Redis session does not store variables when modified in thread - Flask - flask
I have a thread that is running inside a route where the thread job is to do some expensive work, store variables and than I'll need to use these variables in another flask route.
When I am using the session variable (Redis) as a parameter in the thread function in order to add the data and extract it later it does not find the variables that I have stored in it.
In contrast, when I declare a global_dict and pass it to the thread function instead of session, the code works great.
As the thread function can be used by multiple users simultaneously, storing it in a global_dict is not a good practice.
Why using session in my code does not work?
In the following code, if I replace global_dict with session I won't be able to access it in the /result route.
Per doc:
"Redis can handle up to 2^32 keys, and was tested in practice to handle at least 250 million keys per instance.
Every hash, list, set, and sorted set, can hold 2^32 elements.
In other words your limit is likely the available memory in your system."
P.S Sorry for the long code blocks.
#app.route("/build",methods=["GET", "POST"])
#login_required
def build():
if request.method == "POST":
global th
global finished
finished= False
#copy_current_request_context
def operation(global_dict):
global finished
symbols = request.form.get("symbols")
mc.set("symbols", symbols)
if contains_multiple_words(symbols) == False:
flash("The app purpose is to optimize a portfolio given a list of stocks. Please enter a list of stocks seperated by a new row.")
return redirect("/build")
Build(session["user_id"], symbols.upper(), request.form.get("start"), request.form.get("end"), request.form.get("funds"), request.form.get("short"), request.form.get("volatility"), request.form.get("gamma"), request.form.get("return"))
db.session.commit()
try:
df = yf.download(symbols, start=request.form.get("start"), end=request.form.get("end"), auto_adjust = False, prepost = False, threads = True, proxy = None)["Adj Close"].dropna(axis=1, how='all')
failed=(list(shared._ERRORS.keys()))
df = df.replace(0, np.nan)
try:
global_dict['listofna']=df.columns[df.isna().iloc[-2]].tolist()+failed
except IndexError:
flash("Please enter valid stocks from Yahoo Finance.")
return redirect("/build")
df = df.loc[:,df.iloc[-2,:].notna()]
except ValueError:
flash("Please enter a valid symbols (taken from Yahoo Finance)")
return redirect("/build")
def enter_sql_data(app, df, nasdaq_exchange_info, Stocks):
for ticker in df.columns:
ticker=ticker.upper()
if any(sublist[1]==ticker in sublist for sublist in nasdaq_exchange_info) is False:
ticker_ln = yf.Ticker(ticker).stats()["price"].get('longName')
if not ticker_ln:
ticker_ln = ticker
ticker_list=[ticker_ln, ticker]
with app.app_context():
new_stock=Stocks(ticker, ticker_ln)
db.session.add(new_stock)
db.session.commit()
nasdaq_exchange_info.extend([ticker_list])
global nasdaq_exchange_info
app1 = app._get_current_object()
p1 = Process(target=enter_sql_data, args=[app1, df, nasdaq_exchange_info, Stocks])
p1.start()
prices = df.copy()
fig = px.line(prices, x=prices.index, y=prices.columns, title='Price Graph')
fig = fig.update_xaxes(rangeslider_visible=True)
fig.update_layout(width=1350, height=900)
global_dict['plot_json'] = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
exp_cov = risk_models.exp_cov(prices, frequency=252)
#plotting the covariance matrix
heat = go.Heatmap(
z = risk_models.cov_to_corr(exp_cov),
x = exp_cov.columns.values,
y = exp_cov.columns.values,
zmin = 0, # Sets the lower bound of the color domain
zmax = 1,
xgap = 1, # Sets the horizontal gap (in pixels) between bricks
ygap = 1,
colorscale = 'RdBu'
)
title = 'Covariance matrix'
layout = go.Layout(
title_text=title,
title_x=0.5,
width=800,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
yaxis_autorange='reversed'
)
fig1=go.Figure(data=[heat], layout=layout)
fig1.update_layout(width=500, height=500)
global_dict['plot_json1'] = json.dumps(fig1, cls=plotly.utils.PlotlyJSONEncoder)
S = risk_models.CovarianceShrinkage(prices).ledoit_wolf()
heat = go.Heatmap(
z = risk_models.cov_to_corr(S),
x = S.columns.values,
y = S.columns.values,
zmin = 0, # Sets the lower bound of the color domain
zmax = 1,
xgap = 1, # Sets the horizontal gap (in pixels) between bricks
ygap = 1,
colorscale = 'RdBu'
)
title = 'Ledoit-Wolf shrinkage'
layout = go.Layout(
title_text=title,
title_x=0.5,
width=800,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
yaxis_autorange='reversed'
)
fig2=go.Figure(data=[heat], layout=layout)
fig2.update_layout(width=500, height=500)
global_dict['plot_json2'] = json.dumps(fig2, cls=plotly.utils.PlotlyJSONEncoder)
#Section 2 -Return estimation
#it is often a bad idea to provide returns using a simple estimate like the mean of past returns. Research suggests that better off not providing expected returns – you can then just find the min_volatility() portfolio or use HRP.
mu = pypfopt.expected_returns.capm_return(prices)
fig3 = px.bar(mu, orientation='h')
fig3.update_layout(width=700, height=500)
global_dict['plot_json3'] = json.dumps(fig3, cls=plotly.utils.PlotlyJSONEncoder)
#using risk models optimized for the Efficient frontier to reduce to min volitility, good for crypto currencies - not implemented in the website now.
ef = EfficientFrontier(None, S)
try:
ef.min_volatility()
weights = ef.clean_weights()
nu = pd.Series(weights)
fig4 = px.bar(nu, orientation='h')
fig4.update_layout(width=700, height=500)
global_dict['plot_json4'] = json.dumps(fig4, cls=plotly.utils.PlotlyJSONEncoder)
av=ef.portfolio_performance()[1]
global_dict['av']=round(av, 3)*1
#if we want to buy the portfolio mentioned above
df = df.iloc[[-1]]
for col in df.columns:
if col.endswith(".L"):
df.loc[:,col] = df.loc[:,col]*GBPtoUSD()
try:
latest_prices = df.iloc[-1]
except IndexError:
flash("There is an issue with Yahoo API please try again later")
return redirect("/")
# prices as of the day you are allocating
if float(request.form.get("funds")) <= 0 or float(request.form.get("funds")) == " ":
flash("Amount need to be a positive number")
return redirect("/build")
if float(request.form.get("funds")) < float(latest_prices.min()):
flash("Amount is not high enough to cover the lowest priced stock")
return redirect("/build")
try:
da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=float(request.form.get("funds")))
except TypeError:
delisted=df.columns[df.isna().any()].tolist()
delisted= ", ".join(delisted)
flash("Can't get latest prices for the following stock/s, please remove to contiue : %s" % delisted)
return redirect("/build")
alloc, global_dict['leftover'] = da.lp_portfolio()
global_dict['alloc']=alloc
global_dict['latest_prices']=latest_prices
except ValueError:
pass
#Maximise return for a given risk, with L2 regularisation
try:
ef = EfficientFrontier(mu, S)
ef.add_objective(objective_functions.L2_reg, gamma=(float(request.form.get("gamma")))) # gamme is the tuning parameter
ef.efficient_risk(int(request.form.get("volatility"))/100)
weights = ef.clean_weights()
su = pd.DataFrame([weights])
fig5 = px.pie(su, values=weights.values(), names=su.columns)
fig5.update_traces(textposition='inside')
fig5.update_layout(width=500, height=500, uniformtext_minsize=12, uniformtext_mode='hide')
global_dict['plot_json5'] = json.dumps(fig5, cls=plotly.utils.PlotlyJSONEncoder)
global_dict['perf'] =ef.portfolio_performance()
except Exception as e:
flash(str(e))
return redirect("/build")
#if we want to buy the portfolio mentioned above
for col in df.columns:
if col.endswith(".L"):
df.loc[:,col] = df.loc[:,col]*GBPtoUSD()
latest_prices1 = df.iloc[-1] # prices as of the day you are allocating
if float(request.form.get("funds")) <= 0 or float(request.form.get("funds")) == " ":
flash("Amount need to be a positive number")
return redirect("/build")
if float(request.form.get("funds")) < float(latest_prices.min()):
flash("Amount is not high enough to cover the lowest priced stock")
return redirect("/build")
da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=float(request.form.get("funds")))
alloc1, global_dict['leftover1'] = da.lp_portfolio()
global_dict['alloc1']=alloc1
global_dict['latest_prices1']=latest_prices1
#Efficient semi-variance optimization
returns = pypfopt.expected_returns.returns_from_prices(prices)
returns = returns.dropna()
es = EfficientSemivariance(mu, returns)
try:
es.efficient_return(float(request.form.get("return"))/100)
except ValueError as e:
flash(str(e))
return redirect("/build")
global_dict['perf2']=es.portfolio_performance()
weights = es.clean_weights()
#if we want to buy the portfolio mentioned above
for col in df.columns:
if col.endswith(".L"):
df.loc[:,col] = df.loc[:,col]*GBPtoUSD()
latest_prices2 = df.iloc[-1] # prices as of the day you are allocating
if float(request.form.get("funds")) <= 0 or float(request.form.get("funds")) == " ":
flash("Amount need to be a positive number")
return redirect("/build")
if float(request.form.get("funds")) < float(latest_prices.min()):
flash("Amount is not high enough to cover the lowest priced stock")
return redirect("/build")
da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=float(request.form.get("funds")))
alloc2, global_dict['leftover2'] = da.lp_portfolio()
global_dict['alloc2']=alloc2
global_dict['latest_prices2']=latest_prices2
mc.delete("symbols")
global_dict['ret']=float(request.form.get("return"))
global_dict['gamma']=request.form.get("gamma")
global_dict['volatility']=request.form.get("volatility")
finished = True
global global_dict
th = Thread(target=operation, args=[global_dict])
th.start()
return render_template("loading.html")
else:
if mc.get("symbols"):
cached_symbols=mc.get("symbols")
else:
cached_symbols=''
availableCash=db.session.query(Users.cash).filter_by(id=session["user_id"]).first().cash
return render_template("build.html", availableCash=round(availableCash, 4), GBP=GBPtoUSD(), nasdaq_exchange_info=nasdaq_exchange_info, cached_symbols=cached_symbols, top_50_crypto=top_50_crypto, top_world_stocks=top_world_stocks, top_US_stocks=top_US_stocks, top_div=top_div)
app.route('/result')
def result():
return render_template("built.html",av=global_dict['av'], leftover=global_dict['leftover'], alloc=global_dict['alloc'], ret=global_dict['ret'],gamma=global_dict['gamma'],volatility=global_dict['volatility'],perf=global_dict['perf'], perf2=global_dict['perf2'], alloc1=global_dict['alloc1'], alloc2=global_dict['alloc2'], plot_json=global_dict['plot_json'], plot_json1=global_dict['plot_json1'], plot_json2=global_dict['plot_json2'], plot_json3=global_dict['plot_json3'], plot_json4=global_dict['plot_json4'], plot_json5=global_dict['plot_json5'], leftover1=global_dict['leftover1'], leftover2=global_dict['leftover2'],listofna=(', '.join(global_dict['listofna'])))
Related
How to return calculations to a template for all objects in a class model in Django
I am trying to build a simple form which calculates which machine would run a film width the quickest, the parameters and capabilities of each machine are held in a django model. The width of the film and how much of it will be entered in the form and the quantity needed. The function should work out which machine(s) can run it, what the max speed is and the average speed over the machines that are capable. I want to return the values of the calculation and maybe run a for loop and display the values for each machine in a results.html template in a table. I also want to display average times across machines capable of running the widths of film. I had some success with lists but would like to use a class that I can use in the template and do away with the lists. Any help with this would be much appreciated as I am getting pretty lost in it! I have only started on the 'Layflat Tubing' function in the hope that I can get it right and just copy down to the other functions. from django.views.generic.base import TemplateView from django.shortcuts import render import math, datetime from settings.models import Extruder class Result: def __init__(self, ext_no, width, speed=0, ): self.ext_no = ext_no self.width = width self.speed = speed def __str__(self): return self.ext_no extruders = Extruder.objects.all() class FilmSpeedView(TemplateView): template_name = 'calculations/film-speed.html' class BagWeightView(TemplateView): template_name = 'calculations/bag-weight.html' class CalculatorsView(TemplateView): template_name = 'calculations/calculators.html' def result(request): film_type='' film_width='' measure='' speeds = [0] quantity = 0 max_speed = 0 ave_speed = 0 ave_time = 0 max_time = 0 a=[] b=[] c=[] d=[] e=[] if request.method=="GET": film_type = str(request.GET["film_type"]) film_width = int(request.GET["film_width"]) edge_trim = int(request.GET["edge_trim"]) quantity =int(request.GET["quantity"]) measure = str(request.GET["measure"]) if measure == "metric": film_width = int(film_width) else: film_width = film_width * 25.4 if edge_trim is None: edge_trim = 0 else: edge_trim = int(edge_trim) if str(film_type) == 'Layflat Tubing': film_type = "LFT" for extruder in extruders: bur = film_width / extruder.die_size if film_width < extruder.min_width: b.append(extruder.name + ' : Film too narrow') extruder = Result(ext_no = extruder.ext_no, width = 'too narrow') elif film_width > extruder.max_width: b.append(extruder.name + ' : Film too wide') extruder = Result(ext_no = extruder.ext_no, width = 'too wide') else: percentage = film_width / extruder.max_width speed = extruder.max_kgs_hr * percentage extruder = Result(ext_no = extruder.ext_no, speed = round(extruder.max_kgs_hr * percentage, 2), width = 'ok') speeds.append(speed) max_speed = max(speeds) ave_speed = sum(speeds) / len(speeds) ave_time = float(quantity) / ave_speed * 60.0 max_time = float(quantity) / max_speed * 60.0 else: film_type = "Invalid Film Type" m = a n = b o = c g = str(round(ave_speed, 2)) + 'kg\'s/h' h = str(datetime.timedelta(minutes=ave_time)) i = str(datetime.timedelta(minutes=30)) j = str(round(max_speed, 2)) + 'kg\'s/h' k = str(datetime.timedelta(minutes=max_time)) return render(request, 'calculations/result.html', {'a':a, 'b':b, 'c':c, 'd':d, 'e':e, 'g':g, 'h':h, 'i':i, 'j':j, 'k':k, 'm':m, 'n':n, 'o':o, 'bur':bur,})
Mutiply Inequation for both sides with a variable
I have a question, I need to multiply an inequality both the minimum and the maximum by a binary variable that, if 0, would be rendered inoperative by the "machine" (b1). How do I incorporate that into Pyomo? Here's a reference It's a constraint problem m=4 n=3 #Boiler minimo boiler_min= [400, 500, 300, 240] #boiler máximo boiler_max= [900,700,600,800] #boiler cost per ton boiler_ton= [9,7,8,6] #boiler fixed cost boiler_fc= [160,200,190,250] #turbine minimo turbine_min= [100,400,300] #turbine máximo turbine_max= [700,800,600] #turbine Kwh per ton of stream turbine_ton= [7,3,6] #turbine Processing Cost per Ton turbine_pc = [9,4,6] modelito= ConcreteModel() modelito.m = RangeSet(m) modelito.n = RangeSet(n) modelito.b = Var(modelito.m, domain=NonNegativeIntegers) modelito.t = Var(modelito.n, domain=NonNegativeIntegers) #Variables binarias modelito.p = Var(modelito.m, domain=Binary) #binary boiler modelito.q= Var(modelito.n, domain=Binary) #binary turbine #declare objective modelito.cost= Objective(expr = (sum(boiler_ton[i-1]*modelito.b[i] for i in modelito.m) + sum(turbine_pc[j-1]*modelito.t[j] for j in modelito.n) + sum(boiler_fc[i-1]*modelito.p[i] for i in modelito.m )), sense=minimize) #Constraints #modelito.constraint = Constraint(expr= sum((modelito.b[i]<=boiler_max[i-1])>=boiler_min[i-1] for i in modelito.m)) #opción 1 def restriccion(modelito,i): if modelito.p==0: return Constraint.Skip else: return ((modelito.b[i]<=boiler_max[i-1])>=boiler_min[i-1]) modelito.constraint = Constraint(modelito.m, rule = restriccion) def restriccion2(modelito_1,j): if modelito.q==0: return Constraint.Skip else: return (modelito.t[j]<=turbine_max[j-1])>=turbine_min[j-1] modelito.constraint1 = Constraint(modelito.n, rule = restriccion2) modelito.constraint2 = ConstraintList() modelito.constraint2.add(sum(turbine_ton[i-1]*modelito.t[i] for i in modelito.n)>=9000) modelito.pprint() Any suggestion can help me 😀
Django: How to take my query out of my for loop
I got the following code, that contains N queries: for qty in total_qty_bought: product_id = qty["product"] quantity = int(qty["quantity__sum"]) try: method_title = ( self.shipment_model.get(order_id=qty["order_id"]) .method_title.replace("Hent-selv", "") .strip() ) To solve the issue I tried to take the method_title query out of the for loop like this: quantity = 0 for qty in total_qty_bought: quantity = int(qty["quantity__sum"]) method_title = ( self.shipment_model.get(order_id=total_qty_bought[0]['order_id']) .method_title.replace("Hent-selv", "") .strip() ) Note! There will be a full refrence further down, to understand the bigger picture The issue in my solution is, that I am hard choosing which dict to enter , as I select [0] before order_id, and not in a for loop like before, would be selecting every individual item in the loop. Is there a more sufficient way to do this? I do not see a solution without the for loop, but django debugger tool tells me it creates 2k+ queries. CODE FOR REFRENCE class InventoryStatusView(LoginRequiredMixin, View): template_name = "lager-status.html" cinnamon_form = CinnamonForm(prefix="cinnamon_form") peber_form = PeberForm(prefix="peber_form") pc_model = InventoryStatus product_model = Product.objects.all() order_item_model = WCOrderItem.objects.all() shipment_model = WCOrderShipment.objects.all() def get(self, request): # Get all added objects that hasn't been deleted objects = self.pc_model.objects.filter(is_deleted=False) # Get all added objects that has been deleted deleted_objects = self.pc_model.objects.filter(is_deleted=True) # Sum all cinnamon that isn't deleted total_cinnamon = ( self.pc_model.objects.filter(is_deleted=False) .aggregate(Sum("cinnamon")) .get("cinnamon__sum", 0.00) ) # Sum all peber that isn't deleted total_peber = ( self.pc_model.objects.filter(is_deleted=False) .aggregate(Sum("peber")) .get("peber__sum", 0.00) ) # Get the amount of kilo attached to products product_data = {} queryset = ProductSpy.objects.select_related('product') for productSpy in queryset: product_data[productSpy.product.product_id] = productSpy.kilo # Get quantity bought of each product total_qty_bought = self.order_item_model.values( "order_id", "product" ).annotate(Sum("quantity")) # Get the cities from the inventory model cities = dict(self.pc_model.CITIES) # Set our total dict for later reference our_total = {} product = Product.objects.filter( product_id__in={qty['product'] for qty in total_qty_bought} ).first() # Check if we deal with kanel or peber as a product based on slug index = 0 if product.slug.startswith("kanel-"): index = 0 elif product.slug.startswith("peber-"): index = 1 else: pass try: # Sum the total quantity bought quantity = 0 for qty in total_qty_bought: quantity = int(qty["quantity__sum"]) # Get the inventory the order is picked from based on shipment method title method_title = ( self.shipment_model.get(order_id=total_qty_bought[0]['order_id']) # The error .method_title.replace("Hent-selv", "") .strip() ) # If the order isn't picked, but sent, use this inventory if method_title not in cities.values(): method_title = "Hovedlager" try: # Get the total of kanel and peber bought kilos = quantity * product_data[product.id] # If there is no inventory, set it to 0 peber and 0 kanel if method_title not in our_total: our_total[method_title] = [0, 0] # Combine place and kilos our_total[method_title][index] += kilos except KeyError as ex: print(ex) pass except WCOrderShipment.DoesNotExist as ed: print(ed) pass # Quantities BOUGHT! (in orders!) print(our_total) context = { "cinnamon_form": self.cinnamon_form, "peber_form": self.peber_form, "objects": objects, "deleted_objects": deleted_objects, "total_cinnamon": total_cinnamon, "total_peber": total_peber, "our_total": our_total, } return render(request, self.template_name, context)
You can only do one query by using the __in operator: shipments = self.shipment_model.get(order_id__in=list_containing_order_ids) Then you can do a normal for loop in which you verify that condition.
Is this method of calculating the top-5 accuracy in pytorch correct?
I am trying to validate the findings of a paper by testing it on the same model architecture as well as the same dataset reported by the paper. I have been using the imagenet script provided in the official pytorch repository's examples section to do the same. class AverageMeter(object): """Computes and stores the average and current value Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262 """ def init(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision#k for the specified values of k""" maxk = max(topk) batchsize = target.size(0) , pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correctk.mul(100.0 / batch_size)) return res top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): # measure data loading time print(f"Processing {batch_idx+1}/{len(test_loader)}") inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets) # compute output outputs = model(inputs) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5)) print(prec1,prec5) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) print(top1) print(top5) However the top 5 error which I am getting by using this script is not matching with the one in the paper. Can anyone tell me what is wrong in this particular snippet?
setting an attribute at create retrieves None value - Python
So I have an Article class that models the articles in a store. When I create a new article, I want it to have an EAN 13 code. So I initialize the article with a 12 digits code and use the check_ean13() funtion to retrieve the control digit. It works but seems like in any moment, when the object is created, rewrite the ean13 attribute and replaces it for None. Any ideas? Main if __name__ == "__main__": # create article art1 = Article("123456789087", "Article 1", 145.6, 200.0) print art1 print art1.get_ean13() class Article class Article: def __init__(self, cod, art_name, cost, listprice): self.ean13 = self.set_ean13(cod) self.art_name = art_name self.cost = cost self.listprice = listprice self.commission = None self.promotion=[] def get_ean13(self): return self.ean13 def set_ean13(self,cod): cd = self.check_ean13(cod) ean13 = cod + str(cd) self.ean13=ean13 def check_ean13(self, code): checksum = 0 for i, digit in enumerate(reversed(code)): checksum += int(digit) * 3 if (i % 2 == 0) else int(digit) return (10 - (checksum % 10)) % 10 output: None - Article 1 list price: 400.0 None
self.ean13 = self.set_ean13(cod) set_ean13 doesn't return anything, so you're effectively doing self.ean13 = None here. Just call the method without assigning the result. self.set_ean13(cod)