] = caller_address;
messages = backtrace_symbols(array, size);
/* skip first stack frame (points here) */
for (i = 1; i < size && messages != NULL; ++i)
{
fprintf(stderr, "[bt]: (%d) %s\n", i, messages[i]);
}
free(messages);
exit(EXIT_FAILURE);
}
int crash()
{
char * p = NULL;
*p = 0;
return 0;
}
int foo4()
{
crash();
return 0;
}
int foo3()
{
foo4();
return 0;
}
int foo2()
{
foo3();
return 0;
}
int foo1()
{
foo2();
return 0;
}
int main(int argc, char ** argv)
{
struct sigaction sigact;
sigact.sa_sigaction = crit_err_hdlr;
sigact.sa_flags = SA_RESTART | SA_SIGINFO;
if (sigaction(SIGSEGV, &sigact, (struct sigaction *)NULL) != 0)
{
fprintf(stderr, "error setting signal handler for %d (%s)\n",
SIGSEGV, strsignal(SIGSEGV));
exit(EXIT_FAILURE);
}
foo1();
exit(EXIT_SUCCESS);
}
Output
signal 11 (Segmentation fault), address is (nil) from 0x8c50
[bt]: (1) ./test(crash+0x24) [0x8c50]
[bt]: (2) ./test(foo4+0x10) [0x8c70]
[bt]: (3) ./test(foo3+0x10) [0x8c8c]
[bt]: (4) ./test(foo2+0x10) [0x8ca8]
[bt]: (5) ./test(foo1+0x10) [0x8cc4]
[bt]: (6) ./test(main+0x74) [0x8d44]
[bt]: (7) /lib/libc.so.6(__libc_start_main+0xa8) [0x40032e44]
All the hazards of calling the backtrace() functions in a signal handler still exist and should not be overlooked, but I find the functionality I described here quite helpful in debugging crashes.
It is important to note that the example I provided is developed/tested on Linux for x86. I have also successfully implemented this on ARM using uc_mcontext.arm_pc instead of uc_mcontext.eip.
Here's a link to the article where I learned the details for this implementation:
http://www.linuxjournal.com/article/6391
Even though a correct answer has been provided that describes how to use the GNU libc backtrace() function1 and I provided my own answer that describes how to ensure a backtrace from a signal handler points to the actual location of the fault2, I don't see any mention of demangling C++ symbols output from the backtrace.
When obtaining backtraces from a C++ program, the output can be run through c++filt1 to demangle the symbols or by using abi::__cxa_demangle1 directly.
1 Linux & OS X
Note that c++filt and __cxa_demangle are GCC specific
2 Linux
The following C++ Linux example uses the same signal handler as my other answer and demonstrates how c++filt can be used to demangle the symbols.
Code:
class foo
{
public:
foo() { foo1(); }
private:
void foo1() { foo2(); }
void foo2() { foo3(); }
void foo3() { foo4(); }
void foo4() { crash(); }
void crash() { char * p = NULL; *p = 0; }
};
int main(int argc, char ** argv)
{
// Setup signal handler for SIGSEGV
...
foo * f = new foo();
return 0;
}
Output (./test):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(crash__3foo+0x13) [0x8048e07]
[bt]: (2) ./test(foo4__3foo+0x12) [0x8048dee]
[bt]: (3) ./test(foo3__3foo+0x12) [0x8048dd6]
[bt]: (4) ./test(foo2__3foo+0x12) [0x8048dbe]
[bt]: (5) ./test(foo1__3foo+0x12) [0x8048da6]
[bt]: (6) ./test(__3foo+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
Demangled Output (./test 2>&1 | c++filt):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(foo::crash(void)+0x13) [0x8048e07]
[bt]: (2) ./test(foo::foo4(void)+0x12) [0x8048dee]
[bt]: (3) ./test(foo::foo3(void)+0x12) [0x8048dd6]
[bt]: (4) ./test(foo::foo2(void)+0x12) [0x8048dbe]
[bt]: (5) ./test(foo::foo1(void)+0x12) [0x8048da6]
[bt]: (6) ./test(foo::foo(void)+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
The following builds on the signal handler from my original answer and can replace the signal handler in the above example to demonstrate how abi::__cxa_demangle can be used to demangle the symbols. This signal handler produces the same demangled output as the above example.
Code:
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
sig_ucontext_t * uc = (sig_ucontext_t *)ucontext;
void * caller_address = (void *) uc->uc_mcontext.eip; // x86 specific
std::cerr << "signal " << sig_num
<< " (" << strsignal(sig_num) << "), address is "
<< info->si_addr << " from " << caller_address
<< std::endl << std::endl;
void * array[50];
int size = backtrace(array, 50);
array[1] = caller_address;
char ** messages = backtrace_symbols(array, size);
// skip first stack frame (points here)
for (int i = 1; i < size && messages != NULL; ++i)
{
char *mangled_name = 0, *offset_begin = 0, *offset_end = 0;
// find parantheses and +address offset surrounding mangled name
for (char *p = messages[i]; *p; ++p)
{
if (*p == '(')
{
mangled_name = p;
}
else if (*p == '+')
{
offset_begin = p;
}
else if (*p == ')')
{
offset_end = p;
break;
}
}
// if the line could be processed, attempt to demangle the symbol
if (mangled_name && offset_begin && offset_end &&
mangled_name < offset_begin)
{
*mangled_name++ = '\0';
*offset_begin++ = '\0';
*offset_end++ = '\0';
int status;
char * real_name = abi::__cxa_demangle(mangled_name, 0, 0, &status);
// if demangling is successful, output the demangled function name
if (status == 0)
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< real_name << "+" << offset_begin << offset_end
<< std::endl;
}
// otherwise, output the mangled function name
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< mangled_name << "+" << offset_begin << offset_end
<< std::endl;
}
free(real_name);
}
// otherwise, print the whole line
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << std::endl;
}
}
std::cerr << std::endl;
free(messages);
exit(EXIT_FAILURE);
}
Might be worth looking at Google Breakpad, a cross-platform crash dump generator and tools to process the dumps.
You did not specify your operating system, so this is difficult to answer. If you are using a system based on gnu libc, you might be able to use the libc function backtrace().
GCC also has two builtins that can assist you, but which may or may not be implemented fully on your architecture, and those are __builtin_frame_address and __builtin_return_address. Both of which want an immediate integer level (by immediate, I mean it can't be a variable). If __builtin_frame_address for a given level is non-zero, it should be safe to grab the return address of the same level.
Thank you to enthusiasticgeek for drawing my attention to the addr2line utility.
I've written a quick and dirty script to process the output of the answer provided here:
(much thanks to jschmier!) using the addr2line utility.
The script accepts a single argument: The name of the file containing the output from jschmier's utility.
The output should print something like the following for each level of the trace:
BACKTRACE: testExe 0x8A5db6b
FILE: pathToFile/testExe.C:110
FUNCTION: testFunction(int)
107
108
109 int* i = 0x0;
*110 *i = 5;
111
112 }
113 return i;
Code:
#!/bin/bash
LOGFILE=$1
NUM_SRC_CONTEXT_LINES=3
old_IFS=$IFS # save the field separator
IFS=$'\n' # new field separator, the end of line
for bt in `cat $LOGFILE | grep '\[bt\]'`; do
IFS=$old_IFS # restore default field separator
printf '\n'
EXEC=`echo $bt | cut -d' ' -f3 | cut -d'(' -f1`
ADDR=`echo $bt | cut -d'[' -f3 | cut -d']' -f1`
echo "BACKTRACE: $EXEC $ADDR"
A2L=`addr2line -a $ADDR -e $EXEC -pfC`
#echo "A2L: $A2L"
FUNCTION=`echo $A2L | sed 's/\<at\>.*//' | cut -d' ' -f2-99`
FILE_AND_LINE=`echo $A2L | sed 's/.* at //'`
echo "FILE: $FILE_AND_LINE"
echo "FUNCTION: $FUNCTION"
# print offending source code
SRCFILE=`echo $FILE_AND_LINE | cut -d':' -f1`
LINENUM=`echo $FILE_AND_LINE | cut -d':' -f2`
if ([ -f $SRCFILE ]); then
cat -n $SRCFILE | grep -C $NUM_SRC_CONTEXT_LINES "^ *$LINENUM\>" | sed "s/ $LINENUM/*$LINENUM/"
else
echo "File not found: $SRCFILE"
fi
IFS=$'\n' # new field separator, the end of line
done
IFS=$old_IFS # restore default field separator
ulimit -c <value> sets the core file size limit on unix. By default, the core file size limit is 0. You can see your ulimit values with ulimit -a.
also, if you run your program from within gdb, it will halt your program on "segmentation violations" (SIGSEGV, generally when you accessed a piece of memory that you hadn't allocated) or you can set breakpoints.
ddd and nemiver are front-ends for gdb which make working with it much easier for the novice.
It's important to note that once you generate a core file you'll need to use the gdb tool to look at it. For gdb to make sense of your core file, you must tell gcc to instrument the binary with debugging symbols: to do this, you compile with the -g flag:
$ g++ -g prog.cpp -o prog
Then, you can either set "ulimit -c unlimited" to let it dump a core, or just run your program inside gdb. I like the second approach more:
$ gdb ./prog
... gdb startup output ...
(gdb) run
... program runs and crashes ...
(gdb) where
... gdb outputs your stack trace ...
I hope this helps.
It looks like in one of last c++ boost version appeared library to provide exactly what You want, probably the code would be multiplatform.
It is boost::stacktrace, which You can use like as in boost sample:
#include <filesystem>
#include <sstream>
#include <fstream>
#include <signal.h> // ::signal, ::raise
#include <boost/stacktrace.hpp>
const char* backtraceFileName = "./backtraceFile.dump";
void signalHandler(int)
{
::signal(SIGSEGV, SIG_DFL);
::signal(SIGABRT, SIG_DFL);
boost::stacktrace::safe_dump_to(backtraceFileName);
::raise(SIGABRT);
}
void sendReport()
{
if (std::filesystem::exists(backtraceFileName))
{
std::ifstream file(backtraceFileName);
auto st = boost::stacktrace::stacktrace::from_dump(file);
std::ostringstream backtraceStream;
backtraceStream << st << std::endl;
// sending the code from st
file.close();
std::filesystem::remove(backtraceFileName);
}
}
int main()
{
::signal(SIGSEGV, signalHandler);
::signal(SIGABRT, signalHandler);
sendReport();
// ... rest of code
}
In Linux You compile the code above:
g++ --std=c++17 file.cpp -lstdc++fs -lboost_stacktrace_backtrace -ldl -lbacktrace
Example backtrace copied from boost documentation:
0# bar(int) at /path/to/source/file.cpp:70
1# bar(int) at /path/to/source/file.cpp:70
2# bar(int) at /path/to/source/file.cpp:70
3# bar(int) at /path/to/source/file.cpp:70
4# main at /path/to/main.cpp:93
5# __libc_start_main in /lib/x86_64-linux-gnu/libc.so.6
6# _start
Ive been looking at this problem for a while.
And buried deep in the Google Performance Tools README
http://code.google.com/p/google-perftools/source/browse/trunk/README
talks about libunwind
http://www.nongnu.org/libunwind/
Would love to hear opinions of this library.
The problem with -rdynamic is that it can increase the size of the binary relatively significantly in some cases
The new king in town has arrived
https://github.com/bombela/backward-cpp
1 header to place in your code and 1 library to install.
Personally I call it using this function
#include "backward.hpp"
void stacker() {
using namespace backward;
StackTrace st;
st.load_here(99); //Limit the number of trace depth to 99
st.skip_n_firsts(3);//This will skip some backward internal function from the trace
Printer p;
p.snippet = true;
p.object = true;
p.color = true;
p.address = true;
p.print(st, stderr);
}
Some versions of libc contain functions that deal with stack traces; you might be able to use them:
http://www.gnu.org/software/libc/manual/html_node/Backtraces.html
I remember using libunwind a long time ago to get stack traces, but it may not be supported on your platform.
You can use DeathHandler - small C++ class which does everything for you, reliable.
Forget about changing your sources and do some hacks with backtrace() function or macroses - these are just poor solutions.
As a properly working solution, I would advice:
Compile your program with "-g" flag for embedding debug symbols to binary (don't worry this will not impact your performance).
On linux run next command: "ulimit -c unlimited" - to allow system make big crash dumps.
When your program crashed, in the working directory you will see file "core".
Run next command to print backtrace to stdout: gdb -batch -ex "backtrace" ./your_program_exe ./core
This will print proper readable backtrace of your program in human readable way (with source file names and line numbers).
Moreover this approach will give you freedom to automatize your system:
have a short script that checks if process created a core dump, and then send backtraces by email to developers, or log this into some logging system.
ulimit -c unlimited
is a system variable, wich will allow to create a core dump after your application crashes. In this case an unlimited amount. Look for a file called core in the very same directory. Make sure you compiled your code with debugging informations enabled!
regards
Look at:
man 3 backtrace
And:
#include <exeinfo.h>
int backtrace(void **buffer, int size);
These are GNU extensions.
As a Windows-only solution, you can get the equivalent of a stack trace (with much, much more information) using Windows Error Reporting. With just a few registry entries, it can be set up to collect user-mode dumps:
Starting with Windows Server 2008 and Windows Vista with Service Pack 1 (SP1), Windows Error Reporting (WER) can be configured so that full user-mode dumps are collected and stored locally after a user-mode application crashes. [...]
This feature is not enabled by default. Enabling the feature requires administrator privileges. To enable and configure the feature, use the following registry values under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error Reporting\LocalDumps key.
You can set the registry entries from your installer, which has the required privileges.
Creating a user-mode dump has the following advantages over generating a stack trace on the client:
It's already implemented in the system. You can either use WER as outlined above, or call MiniDumpWriteDump yourself, if you need more fine-grained control over the amount of information to dump. (Make sure to call it from a different process.)
Way more complete than a stack trace. Among others it can contain local variables, function arguments, stacks for other threads, loaded modules, and so on. The amount of data (and consequently size) is highly customizable.
No need to ship debug symbols. This both drastically decreases the size of your deployment, as well as makes it harder to reverse-engineer your application.
Largely independent of the compiler you use. Using WER does not even require any code. Either way, having a way to get a symbol database (PDB) is very useful for offline analysis. I believe GCC can either generate PDB's, or there are tools to convert the symbol database to the PDB format.
Take note, that WER can only be triggered by an application crash (i.e. the system terminating a process due to an unhandled exception). MiniDumpWriteDump can be called at any time. This may be helpful if you need to dump the current state to diagnose issues other than a crash.
Mandatory reading, if you want to evaluate the applicability of mini dumps:
Effective minidumps
Effective minidumps (Part 2)
See the Stack Trace facility in ACE (ADAPTIVE Communication Environment). It's already written to cover all major platforms (and more). The library is BSD-style licensed so you can even copy/paste the code if you don't want to use ACE.
I can help with the Linux version: the function backtrace, backtrace_symbols and backtrace_symbols_fd can be used. See the corresponding manual pages.
*nix:
you can intercept SIGSEGV (usualy this signal is raised before crashing) and keep the info into a file. (besides the core file which you can use to debug using gdb for example).
win:
Check this from msdn.
You can also look at the google's chrome code to see how it handles crashes. It has a nice exception handling mechanism.
I have seen a lot of answers here performing a signal handler and then exiting.
That's the way to go, but remember a very important fact: If you want to get the core dump for the generated error, you can't call exit(status). Call abort() instead!
I found that #tgamblin solution is not complete.
It cannot handle with stackoverflow.
I think because by default signal handler is called with the same stack and
SIGSEGV is thrown twice. To protect you need register an independent stack for the signal handler.
You can check this with code below. By default the handler fails. With defined macro STACK_OVERFLOW it's all right.
#include <iostream>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <string>
#include <cassert>
using namespace std;
//#define STACK_OVERFLOW
#ifdef STACK_OVERFLOW
static char stack_body[64*1024];
static stack_t sigseg_stack;
#endif
static struct sigaction sigseg_handler;
void handler(int sig) {
cerr << "sig seg fault handler" << endl;
const int asize = 10;
void *array[asize];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, asize);
// print out all the frames to stderr
cerr << "stack trace: " << endl;
backtrace_symbols_fd(array, size, STDERR_FILENO);
cerr << "resend SIGSEGV to get core dump" << endl;
signal(sig, SIG_DFL);
kill(getpid(), sig);
}
void foo() {
foo();
}
int main(int argc, char **argv) {
#ifdef STACK_OVERFLOW
sigseg_stack.ss_sp = stack_body;
sigseg_stack.ss_flags = SS_ONSTACK;
sigseg_stack.ss_size = sizeof(stack_body);
assert(!sigaltstack(&sigseg_stack, nullptr));
sigseg_handler.sa_flags = SA_ONSTACK;
#else
sigseg_handler.sa_flags = SA_RESTART;
#endif
sigseg_handler.sa_handler = &handler;
assert(!sigaction(SIGSEGV, &sigseg_handler, nullptr));
cout << "sig action set" << endl;
foo();
return 0;
}
I would use the code that generates a stack trace for leaked memory in Visual Leak Detector. This only works on Win32, though.
If you still want to go it alone as I did you can link against bfd and avoid using addr2line as I have done here:
https://github.com/gnif/LookingGlass/blob/master/common/src/platform/linux/crash.c
This produces the output:
[E] crash.linux.c:170 | crit_err_hdlr | ==== FATAL CRASH (a12-151-g28b12c85f4+1) ====
[E] crash.linux.c:171 | crit_err_hdlr | signal 11 (Segmentation fault), address is (nil)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (0) /home/geoff/Projects/LookingGlass/client/src/main.c:936 (register_key_binds)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (1) /home/geoff/Projects/LookingGlass/client/src/main.c:1069 (run)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (2) /home/geoff/Projects/LookingGlass/client/src/main.c:1314 (main)
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (3) /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xeb) [0x7f8aa65f809b]
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (4) ./looking-glass-client(_start+0x2a) [0x55c70fc4aeca]
In addition to above answers, here how you make Debian Linux OS generate core dump
Create a “coredumps” folder in the user's home folder
Go to /etc/security/limits.conf. Below the ' ' line, type “ soft core unlimited”, and “root soft core unlimited” if enabling core dumps for root, to allow unlimited space for core dumps.
NOTE: “* soft core unlimited” does not cover root, which is why root has to be specified in its own line.
To check these values, log out, log back in, and type “ulimit -a”. “Core file size” should be set to unlimited.
Check the .bashrc files (user, and root if applicable) to make sure that ulimit is not set there. Otherwise, the value above will be overwritten on startup.
Open /etc/sysctl.conf.
Enter the following at the bottom: “kernel.core_pattern = /home//coredumps/%e_%t.dump”. (%e will be the process name, and %t will be the system time)
Exit and type “sysctl -p” to load the new configuration
Check /proc/sys/kernel/core_pattern and verify that this matches what you just typed in.
Core dumping can be tested by running a process on the command line (“ &”), and then killing it with “kill -11 ”. If core dumping is successful, you will see “(core dumped)” after the segmentation fault indication.
gdb -ex 'set confirm off' -ex r -ex bt -ex q <my-program>
On Linux/unix/MacOSX use core files (you can enable them with ulimit or compatible system call). On Windows use Microsoft error reporting (you can become a partner and get access to your application crash data).
I forgot about the GNOME tech of "apport", but I don't know much about using it. It is used to generate stacktraces and other diagnostics for processing and can automatically file bugs. It's certainly worth checking in to.
You are probably not going to like this - all I can say in its favour is that it works for me, and I have similar but not identical requirements: I am writing a compiler/transpiler for a 1970's Algol-like language which uses C as it's output and then compiles the C so that as far as the user is concerned, they're generally not aware of C being involved, so although you might call it a transpiler, it's effectively a compiler that uses C as it's intermediate code. The language being compiled has a history of providing good diagnostics and a full backtrace in the original native compilers. I've been able to find gcc compiler flags and libraries etc that allow me to trap most of the runtime errors that the original compilers did (although with one glaring exception - unassigned variable trapping). When a runtime error occurs (eg arithmetic overflow, divide by zero, array index out of bounds, etc) the original compilers output a backtrace to the console listing all variables in the stack frames of every active procedure call. I struggled to get this effect in C, but eventually did so with what can only be described as a hack... When the program is invoked, the wrapper that supplies the C "main" looks at its argv, and if a special option is not present, it restarts itself under gdb with an altered argv containing both gdb options and the 'magic' option string for the program itself. This restarted version then hides those strings from the user's code by restoring the original arguments before calling the main block of the code written in our language. When an error occurs (as long as it is not one explicitly trapped within the program by user code), it exits to gdb which prints the required backtrace.
Keys lines of code in the startup sequence include:
if ((argc >= 1) && (strcmp(origargv[argc-1], "--restarting-under-gdb")) != 0) {
// initial invocation
// the "--restarting-under-gdb" option is how the copy running under gdb knows
// not to start another gdb process.
and
char *gdb [] = {
"/usr/bin/gdb", "-q", "-batch", "-nx", "-nh", "-return-child-result",
"-ex", "run",
"-ex", "bt full",
"--args"
};
The original arguments are appended to the gdb options above. That should be enough of a hint for you to do something similar for your own system.
I did look at other library-supported backtrace options (eg libbacktrace,
https://codingrelic.geekhold.com/2010/09/gcc-function-instrumentation.html, etc) but they only output the procedure call stack, not the local variables. However if anyone knows of any cleaner mechanism to get a similar effect, do please let us know. The main downside to this is that the variables are printed in C syntax, not the syntax of the language the user writes in. And (until I add suitable #line directives on every generated line of C :-() the backtrace lists the C source file and line numbers.
G
PS The gcc compile options I use are:
GCCOPTS=" -Wall -Wno-return-type -Wno-comment -g -fsanitize=undefined
-fsanitize-undefined-trap-on-error -fno-sanitize-recover=all -frecord-gcc-switches
-fsanitize=float-divide-by-zero -fsanitize=float-cast-overflow -ftrapv
-grecord-gcc-switches -O0 -ggdb3 "
I have a Linux program, that from time to time ends with a segmentation fault. The program is running periodically every hour, but the segmentation fault occurs only sometimes.
I have a problem to debug this, because if I run the program again with the same input, no error is reported and all is OK.
Is there a way, how to "report" in which part of the code error occured or what caused the problem?
The usual way is to have the crashing program generate a corefile and analyze this after the crash. Make sure, that:
the maximum corefile-size is big enough (i.e. unlimited) by calling ulimit -c unlimited in the shell, which starts the process.
The cwd is writable by the segfaulting process.
Then you can analyze the file with
gdb <exe> <corefile>
Since your code not crashing every time, you can use backtrace as well. Using this you can see the function call stack at the time of crash. There are many examples available. In my projects I normally use the following code for backtracing.
/*
* call reg_usr2 function from main
* gcc -rdynamic myfile.c -o output
*/
#include <stdio.h>
#include <stdarg.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <execinfo.h>
#define FILE_NAME "/tmp/debug"
#define MODE 0xFFFF
void dbgprint(int flag, char* fmt, ...)
{
if(flag & MODE) {
char buf[100];
va_list vlist;
FILE *fp = fopen(FILE_NAME,"a");
va_start(vlist, fmt);
vsnprintf( buf, sizeof( buf), fmt, vlist);
va_end( vlist);
fprintf(fp,"[%x]->%s\n", flag, buf);
fclose(fp);
}
}
/** Here is the code to print backtrace **/
void print_stack_trace ()
{
void *array[20];
size_t size;
char **strings;
size_t i;
size = backtrace (array, 20);
strings = backtrace_symbols (array, size);
dbgprint(0xFFFF, "Obtained %zd stack frames.", size);
dbgprint(0xFFFF, "-------------------------");
dbgprint(0xFFFF, "---------Backtrace-------");
for (i = 0; i < size; i++)
dbgprint (0xFFFF, "%s", strings[i]);
dbgprint(0xFFFF, "-------------------------");
free (strings);
}
void sig_handler(int signo)
{
FILE *fp = fopen(FILE_NAME,"a");
if (signo == SIGUSR2){
dbgprint(0xFFFF, "received SIGUSR2");
dbgprint(0xFFFF, "----------------");
}
print_stack_trace();
exit(0);
}
void reg_usr2()
{
if (signal(SIGUSR2, sig_handler) == SIG_ERR)
printf("\ncan't catch SIGUSR2\n");
}
int main()
{
reg_usr2(); //should be first line of main after variables
//Code.....
return 0;
}
You can generate backtrace by catching SIGSEGV signal, and see where your application throw an invalid access.
see https://stackoverflow.com/a/77336/4490542
But there is more easier solution, try running your application with catchsegv
catchsegv './program args'
and better alternative, valgrind
valgrind --tool=none ./program args
I work on a linux platform and I use g++ with the above program that copies a function from the code area to the data area. How do I change protection of data segment in order to allow me to execute the copied function ?
The code is bellow:
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#define Return asm volatile("pop %rbp; retq; retq; retq; retq; retq;")
int64_t funcEnd=0xc35dc3c3c3c3c35d;
constexpr int maxCode=0x800;
int8_t code[maxCode];
void testCode(void){
int a=8,b=7;
a+=b*a;
Return;
}
typedef void (*action)(void);
int main(int argc, char **argv)
{
action a=&testCode;
testCode();
int8_t *p0=(int8_t*)a,*p=p0,*p1=p0+maxCode;
for(;p!=p1;p++)
if ( (*(int64_t*)p)==funcEnd ) break;
if(p!=p1){
p+=sizeof(int64_t);
printf("found\n");
memcpy(&code,(void*)a,p-(int8_t*)a);
((action)&code)();
}
printf("returning 0\n");
return 0;
}
It depends if you are trying to do this statically (at build-time), or at dynamically (at run-time).
Build-time
You need to tell GCC to put your blob in a section that is executable. We use __attribute__((section)), and this trick to specify the attributes of the section when we create it.
Run-time
TL;DR: Jump to the end of my answer, where I use mmap.
Although others might be questioning why you'd want do allow something like this at run-time, keep in mind that this is exactly what a VM with a JIT compiler (e.g. Java VM, .NET CLR, etc.) do when emitting native code.
You need to change the memory protections of the memory where you're trying to execute. We do that with mprotect(addr, PROT_EXEC). Note that addr must be aligned to the page size of your platform. On x86, the page size is 4K. We use aligned_alloc to guarantee this alignment.
Example (of both):
#define _ISOC11_SOURCE
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h> /* mprotect() */
__attribute__((section(".my_executable_blob,\"awx\",#progbits#")))
static uint8_t code[] = {
0xB8,0x2A,0x00,0x00,0x00, /* mov eax,0x2a */
0xC3, /* ret */
};
int main(void)
{
int (*func)(void);
/* Execute a static blob of data */
func = (void*)code;
printf("(static) code returned %d\n", func());
/* Execute a dynamically-allocated blob of data */
void *p = aligned_alloc(0x1000, sizeof(code));
if (!p) {
fprintf(stderr, "aligned_alloc() failed\n");
return 2;
}
memcpy(p, code, sizeof(code));
if (mprotect(p, sizeof(code), PROT_EXEC) < 0) {
perror("mprotect");
return 2;
}
func = p;
printf("(dynamic) code returned %d\n", func());
return 0;
}
Output:
$ ./a.out
(static) code returned 42
(dynamic) code returned 42
SELinux Impact
Note that this puts your executable code on the heap which might be a bit dangerous. SELinux on my CentOS 7 machine actually denied the mprotect call:
SELinux is preventing /home/jreinhart/so/a.out from using the execheap access on a process.
***** Plugin allow_execheap (53.1 confidence) suggests ********************
If you do not think /home/jreinhart/so/a.out should need to map heap memory that is both writable and executable.
Then you need to report a bug. This is a potentially dangerous access.
So I had to temporarily sudo setenforce 0 to get this to work.
I'm not sure why, however, because looking in /proc/[pid]/maps, the pages are clearly marked only as executable, not as "writable and executable" as SELinux indicated. If I move the memcpy after the mprotect, my process segfaults, because I'm trying to write to non-writable memory. So it seems SELinux is being a bit too over-zealous here.
Use mmap instead
Instead of mprotecting a region of the heap (allocated with aligned_alloc), it is more straightforward to use mmap. This also avoids any issues with SELinux, as we're not trying to execute on the heap.
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h> /* mmap() */
static uint8_t code[] = {
0xB8,0x2A,0x00,0x00,0x00, /* mov eax,0x2a */
0xC3, /* ret */
};
int main(void)
{
void *p = mmap(NULL, sizeof(code), PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (p==MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
return 2;
}
memcpy(p, code, sizeof(code));
int (*func)(void) = p;
printf("(dynamic) code returned %d\n", func());
pause();
return 0;
}
The final solution
The mmap solution is good, but it doesn't provide us any safety; our mmaped region of code is readable, writable, and executable. It would be better to only allow the memory to be writable while we're putting our code in place, then making it executable only. The following code does just that:
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h> /* mmap(), mprotect() */
static uint8_t code[] = {
0xB8,0x2A,0x00,0x00,0x00, /* mov eax,0x2a */
0xC3, /* ret */
};
int main(void)
{
const size_t len = sizeof(code);
/* mmap a region for our code */
void *p = mmap(NULL, len, PROT_READ|PROT_WRITE, /* No PROT_EXEC */
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (p==MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
return 2;
}
/* Copy it in (still not executable) */
memcpy(p, code, len);
/* Now make it execute-only */
if (mprotect(p, len, PROT_EXEC) < 0) {
fprintf(stderr, "mprotect failed to mark exec-only\n");
return 2;
}
/* Go! */
int (*func)(void) = p;
printf("(dynamic) code returned %d\n", func());
pause();
return 0;
}
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
C code compiles as C++, but not as C
Edit:
I recompiled the source for the library as C, and that fixed it.
I've got this code I need to use in my application. It's for writing to the serial port, and I can't figure out how to get it to run in C. I've got a version in C++, as well as a version that looks more like C, designed to compile with the Borland C++ 5.5 compiler, but I can't get it to compile there or in my project.
Edit: I should note that it compiles (and links) when I compile as c++, but not when I compile as c.
Here's the linker error I get:
1>InpoutTest.obj : error LNK2019: unresolved external symbol _Out32#8 referenced in function _main
1>InpoutTest.obj : error LNK2019: unresolved external symbol _Inp32#4 referenced in function _main
Here's the c++ code. I don't need the command line functionality, I just need to be able to call Out32(). I don't even need to be able to read.
#include "stdafx.h"
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
/* ----Prototypes of Inp and Outp--- */
short _stdcall Inp32(short PortAddress);
void _stdcall Out32(short PortAddress, short data);
/*--------------------------------*/
int main(int argc, char* argv[])
{
int data;
if(argc<3)
{
//too few command line arguments, show usage
printf("Error : too few arguments\n\n***** Usage *****\n\nInpoutTest read <ADDRESS> \nor \nInpoutTest write <ADDRESS> <DATA>\n\n\n\n\n");
}
else if(!strcmp(argv[1],"read"))
{
data = Inp32(atoi(argv[2]));
printf("Data read from address %s is %d \n\n\n\n",argv[2],data);
}
else if(!strcmp(argv[1],"write"))
{
if(argc<4)
{
printf("Error in arguments supplied");
printf("\n***** Usage *****\n\nInpoutTest read <ADDRESS> \nor \nInpoutTest write <ADDRESS> <DATA>\n\n\n\n\n");
}
else
{
Out32(atoi(argv[2]),atoi(argv[3]));
printf("data written to %s\n\n\n",argv[2]);
}
}
return 0;
}
Here's the other sample:
#include <stdio.h>
#include <conio.h>
#include <windows.h>
/* Definitions in the build of inpout32.dll are: */
/* short _stdcall Inp32(short PortAddress); */
/* void _stdcall Out32(short PortAddress, short data); */
/* prototype (function typedef) for DLL function Inp32: */
typedef short _stdcall (*inpfuncPtr)(short portaddr);
typedef void _stdcall (*oupfuncPtr)(short portaddr, short datum);
int main(void)
{
HINSTANCE hLib;
inpfuncPtr inp32;
oupfuncPtr oup32;
short x;
int i;
/* Load the library */
hLib = LoadLibrary("inpout32.dll");
if (hLib == NULL) {
printf("LoadLibrary Failed.\n");
return -1;
}
/* get the address of the function */
inp32 = (inpfuncPtr) GetProcAddress(hLib, "Inp32");
if (inp32 == NULL) {
printf("GetProcAddress for Inp32 Failed.\n");
return -1;
}
oup32 = (oupfuncPtr) GetProcAddress(hLib, "Out32");
if (oup32 == NULL) {
printf("GetProcAddress for Oup32 Failed.\n");
return -1;
}
/***************************************************************/
/* now test the functions */
/* Try to read 0x378..0x37F, LPT1: */
for (i=0x378; (i<0x380); i++) {
x = (inp32)(i);
printf("port read (%04X)= %04X\n",i,x);
}
/***** Write the data register */
i=0x378;
x=0x77;
(oup32)(i,x);
printf("port write to 0x%X, datum=0x%2X\n" ,i ,x);
/***** And read back to verify */
x = (inp32)(i);
printf("port read (%04X)= %04X\n",i,x);
/***** One more time, different value */
i=0x378;
x=0xAA;
(oup32)(i,x);
printf("port write to 0x%X, datum=0x%2X\n" ,i ,x);
/***** And read back to verify */
x = (inp32)(i);
printf("port read (%04X)= %04X\n",i,x);
FreeLibrary(hLib);
return 0;
}
Any help would be appreciated.
You might need to wrap the prototypes of Inp32/Outp32 with "extern C { /* ... */ }".
This code looks like it's reading/writing the printer port, not the serial port. It's doing that by loading some DLL that gives direct access to the hardware. To get it to work, you'll need to use the same (or similar) DLL. From the looks of things, it's using Inpout32.dll, so getting that might be helpful.
I had to recompile the library as C, then use that version. The existing version was compiled as C++.
I am working on Linux with the GCC compiler. When my C++ program crashes I would like it to automatically generate a stacktrace.
My program is being run by many different users and it also runs on Linux, Windows and Macintosh (all versions are compiled using gcc).
I would like my program to be able to generate a stack trace when it crashes and the next time the user runs it, it will ask them if it is ok to send the stack trace to me so I can track down the problem. I can handle the sending the info to me but I don't know how to generate the trace string. Any ideas?
For Linux and I believe Mac OS X, if you're using gcc, or any compiler that uses glibc, you can use the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault. Documentation can be found in the libc manual.
Here's an example program that installs a SIGSEGV handler and prints a stacktrace to stderr when it segfaults. The baz() function here causes the segfault that triggers the handler:
#include <stdio.h>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
void handler(int sig) {
void *array[10];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, 10);
// print out all the frames to stderr
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
void baz() {
int *foo = (int*)-1; // make a bad pointer
printf("%d\n", *foo); // causes segfault
}
void bar() { baz(); }
void foo() { bar(); }
int main(int argc, char **argv) {
signal(SIGSEGV, handler); // install our handler
foo(); // this will call foo, bar, and baz. baz segfaults.
}
Compiling with -g -rdynamic gets you symbol info in your output, which glibc can use to make a nice stacktrace:
$ gcc -g -rdynamic ./test.c -o test
Executing this gets you this output:
$ ./test
Error: signal 11:
./test(handler+0x19)[0x400911]
/lib64/tls/libc.so.6[0x3a9b92e380]
./test(baz+0x14)[0x400962]
./test(bar+0xe)[0x400983]
./test(foo+0xe)[0x400993]
./test(main+0x28)[0x4009bd]
/lib64/tls/libc.so.6(__libc_start_main+0xdb)[0x3a9b91c4bb]
./test[0x40086a]
This shows the load module, offset, and function that each frame in the stack came from. Here you can see the signal handler on top of the stack, and the libc functions before main in addition to main, foo, bar, and baz.
It's even easier than "man backtrace", there's a little-documented library (GNU specific) distributed with glibc as libSegFault.so, which was I believe was written by Ulrich Drepper to support the program catchsegv (see "man catchsegv").
This gives us 3 possibilities. Instead of running "program -o hai":
Run within catchsegv:
$ catchsegv program -o hai
Link with libSegFault at runtime:
$ LD_PRELOAD=/lib/libSegFault.so program -o hai
Link with libSegFault at compile time:
$ gcc -g1 -lSegFault -o program program.cc
$ program -o hai
In all 3 cases, you will get clearer backtraces with less optimization (gcc -O0 or -O1) and debugging symbols (gcc -g). Otherwise, you may just end up with a pile of memory addresses.
You can also catch more signals for stack traces with something like:
$ export SEGFAULT_SIGNALS="all" # "all" signals
$ export SEGFAULT_SIGNALS="bus abrt" # SIGBUS and SIGABRT
The output will look something like this (notice the backtrace at the bottom):
*** Segmentation fault Register dump:
EAX: 0000000c EBX: 00000080 ECX:
00000000 EDX: 0000000c ESI:
bfdbf080 EDI: 080497e0 EBP:
bfdbee38 ESP: bfdbee20
EIP: 0805640f EFLAGS: 00010282
CS: 0073 DS: 007b ES: 007b FS:
0000 GS: 0033 SS: 007b
Trap: 0000000e Error: 00000004
OldMask: 00000000 ESP/signal:
bfdbee20 CR2: 00000024
FPUCW: ffff037f FPUSW: ffff0000
TAG: ffffffff IPOFF: 00000000
CSSEL: 0000 DATAOFF: 00000000
DATASEL: 0000
ST(0) 0000 0000000000000000 ST(1)
0000 0000000000000000 ST(2) 0000
0000000000000000 ST(3) 0000
0000000000000000 ST(4) 0000
0000000000000000 ST(5) 0000
0000000000000000 ST(6) 0000
0000000000000000 ST(7) 0000
0000000000000000
Backtrace:
/lib/libSegFault.so[0xb7f9e100]
??:0(??)[0xb7fa3400]
/usr/include/c++/4.3/bits/stl_queue.h:226(_ZNSt5queueISsSt5dequeISsSaISsEEE4pushERKSs)[0x805647a]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/player.cpp:73(_ZN6Player5inputESs)[0x805377c]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:159(_ZN6Socket4ReadEv)[0x8050698]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:413(_ZN12ServerSocket4ReadEv)[0x80507ad]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/socket.cpp:300(_ZN12ServerSocket4pollEv)[0x8050b44]
/home/dbingham/src/middle-earth-mud/alpha6/src/engine/main.cpp:34(main)[0x8049a72]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe5)[0xb7d1b775]
/build/buildd/glibc-2.9/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8049801]
If you want to know the gory details, the best source is unfortunately the source: See http://sourceware.org/git/?p=glibc.git;a=blob;f=debug/segfault.c and its parent directory http://sourceware.org/git/?p=glibc.git;a=tree;f=debug
Linux
While the use of the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a segmentation fault has already been suggested, I see no mention of the intricacies necessary to ensure the resulting backtrace points to the actual location of the fault (at least for some architectures - x86 & ARM).
The first two entries in the stack frame chain when you get into the signal handler contain a return address inside the signal handler and one inside sigaction() in libc. The stack frame of the last function called before the signal (which is the location of the fault) is lost.
Code
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#ifndef __USE_GNU
#define __USE_GNU
#endif
#include <execinfo.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ucontext.h>
#include <unistd.h>
/* This structure mirrors the one found in /usr/include/asm/ucontext.h */
typedef struct _sig_ucontext {
unsigned long uc_flags;
ucontext_t *uc_link;
stack_t uc_stack;
sigcontext_t uc_mcontext;
sigset_t uc_sigmask;
} sig_ucontext_t;
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
void * array[50];
void * caller_address;
char ** messages;
int size, i;
sig_ucontext_t * uc;
uc = (sig_ucontext_t *)ucontext;
/* Get the address at the time the signal was raised */
#if defined(__i386__) // gcc specific
caller_address = (void *) uc->uc_mcontext.eip; // EIP: x86 specific
#elif defined(__x86_64__) // gcc specific
caller_address = (void *) uc->uc_mcontext.rip; // RIP: x86_64 specific
#else
#error Unsupported architecture. // TODO: Add support for other arch.
#endif
fprintf(stderr, "signal %d (%s), address is %p from %p\n",
sig_num, strsignal(sig_num), info->si_addr,
(void *)caller_address);
size = backtrace(array, 50);
/* overwrite sigaction with caller's address */
array[1] = caller_address;
messages = backtrace_symbols(array, size);
/* skip first stack frame (points here) */
for (i = 1; i < size && messages != NULL; ++i)
{
fprintf(stderr, "[bt]: (%d) %s\n", i, messages[i]);
}
free(messages);
exit(EXIT_FAILURE);
}
int crash()
{
char * p = NULL;
*p = 0;
return 0;
}
int foo4()
{
crash();
return 0;
}
int foo3()
{
foo4();
return 0;
}
int foo2()
{
foo3();
return 0;
}
int foo1()
{
foo2();
return 0;
}
int main(int argc, char ** argv)
{
struct sigaction sigact;
sigact.sa_sigaction = crit_err_hdlr;
sigact.sa_flags = SA_RESTART | SA_SIGINFO;
if (sigaction(SIGSEGV, &sigact, (struct sigaction *)NULL) != 0)
{
fprintf(stderr, "error setting signal handler for %d (%s)\n",
SIGSEGV, strsignal(SIGSEGV));
exit(EXIT_FAILURE);
}
foo1();
exit(EXIT_SUCCESS);
}
Output
signal 11 (Segmentation fault), address is (nil) from 0x8c50
[bt]: (1) ./test(crash+0x24) [0x8c50]
[bt]: (2) ./test(foo4+0x10) [0x8c70]
[bt]: (3) ./test(foo3+0x10) [0x8c8c]
[bt]: (4) ./test(foo2+0x10) [0x8ca8]
[bt]: (5) ./test(foo1+0x10) [0x8cc4]
[bt]: (6) ./test(main+0x74) [0x8d44]
[bt]: (7) /lib/libc.so.6(__libc_start_main+0xa8) [0x40032e44]
All the hazards of calling the backtrace() functions in a signal handler still exist and should not be overlooked, but I find the functionality I described here quite helpful in debugging crashes.
It is important to note that the example I provided is developed/tested on Linux for x86. I have also successfully implemented this on ARM using uc_mcontext.arm_pc instead of uc_mcontext.eip.
Here's a link to the article where I learned the details for this implementation:
http://www.linuxjournal.com/article/6391
Even though a correct answer has been provided that describes how to use the GNU libc backtrace() function1 and I provided my own answer that describes how to ensure a backtrace from a signal handler points to the actual location of the fault2, I don't see any mention of demangling C++ symbols output from the backtrace.
When obtaining backtraces from a C++ program, the output can be run through c++filt1 to demangle the symbols or by using abi::__cxa_demangle1 directly.
1 Linux & OS X
Note that c++filt and __cxa_demangle are GCC specific
2 Linux
The following C++ Linux example uses the same signal handler as my other answer and demonstrates how c++filt can be used to demangle the symbols.
Code:
class foo
{
public:
foo() { foo1(); }
private:
void foo1() { foo2(); }
void foo2() { foo3(); }
void foo3() { foo4(); }
void foo4() { crash(); }
void crash() { char * p = NULL; *p = 0; }
};
int main(int argc, char ** argv)
{
// Setup signal handler for SIGSEGV
...
foo * f = new foo();
return 0;
}
Output (./test):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(crash__3foo+0x13) [0x8048e07]
[bt]: (2) ./test(foo4__3foo+0x12) [0x8048dee]
[bt]: (3) ./test(foo3__3foo+0x12) [0x8048dd6]
[bt]: (4) ./test(foo2__3foo+0x12) [0x8048dbe]
[bt]: (5) ./test(foo1__3foo+0x12) [0x8048da6]
[bt]: (6) ./test(__3foo+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
Demangled Output (./test 2>&1 | c++filt):
signal 11 (Segmentation fault), address is (nil) from 0x8048e07
[bt]: (1) ./test(foo::crash(void)+0x13) [0x8048e07]
[bt]: (2) ./test(foo::foo4(void)+0x12) [0x8048dee]
[bt]: (3) ./test(foo::foo3(void)+0x12) [0x8048dd6]
[bt]: (4) ./test(foo::foo2(void)+0x12) [0x8048dbe]
[bt]: (5) ./test(foo::foo1(void)+0x12) [0x8048da6]
[bt]: (6) ./test(foo::foo(void)+0x12) [0x8048d8e]
[bt]: (7) ./test(main+0xe0) [0x8048d18]
[bt]: (8) ./test(__libc_start_main+0x95) [0x42017589]
[bt]: (9) ./test(__register_frame_info+0x3d) [0x8048981]
The following builds on the signal handler from my original answer and can replace the signal handler in the above example to demonstrate how abi::__cxa_demangle can be used to demangle the symbols. This signal handler produces the same demangled output as the above example.
Code:
void crit_err_hdlr(int sig_num, siginfo_t * info, void * ucontext)
{
sig_ucontext_t * uc = (sig_ucontext_t *)ucontext;
void * caller_address = (void *) uc->uc_mcontext.eip; // x86 specific
std::cerr << "signal " << sig_num
<< " (" << strsignal(sig_num) << "), address is "
<< info->si_addr << " from " << caller_address
<< std::endl << std::endl;
void * array[50];
int size = backtrace(array, 50);
array[1] = caller_address;
char ** messages = backtrace_symbols(array, size);
// skip first stack frame (points here)
for (int i = 1; i < size && messages != NULL; ++i)
{
char *mangled_name = 0, *offset_begin = 0, *offset_end = 0;
// find parantheses and +address offset surrounding mangled name
for (char *p = messages[i]; *p; ++p)
{
if (*p == '(')
{
mangled_name = p;
}
else if (*p == '+')
{
offset_begin = p;
}
else if (*p == ')')
{
offset_end = p;
break;
}
}
// if the line could be processed, attempt to demangle the symbol
if (mangled_name && offset_begin && offset_end &&
mangled_name < offset_begin)
{
*mangled_name++ = '\0';
*offset_begin++ = '\0';
*offset_end++ = '\0';
int status;
char * real_name = abi::__cxa_demangle(mangled_name, 0, 0, &status);
// if demangling is successful, output the demangled function name
if (status == 0)
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< real_name << "+" << offset_begin << offset_end
<< std::endl;
}
// otherwise, output the mangled function name
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << " : "
<< mangled_name << "+" << offset_begin << offset_end
<< std::endl;
}
free(real_name);
}
// otherwise, print the whole line
else
{
std::cerr << "[bt]: (" << i << ") " << messages[i] << std::endl;
}
}
std::cerr << std::endl;
free(messages);
exit(EXIT_FAILURE);
}
Might be worth looking at Google Breakpad, a cross-platform crash dump generator and tools to process the dumps.
You did not specify your operating system, so this is difficult to answer. If you are using a system based on gnu libc, you might be able to use the libc function backtrace().
GCC also has two builtins that can assist you, but which may or may not be implemented fully on your architecture, and those are __builtin_frame_address and __builtin_return_address. Both of which want an immediate integer level (by immediate, I mean it can't be a variable). If __builtin_frame_address for a given level is non-zero, it should be safe to grab the return address of the same level.
Thank you to enthusiasticgeek for drawing my attention to the addr2line utility.
I've written a quick and dirty script to process the output of the answer provided here:
(much thanks to jschmier!) using the addr2line utility.
The script accepts a single argument: The name of the file containing the output from jschmier's utility.
The output should print something like the following for each level of the trace:
BACKTRACE: testExe 0x8A5db6b
FILE: pathToFile/testExe.C:110
FUNCTION: testFunction(int)
107
108
109 int* i = 0x0;
*110 *i = 5;
111
112 }
113 return i;
Code:
#!/bin/bash
LOGFILE=$1
NUM_SRC_CONTEXT_LINES=3
old_IFS=$IFS # save the field separator
IFS=$'\n' # new field separator, the end of line
for bt in `cat $LOGFILE | grep '\[bt\]'`; do
IFS=$old_IFS # restore default field separator
printf '\n'
EXEC=`echo $bt | cut -d' ' -f3 | cut -d'(' -f1`
ADDR=`echo $bt | cut -d'[' -f3 | cut -d']' -f1`
echo "BACKTRACE: $EXEC $ADDR"
A2L=`addr2line -a $ADDR -e $EXEC -pfC`
#echo "A2L: $A2L"
FUNCTION=`echo $A2L | sed 's/\<at\>.*//' | cut -d' ' -f2-99`
FILE_AND_LINE=`echo $A2L | sed 's/.* at //'`
echo "FILE: $FILE_AND_LINE"
echo "FUNCTION: $FUNCTION"
# print offending source code
SRCFILE=`echo $FILE_AND_LINE | cut -d':' -f1`
LINENUM=`echo $FILE_AND_LINE | cut -d':' -f2`
if ([ -f $SRCFILE ]); then
cat -n $SRCFILE | grep -C $NUM_SRC_CONTEXT_LINES "^ *$LINENUM\>" | sed "s/ $LINENUM/*$LINENUM/"
else
echo "File not found: $SRCFILE"
fi
IFS=$'\n' # new field separator, the end of line
done
IFS=$old_IFS # restore default field separator
ulimit -c <value> sets the core file size limit on unix. By default, the core file size limit is 0. You can see your ulimit values with ulimit -a.
also, if you run your program from within gdb, it will halt your program on "segmentation violations" (SIGSEGV, generally when you accessed a piece of memory that you hadn't allocated) or you can set breakpoints.
ddd and nemiver are front-ends for gdb which make working with it much easier for the novice.
It's important to note that once you generate a core file you'll need to use the gdb tool to look at it. For gdb to make sense of your core file, you must tell gcc to instrument the binary with debugging symbols: to do this, you compile with the -g flag:
$ g++ -g prog.cpp -o prog
Then, you can either set "ulimit -c unlimited" to let it dump a core, or just run your program inside gdb. I like the second approach more:
$ gdb ./prog
... gdb startup output ...
(gdb) run
... program runs and crashes ...
(gdb) where
... gdb outputs your stack trace ...
I hope this helps.
It looks like in one of last c++ boost version appeared library to provide exactly what You want, probably the code would be multiplatform.
It is boost::stacktrace, which You can use like as in boost sample:
#include <filesystem>
#include <sstream>
#include <fstream>
#include <signal.h> // ::signal, ::raise
#include <boost/stacktrace.hpp>
const char* backtraceFileName = "./backtraceFile.dump";
void signalHandler(int)
{
::signal(SIGSEGV, SIG_DFL);
::signal(SIGABRT, SIG_DFL);
boost::stacktrace::safe_dump_to(backtraceFileName);
::raise(SIGABRT);
}
void sendReport()
{
if (std::filesystem::exists(backtraceFileName))
{
std::ifstream file(backtraceFileName);
auto st = boost::stacktrace::stacktrace::from_dump(file);
std::ostringstream backtraceStream;
backtraceStream << st << std::endl;
// sending the code from st
file.close();
std::filesystem::remove(backtraceFileName);
}
}
int main()
{
::signal(SIGSEGV, signalHandler);
::signal(SIGABRT, signalHandler);
sendReport();
// ... rest of code
}
In Linux You compile the code above:
g++ --std=c++17 file.cpp -lstdc++fs -lboost_stacktrace_backtrace -ldl -lbacktrace
Example backtrace copied from boost documentation:
0# bar(int) at /path/to/source/file.cpp:70
1# bar(int) at /path/to/source/file.cpp:70
2# bar(int) at /path/to/source/file.cpp:70
3# bar(int) at /path/to/source/file.cpp:70
4# main at /path/to/main.cpp:93
5# __libc_start_main in /lib/x86_64-linux-gnu/libc.so.6
6# _start
Ive been looking at this problem for a while.
And buried deep in the Google Performance Tools README
http://code.google.com/p/google-perftools/source/browse/trunk/README
talks about libunwind
http://www.nongnu.org/libunwind/
Would love to hear opinions of this library.
The problem with -rdynamic is that it can increase the size of the binary relatively significantly in some cases
The new king in town has arrived
https://github.com/bombela/backward-cpp
1 header to place in your code and 1 library to install.
Personally I call it using this function
#include "backward.hpp"
void stacker() {
using namespace backward;
StackTrace st;
st.load_here(99); //Limit the number of trace depth to 99
st.skip_n_firsts(3);//This will skip some backward internal function from the trace
Printer p;
p.snippet = true;
p.object = true;
p.color = true;
p.address = true;
p.print(st, stderr);
}
Some versions of libc contain functions that deal with stack traces; you might be able to use them:
http://www.gnu.org/software/libc/manual/html_node/Backtraces.html
I remember using libunwind a long time ago to get stack traces, but it may not be supported on your platform.
You can use DeathHandler - small C++ class which does everything for you, reliable.
Forget about changing your sources and do some hacks with backtrace() function or macroses - these are just poor solutions.
As a properly working solution, I would advice:
Compile your program with "-g" flag for embedding debug symbols to binary (don't worry this will not impact your performance).
On linux run next command: "ulimit -c unlimited" - to allow system make big crash dumps.
When your program crashed, in the working directory you will see file "core".
Run next command to print backtrace to stdout: gdb -batch -ex "backtrace" ./your_program_exe ./core
This will print proper readable backtrace of your program in human readable way (with source file names and line numbers).
Moreover this approach will give you freedom to automatize your system:
have a short script that checks if process created a core dump, and then send backtraces by email to developers, or log this into some logging system.
ulimit -c unlimited
is a system variable, wich will allow to create a core dump after your application crashes. In this case an unlimited amount. Look for a file called core in the very same directory. Make sure you compiled your code with debugging informations enabled!
regards
Look at:
man 3 backtrace
And:
#include <exeinfo.h>
int backtrace(void **buffer, int size);
These are GNU extensions.
As a Windows-only solution, you can get the equivalent of a stack trace (with much, much more information) using Windows Error Reporting. With just a few registry entries, it can be set up to collect user-mode dumps:
Starting with Windows Server 2008 and Windows Vista with Service Pack 1 (SP1), Windows Error Reporting (WER) can be configured so that full user-mode dumps are collected and stored locally after a user-mode application crashes. [...]
This feature is not enabled by default. Enabling the feature requires administrator privileges. To enable and configure the feature, use the following registry values under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error Reporting\LocalDumps key.
You can set the registry entries from your installer, which has the required privileges.
Creating a user-mode dump has the following advantages over generating a stack trace on the client:
It's already implemented in the system. You can either use WER as outlined above, or call MiniDumpWriteDump yourself, if you need more fine-grained control over the amount of information to dump. (Make sure to call it from a different process.)
Way more complete than a stack trace. Among others it can contain local variables, function arguments, stacks for other threads, loaded modules, and so on. The amount of data (and consequently size) is highly customizable.
No need to ship debug symbols. This both drastically decreases the size of your deployment, as well as makes it harder to reverse-engineer your application.
Largely independent of the compiler you use. Using WER does not even require any code. Either way, having a way to get a symbol database (PDB) is very useful for offline analysis. I believe GCC can either generate PDB's, or there are tools to convert the symbol database to the PDB format.
Take note, that WER can only be triggered by an application crash (i.e. the system terminating a process due to an unhandled exception). MiniDumpWriteDump can be called at any time. This may be helpful if you need to dump the current state to diagnose issues other than a crash.
Mandatory reading, if you want to evaluate the applicability of mini dumps:
Effective minidumps
Effective minidumps (Part 2)
See the Stack Trace facility in ACE (ADAPTIVE Communication Environment). It's already written to cover all major platforms (and more). The library is BSD-style licensed so you can even copy/paste the code if you don't want to use ACE.
I can help with the Linux version: the function backtrace, backtrace_symbols and backtrace_symbols_fd can be used. See the corresponding manual pages.
*nix:
you can intercept SIGSEGV (usualy this signal is raised before crashing) and keep the info into a file. (besides the core file which you can use to debug using gdb for example).
win:
Check this from msdn.
You can also look at the google's chrome code to see how it handles crashes. It has a nice exception handling mechanism.
I have seen a lot of answers here performing a signal handler and then exiting.
That's the way to go, but remember a very important fact: If you want to get the core dump for the generated error, you can't call exit(status). Call abort() instead!
I found that #tgamblin solution is not complete.
It cannot handle with stackoverflow.
I think because by default signal handler is called with the same stack and
SIGSEGV is thrown twice. To protect you need register an independent stack for the signal handler.
You can check this with code below. By default the handler fails. With defined macro STACK_OVERFLOW it's all right.
#include <iostream>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <string>
#include <cassert>
using namespace std;
//#define STACK_OVERFLOW
#ifdef STACK_OVERFLOW
static char stack_body[64*1024];
static stack_t sigseg_stack;
#endif
static struct sigaction sigseg_handler;
void handler(int sig) {
cerr << "sig seg fault handler" << endl;
const int asize = 10;
void *array[asize];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, asize);
// print out all the frames to stderr
cerr << "stack trace: " << endl;
backtrace_symbols_fd(array, size, STDERR_FILENO);
cerr << "resend SIGSEGV to get core dump" << endl;
signal(sig, SIG_DFL);
kill(getpid(), sig);
}
void foo() {
foo();
}
int main(int argc, char **argv) {
#ifdef STACK_OVERFLOW
sigseg_stack.ss_sp = stack_body;
sigseg_stack.ss_flags = SS_ONSTACK;
sigseg_stack.ss_size = sizeof(stack_body);
assert(!sigaltstack(&sigseg_stack, nullptr));
sigseg_handler.sa_flags = SA_ONSTACK;
#else
sigseg_handler.sa_flags = SA_RESTART;
#endif
sigseg_handler.sa_handler = &handler;
assert(!sigaction(SIGSEGV, &sigseg_handler, nullptr));
cout << "sig action set" << endl;
foo();
return 0;
}
I would use the code that generates a stack trace for leaked memory in Visual Leak Detector. This only works on Win32, though.
If you still want to go it alone as I did you can link against bfd and avoid using addr2line as I have done here:
https://github.com/gnif/LookingGlass/blob/master/common/src/platform/linux/crash.c
This produces the output:
[E] crash.linux.c:170 | crit_err_hdlr | ==== FATAL CRASH (a12-151-g28b12c85f4+1) ====
[E] crash.linux.c:171 | crit_err_hdlr | signal 11 (Segmentation fault), address is (nil)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (0) /home/geoff/Projects/LookingGlass/client/src/main.c:936 (register_key_binds)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (1) /home/geoff/Projects/LookingGlass/client/src/main.c:1069 (run)
[E] crash.linux.c:194 | crit_err_hdlr | [trace]: (2) /home/geoff/Projects/LookingGlass/client/src/main.c:1314 (main)
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (3) /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xeb) [0x7f8aa65f809b]
[E] crash.linux.c:199 | crit_err_hdlr | [trace]: (4) ./looking-glass-client(_start+0x2a) [0x55c70fc4aeca]
In addition to above answers, here how you make Debian Linux OS generate core dump
Create a “coredumps” folder in the user's home folder
Go to /etc/security/limits.conf. Below the ' ' line, type “ soft core unlimited”, and “root soft core unlimited” if enabling core dumps for root, to allow unlimited space for core dumps.
NOTE: “* soft core unlimited” does not cover root, which is why root has to be specified in its own line.
To check these values, log out, log back in, and type “ulimit -a”. “Core file size” should be set to unlimited.
Check the .bashrc files (user, and root if applicable) to make sure that ulimit is not set there. Otherwise, the value above will be overwritten on startup.
Open /etc/sysctl.conf.
Enter the following at the bottom: “kernel.core_pattern = /home//coredumps/%e_%t.dump”. (%e will be the process name, and %t will be the system time)
Exit and type “sysctl -p” to load the new configuration
Check /proc/sys/kernel/core_pattern and verify that this matches what you just typed in.
Core dumping can be tested by running a process on the command line (“ &”), and then killing it with “kill -11 ”. If core dumping is successful, you will see “(core dumped)” after the segmentation fault indication.
gdb -ex 'set confirm off' -ex r -ex bt -ex q <my-program>
On Linux/unix/MacOSX use core files (you can enable them with ulimit or compatible system call). On Windows use Microsoft error reporting (you can become a partner and get access to your application crash data).
I forgot about the GNOME tech of "apport", but I don't know much about using it. It is used to generate stacktraces and other diagnostics for processing and can automatically file bugs. It's certainly worth checking in to.
You are probably not going to like this - all I can say in its favour is that it works for me, and I have similar but not identical requirements: I am writing a compiler/transpiler for a 1970's Algol-like language which uses C as it's output and then compiles the C so that as far as the user is concerned, they're generally not aware of C being involved, so although you might call it a transpiler, it's effectively a compiler that uses C as it's intermediate code. The language being compiled has a history of providing good diagnostics and a full backtrace in the original native compilers. I've been able to find gcc compiler flags and libraries etc that allow me to trap most of the runtime errors that the original compilers did (although with one glaring exception - unassigned variable trapping). When a runtime error occurs (eg arithmetic overflow, divide by zero, array index out of bounds, etc) the original compilers output a backtrace to the console listing all variables in the stack frames of every active procedure call. I struggled to get this effect in C, but eventually did so with what can only be described as a hack... When the program is invoked, the wrapper that supplies the C "main" looks at its argv, and if a special option is not present, it restarts itself under gdb with an altered argv containing both gdb options and the 'magic' option string for the program itself. This restarted version then hides those strings from the user's code by restoring the original arguments before calling the main block of the code written in our language. When an error occurs (as long as it is not one explicitly trapped within the program by user code), it exits to gdb which prints the required backtrace.
Keys lines of code in the startup sequence include:
if ((argc >= 1) && (strcmp(origargv[argc-1], "--restarting-under-gdb")) != 0) {
// initial invocation
// the "--restarting-under-gdb" option is how the copy running under gdb knows
// not to start another gdb process.
and
char *gdb [] = {
"/usr/bin/gdb", "-q", "-batch", "-nx", "-nh", "-return-child-result",
"-ex", "run",
"-ex", "bt full",
"--args"
};
The original arguments are appended to the gdb options above. That should be enough of a hint for you to do something similar for your own system.
I did look at other library-supported backtrace options (eg libbacktrace,
https://codingrelic.geekhold.com/2010/09/gcc-function-instrumentation.html, etc) but they only output the procedure call stack, not the local variables. However if anyone knows of any cleaner mechanism to get a similar effect, do please let us know. The main downside to this is that the variables are printed in C syntax, not the syntax of the language the user writes in. And (until I add suitable #line directives on every generated line of C :-() the backtrace lists the C source file and line numbers.
G
PS The gcc compile options I use are:
GCCOPTS=" -Wall -Wno-return-type -Wno-comment -g -fsanitize=undefined
-fsanitize-undefined-trap-on-error -fno-sanitize-recover=all -frecord-gcc-switches
-fsanitize=float-divide-by-zero -fsanitize=float-cast-overflow -ftrapv
-grecord-gcc-switches -O0 -ggdb3 "