awswrangler.s3.to_parquet arguments question - amazon-web-services

If I have the following code:
import awswrangler
#df = some dataframe with year, date and other columns
wr.s3.to_parquet(
df=df,
path=f's3://some/path/',
index=False,
dataset=True,
mode="append",
partition_cols=['year', 'date'],
database=f'series_data',
table=f'signal_data'
)
What exactly is happening when database and table are specified? I know that the table will be created (if it is not), but are Glue Crawlers run or something?
Should I use database and table only the first time I run this piece of code, or I can leave it like that (will it run any Crawlers or processes that may cause additional AWS charge?)
For example, if a new partition appears (a new date), how will the table understand the new partition? Usually, this is done when a Glue crawler is run to find a new partition.

Related

Non-Partitioned Table Schema not updated with Glue ETL Job

We have an ETL job that uses the below code snippet to update the catalog table:
sink = glueContext.getSink(connection_type='s3', path=config['glue_s3_path_bc'], enableUpdateCatalog=True, updateBehavior='UPDATE_IN_DATABASE')
sink.setFormat('glueparquet')
sink.setCatalogInfo(catalogDatabase=config['glue_db'], catalogTableName=config['glue_table_bc'], catalogId=args['catalog_id'])
sink.writeFrame(dyF)
The table is non-partitioned & needs to be overwritten with new data daily. Since glueContext does not support overwrite, we are using purge_s3_path & purge_table methods to empty the S3 Location a step before using the above write. We do similar thing for partitioned tables as well & it has been working fine for us so far.
Recently, the schema of the data was updated (added a few new columns). Upon the ETL job completion, it successfully updated the partitioned Table with the new schema but the non-partitioned schema is still the same. We did verify by physically accessing the S3 files & the new fields are present in the datafiles. Why is the schema not updated similar to the partitioned Table? Is there a different method that we can use?

Is it possible delete entire table stored in S3 buckets from athena query?

I want a table to store the history of a object for a week and then replace the same with history of next week. What would be the best way to achieve this in aws?
The data is stored in json format in s3 is a weekly dump. The pipeline runs the script weekly once and dumps data into s3 for analysis. For the next run of the script i do not need the previous week-1 data, so this needs to be replaced with new week-2 data. The schema of the table remains constant but the data keeps changing every week.
I would recommend to use data partitioning to solve your issue without deleting underlying S3 files from previous weeks (which is not possible via an Athena query).
Thus, the idea is to use a partition key based on the date, and then use this partition key in the WHERE clause of your Athena request, which will cause Athena to ignore previous files (which are not under the last partition).
For example, if you use the file dump date as partition key (let's say we chose to name it dump_key), your files will have to be stored in subfolders like
s3://your-bucket/subfolder/dump_key=2021-01-01-13-00/files.csv
s3://your-bucket/subfolder/dump_key=2021-01-07-13-00/files.csv
Then, during your data processing, you'll first need to create your table and specify a partition key with the PARTITIONED BY option.
Then, you'll have to make sure you added a new partition using the PARTITION ADD command every time it's necessary for your use case:
ALTER TABLE your_table ADD PARTITION (dump_key='2021-01-07-13-00') location 's3://your-bucket/subfolder/dump_key=2021-01-07-13-00/'
Then you'll be able to query your table by filtering previous data using the right WHERE clause:
SELECT * FROM my_table WHERE dump_key >= 2021-01-05-00-00
This will cause Athena to ignore files in previous partitions when querying your table.
Documentation here:
https://docs.aws.amazon.com/athena/latest/ug/partitions.html

Updating manually created aws glue data catalog table with crawler

I'm working with AWS glue and many files on s3, with new files appended every day. I try to create and run a crawler to deduce a schema of those csv files. Instead of just one data catalog table with schema, crawler creates many tables (even with Create a single schema for each S3 path option selected), which means that crawler recognize different schemas and can't combine them into one. But I need just one table in data catalog for all those files!
So I created separate data catalog table manually, and when I use this table with glue job, none of the s3 csv files are processed. I guess that is because every time crawler runs, it checks for new files and partitions (and in good case of single schema table we can see those files and partitions by clicking on View partitions button in Tables).
So in here there is way to update manually created table with a crawler, I followed it with a hope that crawler will not change data types for columns that I selected, but update list of files and partitions for glue job to process later:
You might want to create AWS Glue Data Catalog tables manually and then keep them updated with AWS Glue crawlers. Crawlers running on a schedule can add new partitions and update the tables with any schema changes. This also applies to tables migrated from an Apache Hive metastore.
To do this, when you define a crawler, instead of specifying one or more data stores as the source of a crawl, you specify one or more existing Data Catalog tables. The crawler then crawls the data stores specified by the catalog tables. In this case, no new tables are created; instead, your manually created tables are updated.
It doesn't happen for some reason, in crawler log I see this:
INFO : Some files do not match the schema detected. Remove or exclude the following files from the crawler (truncated to first 200 files):
bucket1/customer/dt=2020-02-26/delta_20200226_080101.csv
INFO : Multiple tables are found under location bucket1/customer/. Table customer is skipped.
But there is no "Exclude patterns" option to exclude that file when crawler uses existing data catalog table, documentation says that in this case "The crawler then crawls the data stores specified by the catalog tables".
And crawler doesn't add any partitions or files to my table.
Is there a way to update my manually created table with new files from s3?
Considering your crawler is detecting different schemas, it will continue to do the same no matter what option I choose. You can get it to use the table definition from the table for all the partitions and then only log changes to avoid updating the table schema. But if there is a difference in schema for the files , I’m not sure if your queries will work.
Another option would be to add partitions using boto3 for your s3 path. I can get the table schema using the get table function and then create a partition in glue with that table schema
I don't know why, but the crawler I created can't update list of files and partitions for glue job to process later, it skips my manually created data catalog table, I see it in the cloudwatch log. To solve this problem, I needed to add repair table query into my glue script, so it does what crawler is supposed to do (and I disabled the crawler itself, so it doesn't changes my manually created table and doesn't create many tables for individual csv files and partitions), before actual ETL process:
import boto3
...
# Athena query part
client = boto3.client('athena', region_name='us-east-2')
data_catalog_table = "customer"
db = "inner_customer" # glue data_catalog db, not Postgres DB
# this supposed to update all partitions for data_catalog_table, so glue job can upload new file data into DB
q = "MSCK REPAIR TABLE "+data_catalog_table
# output of the query goes to s3 file normally
output = "s3://bucket_to_store_query_results/results/"
response = client.start_query_execution(
QueryString=q,
QueryExecutionContext={
'Database': db
},
ResultConfiguration={
'OutputLocation': output,
}
)`
After that query "MSCK REPAIR TABLE customer" executes, it writes to s3://bucket_to_store_query_results/results/ a xxx-xxx-xxx.txt file with content like this:
Partitions not in metastore: customer:dt=2020-03-28 customer:dt=2020-03-29 customer:dt=2020-03-30
Repair: Added partition to metastore customer:dt=2020-03-28
Repair: Added partition to metastore customer:dt=2020-03-29
Repair: Added partition to metastore customer:dt=2020-03-30
And if I open Glue->Tables-> select customer table, then click on "View partitions" button on the right top of the page, I see all my partitions from the s3 bucket. After that part the glue job continues as before. I understand that "repair table" query hack is not really optimal, and may be will change it to something more sophisticated, like described in here.

AWS Glue crawler need to create one table from many files with identical schemas

We have a very large number of folders and files in S3, all under one particular folder, and we want to crawl for all the CSV files, and then query them from one table in Athena. The CSV files all have the same schema. The problem is that the crawler is generating a table for every file, instead of one table. Crawler configurations have a checkbox option to "Create a single schema for each S3 path" but this doesn't seem to do anything.
Is what I need possible? Thanks.
Glue crawlers claims to solve many problems, but in fact solves few. If you're slightly outside the scope of what they designed for you're out of luck. There might be a way to configure it to do what you want, but in my experience trying to make Glue crawlers do things that aren't perfectly aligned with it is not worth the effort.
It sounds like you have a good idea of what the schema of your data is. When that is the case Glue crawlers also provide very little value. You probably have a better idea of what the schema should look than Glue will ever be able to figure out.
I suggest that you manually create the table, and write a one off script that lists all the partition locations on S3 that you want to include in the table and generate ALTER TABLE ADD PARTITION … SQL, or Glue API calls to add those partitions to the table.
To keep the table up to date when new partition locations are added, have a look at this answer for guidance: https://stackoverflow.com/a/56439429/1109
One way to do what you want is to use just one of the tables created by the crawler as an example, and create a similar table manually (in AWS Glue->Tables->Add tables, or in Athena itself, with
CREATE EXTERNAL TABLE `tablename`(
`column1` string,
`column2` string, ...
using existing table as an example, you can see the query used to create that table in Athena when you go to Database -> select your data base from Glue Data Catalog, then click on 3 dots in front of the one "automatically created by crawler table" that you choose as an example, and click on "Generate Create table DDL" option. It will generate a big query for you, modify it as necessary (I believe you need to look at LOCATION and TBLPROPERTIES parts, mostly).
When you run this modified query in Athena, a new table will appear in Glue data catalog. But it will not have any information about your s3 files and partitions, and crawler most likely will not update metastore info for you. So you can in Athena run "MSCK REPAIR TABLE tablename;" query (it's not very efficient, but works for me), and it will add missing file information, in the Result tab you will see something like (in case you use partitions on s3, of course):
Partitions not in metastore: tablename:dt=2020-02-03 tablename:dt=2020-02-04
Repair: Added partition to metastore tablename:dt=2020-02-03
Repair: Added partition to metastore tablename:dt=2020-02-04
After that you should be able to run your Athena queries.

AWS Glue: Do I really need a Crawler for new content?

What I understand from the AWS Glue docs is a craweler will help crawl and discover new data. However, I noticed that once I crawled once, if new data goes into S3, the data is actually already discovered when I query the data catalog from Athena for example. So, can I say I do not need a crawler to crawl everytime new data is added, unless there are new schemas?
In fact, if I know the schema of the files, I can just manually create the table and do without a crawler, am I correct?
If data is partitioned by some keys (placed in sub-folders, like /data/year=2018/month=11/day=2) then you need a crawler to register newly added partitions (ie. /day=3) in Data Catalog to be able to query it via Athena.
However, if data is not partitined or comes into already registered partitions then there is no need to run a crawler.
Alternatively to runnig a crawler you can discover and register new partitions by running Athena command MSCK REPAIR TABLE <table> or registering them manually.
The easiest way to create a table in Data Catalog is running a crawler. But if you know schema and have patience to compose CREATE TABLE Athena query or fill all fields via AWS Glue console then you can go that way as well.
If you have the schema then you don't need to use the crawler and you might get better results (the crawler assumes partition columns are strings for example).
As Yuriy says, remember to run MSCK REPAIR TABLE or register new partitions manually.
MSCK can time out if you've added a lot of partitions. If it does, keep running it until it completes normally.