Is character array size dynamic in C/CPP/C++? - c++

My knowledge till now was that arrays in C and CPP/C++ have fixed sizes. However recently I encountered 2 pieces of code which seems to contradict this fact. I am attaching the pics here. Want to hear everyone's thoughts on how these are working. Also pasting the code and doubts here:
1.
#include <iostream>
#include <string.h>
using namespace std;
int main()
{
char str1[]="Good"; //size of str1 should be 5
char str2[]="Afternoon"; //size of str2 should be 10
cout<<"\nSize of str1 before the copy: "<<sizeof(str1);
cout<<"\nstr1: "<<str1;
strcpy(str1,str2); //copying str1 into str2
cout<<"\nSize of str1 after the copy: "<<sizeof(str1);
cout<<"\nstr1: "<<str1;
return 0;
}
your text
O/P:
Size of str1 before the copy: 5
str1: Good
Size of str1 after the copy: 5
str1: Afternoon
In first snippet I am using strcpy to copy char str2[] contents that is "Afternoon" into char str1[] whose size is 5 less than size of str2. So theoritically the line strcpy(str1,str2) should give error as size of str1 is less than size of str2 and fixed. But it executes, and more surprising is the fact that even after str1 contain the word "afternoon" the size is still the same.
2.
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
char first_string[10]; // declaration of char array variable
char second_string[20]; // declaration of char array variable
int i; // integer variable declaration
cout<<"Enter the first string: ";
cin>>first_string;
cout<<"\nEnter the second string: ";
cin>>second_string;
for(i=0;first_string[i]!='\0';i++);
for(int j=0;second_string[j]!='\0';j++)
{
first_string[i]=second_string[j];
i++;
}
first_string[i]='\0';
cout<<"After concatenation, the string would look like: "<<first_string;
return 0;
}
O/P:
Enter the first string: good
Enter the second string: afternoon
After concatenation, the string would look like: goodafternoon
Here also even if I provide a string of length 20 as input to second_string[] it's still able to concatenate both the strings and put them in first_string[], even though the size of the concatenated string will be clearly greater than size of first_string[] which is 10.
I tried to assign a string of greater length to a string variable of smaller length. techincally it should not work but it worked anyway

There are two misunderstandings here
sizeof is the size of the array at compile time. It has nothing to do with the contents of the array. You can change the contents all you like and sizeof will still be the same. If you want the length of a string use the function strlen.
Most of the time when you break the rules of C++ it leads to undefined behaviour. Copying a string into an array that is too small to hold that string is one example of undefined behaviour.
You said
So theoritically the line strcpy(str1,str2) should give error as size
of str1 is less than size of str2 and fixed.
This is untrue. Undefined behaviour does not mean that there must be an error. It means exactly what it says, the behaviour of your program is undefined, anything could happen. That might mean an error message, or it might mean a crash, or it might mean that your program seems to work. The behaviour is undefined.
You aren't alone in thinking as you did. I reckon the purpose of sizeof and the nature of undefined behaviour are two of the commonest beginner misunderstandings.
And to answer the question in the title. The size of a character array is fixed in C++, nothing in your example contradicts that.

I've honestly never seen a C++ programmer write char stringname[20] = "string";, that just isn't the way you'd handle strings in C++⁰.
And neither would a C programmer use array notation, because well, it's just not common; you'd typically use arrays for things that aren't strings, even if the type of a "string literal" is actually char[length + 1].
Your access beyond the end of an array is simply a bug. It is undefined behaviour. A buffer overflow. A static code analyzer, quite possibly even a compiler, would tell you that this is a mortal sin. The str* functions know literally nothing about the size of your array, they only see a pointer to the first element, and your array literally knows nothing about the length of the string it contains, which is given by the terminating zero character's position. You're mixing up two things here!
In C++, you'd definitely use the std::string class to read from cin, exactly to avoid the problem with buffer overflows.
So, honestly: If you're a C++ beginner, maybe try to ignore C strings for now. It's not a C++ way of dealing with string data other than fixed string literals (i.e., things between "" in your source code), and the C way of string handling is literally still the dominant cause for remote-exploitable bugs in software, far as I can tell. C++ is not C, and, honestly, when it comes to handling strings, for the better. Including both <string.h> and <iostreams> is a pretty reliable indication of a programming beginner who has access to bad guides that treat C++ as extended C. But that's simply not true; it's a very different programming language with some far-reaching C compatibility, but you would, and should, not mix these two languages – as a beginner, it's hard enough to learn one¹.
⁰ Technically speaking, it even feels wrong; a string literal in C++ is a const char pointer, whereas it's just a char pointer in C. C and C++ are not the same language.
¹If you feel like you're explaining C++ to people, and sometimes feel overwhelmed with making a good explanation for things to people who are not expert C programmers already, Kate Gregory made a nice talk why teaching C to teach C++ is a really bad idea, which I agree to, even if she overstresses a few points.

Related

What's the necessity of string in c++ while we already have char[]?

Many topics have discussed the difference between string and char[]. However, they are not clear to me to understand why we need to bring string in c++? Any insight is welcome, thanks!
char[] is C style. It is not object oriented, it forces you as the programmer to deal with implementation details (such as '\0' terminator) and rewrite standard code for handling strings every time over and over.
char[] is just an array of bytes, which can be used to store a string, but it is not a string in any meaningful way.
std::string is a class that properly represents a string and handles all string operations.
It lets you create objects and keep your code fully OOP (if that is what you want).
More importantly, it takes care of memory management for you.
Consider this simple piece of code:
// extract to string
#include <iostream>
#include <string>
main ()
{
std::string name;
std::cout << "Please, enter your name: ";
std::cin >> name;
std::cout << "Hello, " << name << "!\n";
return 0;
}
How would you write the same thing using char[]?
Assume you can not know in advance how long the name would be!
Same goes for string concatenation and other operations.
With real string represented as std::string you combine two strings with a simple += operator. One line.
If you are using char[] however, you need to do the following:
Calculate the size of the combined string + terminator character.
Allocate memory for the new combined string.
Use strncpy to copy first string to new array.
Use strncat to append second string to first string in new array.
Plus, you need to remember not to use the unsafe strcpy and strcat and to free the memory once you are done with the new string.
std::string saves you all that hassle and the many bugs you can introduce while writing it.
As noted by MSalters in a comment, strings can grow. This is, in my opinion, the strongest reason to have them in C++.
For example, the following code has a bug which may cause it to crash, or worse, to appear to work correctly:
char message[] = "Hello";
strcat(message, "World");
The same idea with std::string behaves correctly:
std::string message{"Hello"};
message += "World";
Additional benefits of std::string:
You can send it to functions by value, while char[] can only be sent by reference; this point looks rather insignificant, but it enables powerful code like std::vector<std::string> (a list of strings which you can add to)
std::string stores its length, so any operation which needs the length is more efficient
std::string works similarly to all other C++ containers (vector, etc) so if you are already familiar with containers, std::string is easy to use
std::string has overloaded comparison operators, so it's easy to use with std::map, std::sort, etc.
String class is no more than an amelioration of the char[] variable.
With strings you can achieve the same goals than the use of a char[] variable, but you won't have to matter about little tricks of char[] like pointers, segmentation faults...
This is a more convenient way to build strings, but you don't really see the "undergrounds" of the language, like how to implement concatenation or length functions...
Here is the documentation of the std::string class in C++ : C++ string documentation

Why is strlen(s) different from the size of s, and why does cout char display a character not a number?

I wrote a piece of code to count how many 'e' characters are in a bunch of words.
For example, if I type "I read the news", the counter for how many e's are present should be 3.
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
char s[255],n,i,nr=0;
cin.getline(s,255);
for(i=1; i<=strlen(s); i++)
{
if(s[i-1]=='e') nr++;
}
cout<<nr;
return 0;
}
I have 2 unclear things about characters in C++:
In the code above, if I replace strlen(s) with 255, my code just doesn't work. I can only type a word and the program stops. I have been taught at school that strlen(s) is the length for the string s, which in this case, as I declared it, is 255. So, why can't I just type 255, instead of strlen(s)?
If I run the program above normally, it doesn't show me a number, like it is supposed to do. It shows me a character (I believe it is from the ASCII table, but I'm not sure), like a heart or a diamond. It is supposed to print the number of e's from the words.
Can anybody please explain these to me?
strlen(s) gives you the length of the string held in the s variable, up to the first NULL character. So if you input "hello", the length will be 5, even though s has a capacity of 255....
nr is displayed as a character because it's declared as a char. Either declare it as int, for example, or cast it to int when cout'ing, and you'll see a number.
strlen() counts the actual length of strings - the number of real characters up to the first \0 character (marking end of string).
So, if you input "Hello":
sizeof(s) == 255
strlen(s) == 5
For second question, you declare your nr as char type. std::cout recognizes char as a single letter and tries it print it as such. Declare your variable as int type or cast it before printing to avoid this.
int nr = 42;
std::cout << nr;
//or
char charNr = 42;
std::cout << static_cast<int>(charNr);
Additional mistakes not mentioned by others, and notes:
You should always check whether the stream operation was successful before trying to use the result.
i is declared as char and cannot hold values greater than 127 on common platforms. In general, the maximum value for char can be obtained as either CHAR_MAX or std::numeric_limits<char>::max(). So, on common platforms, i <= 255 will always be true because 255 is greater than CHAR_MAX. Incrementing i once it has reached CHAR_MAX, however, is undefined behavior and should never be done. I recommend declaring i at least as int (which is guaranteed to have sufficient range for this particular use case). If you want to be on the safe side, use something like std::ptrdiff_t (add #include <cstddef> at the start of your program), which is guaranteed to be large enough to hold any valid array size.
n is declared but never used. This by itself is harmless but may indicate a design issue. It can also lead to mistakes such as trying to use n instead of nr.
You probably want to output a newline ('\n') at the end, as your program's output may look odd otherwise.
Also note that calling a potentially expensive function such as strlen repeatedly (as in the loop condition) can have negative performance implications (strlen is typically an intrinsic function, though, and the compiler may be able to optimize most calls away).
You do not need strlen anyway, and can use cin.gcount() instead.
Nothing wrong with return 0; except that it is redundant – this is a special case that only applies to the main function.
Here's an improved version of your program, without trying to change your code style overly much:
#include <iostream>
#include <cstring>
#include <cstddef>
using namespace std;
int main()
{
char s[255];
int nr=0;
if ( cin.getline(s,255) )
{ // only if reading was successful
for(int i=0; i<cin.gcount(); i++)
{
if(s[i]=='e') nr++;
}
cout<<nr<<'\n';
}
return 0;
}
For exposition, the following is a more concise and expressive version using std::string (for arbitrary length input), and a standard algorithm. (As an interviewer, I would set this, modulo minor stylistic differences, as the canonical answer i.e. worth full credit.)
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s;
if ( getline(cin, s) )
{
cout << std::count(begin(s), end(s), 'e') << '\n';
}
}
I have 2 unclear things about characters in C++: 1) In the code above,
if I replace the "strlen(s)" with 255, my code just doesn't work, I
can only type a word and the program stops, and I have been taught at
school that "strlen(s)" is the length for the string s, wich in this
case, as I declared it, is 255. So, why can't I just type 255, instead
of strlen(s);
That's right, but strings only go the null terminator, even if there's more space allocated. Consider this, per example:
char buf[32];
strcpy(buf, "Hello World!");
There's 32 chars worth of space, but my string is only 12 characters long. That's why strlen returns 12 in this example. It's because it doesn't know how long the buffer is, it only knows the address of the string and parses it until it finds the null terminator.
So if you enter 255, you're going past what was set by cin and you'll read the rest of the buffer. Which, in this case, is uninitialized. That's undefined behavior - in this case it will most likely read some rubbish values, and those might coincidentally have the 'e' value and thus give you a wrong result.
2) If you run the program above normaly, it doesn't show you a number,
like it's supposed to do, it shows me a character(I believe it's from
the ASCII table but I'm not sure), like a heart or a diamond, but it
is supposed to print the number of e's from the words. So can anybody
please explain these to me?
You declared nr as char. While that can indeed hold an integer value, if you print it like this, it will be printed as a character. Declare it as int instead or cast it when you print it.

Purpose of char a[0] in converting integer to string using itoa()

I have this code,
char a[0];
cout << "What is a? " << a << endl;
char *word = itoa(123,a,10);
string yr = string(word);
but i have trouble comprehending the array a[0]. I tried to change its value and see if there is any changes, but it seems to make no differences at all.
example, even if a change a[0] to a[1], or any other integer, the output still make no difference
char a[1];
cout << "What is a? " << a << endl;
char *word = itoa(123,a,10);
string yr = string(word);
What is its purpose here?
Since itoa function is non-standard, this is a discussion of a popular signature itoa(int, char*, int).
Second parameter represents a buffer into which a null-terminated string representing the value is copied. It must provide enough space for the entire string: in your case, that is "123", which takes four characters. Your code passes a[] as the buffer, but the size of a[] is insufficient to accommodate the entire "123" string. Hence, the call causes undefined behavior.
You need to make a large enough to fit the destination string. Passing a buffer of size 12 is sufficient to accommodate the longest decimal number that can be produced by itoa on a 32-bit system (i.e. -2147483648). Replace char a[0] with char a[12] in the declaration.
What is its purpose here?
A zero-length array is an array with no elements in it.
You can't [legally] print or modify its contents, because it doesn't have any.
There are arcane reasons to want to use one, but speaking generally it has no purpose for you. It's not even allowed by the standard (although compilers tend to support it for those arcane reasons).
even if a change a[0] to a[1], or any other integer, the output still make no difference
Well, if you have an array with n elements in it, and you write more than n elements' worth of data to it, that's a "buffer overrun" and has undefined behaviour. It could appear to work as you overwrite somebody else's memory, or your program could crash, or your dog could suddenly turn into a zombie and eat you alive. Best avoided tbh.

Pointer increment and decrement

I was solving a question my teacher gave me and hit a little snag.
I am supposed to give the output of the following code:(It's written in Turbo C++)
#include<iostream.h>
void main()
{
char *p = "School";
char c;
c=++(*(p++));
cout<<c<<","<<p<<endl;
cout<<p<<","<<++(*(p--))<<","<<++(*(p++))<<endl;
}
The output the program gives is:
T,chool
ijool,j,i
I got the part where the pointer itself increments and then increments the value which the pointer points to. But i don't get the part where the string prints out ijool
Can someone help me out?
The program you showed is non-standard and ill-formed (and should not compile).
"Small" problems:
The proper header for input/output streams in C++ is <iostream>, not <iostream.h>
main() returns an int, not a void.
cout and endl cannot be used without a using namespace std; at the beginning of the file, or better: use std::cout and std::endl.
"Core" problems:
char* p = "School"; is a pointer to string litteral. This conversion is valid in C++03 and deprecated in C++11. Aside from that, normally string litterals are read only, and attempts to modify them often result in segfaults (and modifying a string litteral is undefined behvior by the standard). So, you have undefined behavior everytime you use p, because you modify what it points to, which is the string litteral.
More subtle (and the practical explanation): you are modifying p several times in the line std::cout<<p<<","<<++(*(p--))<<","<<++(*(p++))<<std::endl;. It is undefined behavior. The order used for the operations on p is not defined, here it seems the compiler starts from the right. You can see sequence points, sequence before/after for a better explanation.
You might be interested with the live code here, which is more like what you seemed to expect from your program.
Let's assume you correct:
the header to <iostream> - there is no iostream.h header
your uses of cout and endl with std::cout and std::endl respectively
the return type of main to int
Okay,
char *p = "School";
The string literal "School" is of type "array of 7 const char." The conversion to char* was deprecated in C++03. In C++11, this is invalid.
c=++(*(p++));
Here we hit undefined behaviour. As I said before, the chars in a string literal are const. You simply can't modify them. The prefix ++ here will attempt to modify the S character in the string literal.
So from this point onwards, there's no use making conjectures about what should happen. You have undefined behaviour. Anything can happen.
Even if the preceding lines were legal, this line is also undefined behavior, which means that you cannot accurately predict what the output will be:
cout<<p<<","<<++(*(p--))<<","<<++(*(p++))<<endl;
Notice how it modifies the value of p multiple times on that line (really between sequence points)? That's not allowed. At best you can say "on this compiler with this run-time library and this environment at this moment of execution I observed the following behavior", but because it is undefined behavior you can't count on it to do the same thing every time you run the program, or even if the same code is encountered multiple times within the same run of the program.
There are at least three problems with this code (and maybe more; I'm not a C++ expert).
The first problem is that string constants like should not be modified as they can be placed in read-only parts of the program memory that the OS maps directly to the exe file on disk (the OS may share them between several running instances of that same program for example, or avoid those parts of memory needing to be written to the swap file when RAM is low, as it knows it can get the original from the exe). The example crashes on my compiler, for example. To modify the string you should allocate a modifiable duplicate of the string, such as with strdup.
The second problem is it's using cout and endl from the std namespace without declaring that. You should prefix their accesses with std:: or add a using namespace std; declaration.
The third problem is that the order in which the operations on the second cout line happen is undefined behavior, leading to the apparently mysterious change of the string between the time it was displayed at the end of the first cout line and the next line.
Since this code is not intended to do anything in particular, there are different, valid ways you could fix it. This will probably run:
#include <iostream>
#include <string.h>
#include <stdlib.h>
using namespace std;
int main()
{
char *string = strdup("School");
char *p = string;
char c;
c=++(*(p++));
cout<<c<<","<<p<<endl;
cout<<p<<","<<++(*(p--))<<","<<++(*(p++))<<endl;
free(string);
}
(On my compiler this outputs: T,chool, diool,i,d.)
It still has undefined behavior though. To fix that, rework the second cout line as follows:
cout << p << ",";
cout << ++(*(p--)) << ",";
cout << ++(*(p++)) << endl;
That should give T,chool, chool,d,U (assuming a character set that has A to Z in order).
p++ moves the position of p from "School" to "chool". Before that, since it is p++, not ++p, it increments the value of the char. Now c = "T" from "S"
When you output p, you output the remainder of p, which we identified before as "chool".
Since it is best to learn from trial and error, run this code with a debugger. That is a great tool which will follow you forever. That will help for the second set of cout statements. If you need help with gdb or VS debugger, we can walk through it.

How to concatenate const char* strings in c++ with no function calls?

Ps: This is more of a conceptual question.
I know this makes things more complicated for no good reason, but here is what I'm wondering. If I'm not mistaken, a const char* "like this" in c++ is pointing to l and will be automatically zero terminated on compile time. I believe it is creating a temporary variable const char* to hold it, unless it is keeping track of the offset using a byte variable (I didn't check the disassembly). My question is, how would you if even possible, add characters to this string without having to call functions or instantiating strings?
Example (This is wrong, just so you can visualize what I meant):
"Like thi" + 's';
The closest thing I came up with was to store it to a const char* with enough spaces and change the other characters.
Example:
char str[9];
strcpy(str, "Like thi")
str[8] = 's';
Clarification:
Down vote: This question does not show any research effort; it is unclear or not useful
Ok, so the question has been highly down voted. There wasn't much reasoning on which of these my question was lacking on, so I'll try to improve all of those qualities.
My question was more so I could have a better understanding of what goes on when you simply create a string "like this" without storing the address of that string in a const char* I also wanted to know if it was possible to concatenate/change the content of that string without using functions like strcat() and without using the overloaded operator + from the class string. I'm aware this is not exactly useful for dealing with strings in C++, but I was curious whether or not there was a way besides the standard ways for doing so.
string example = "Like thi" + "s"; //I'm aware of the string class and its member functions
const char* example2 = "Like this"; //I'm also aware of C-type Strings (CString as well)
It is also possible that not having English as my native language made things even worst, I apologize for the confusion.
Instead of using a plain char string, you should use the string library provided by the C++ library:
#include <string>
#include <iostream>
using namespace std;
int main()
{
string str = "Like thi";
cout << str << endl;
str = str + "s";
cout << str << endl;
return 0;
}
Normally, it's not possible to simply concatenate plain char * strings in C or C++, because they are merely pointers to arrays of characters. There's almost no reason you should be using a bare character array in C++ if you intend on doing any string manipulations within your own code.
Even if you need access to the C representation (e.g. for an external library) you can use string::c_str().
First, there is nothing null terminated, but the zero terminated. All char* strings in C end with '\0'.
When you in code do something like this:
char *name="Daniel";
compiler will generate a string that has a contents:
Daniel\0
and will initialize name pointer to point at it at a certain time during program execution depending on the variable context (member, static, ...).
Appending ANYTHING to the name won't work as you expect, since memory pointed to by name isn't changeable, and you'll probably get either access violation error or will overwrite something else.
Having
const char* copyOfTheName = name;
won't create a copy of the string in question, it will only have copyOfTheName point to the original string, so having
copyOfTheName[6]='A';
will be exactly as
name[6]='A';
and will only cause problems to you.
Use std::strcat instead. And please, do some investigating how the basic string operations work in C.