Find numerical roots in poly rational elements with Sympy function set - sympy

I am not pratice in Sympy manipulation.
I need to find roots on particular poly:
-4x**(11/2)-24x**(9/2)-16x**(7/2)+2x**(5/2)+16x**(5)+23x**(4)+5x**(3)-x**(2)
I verified that I have 2 real solution and I find one of them with Sympy function
nsolve(mypoly,x,1).
Why the previous step doesn't look the other?
How can I proceed to find ALL roots?
Thank you to all for assistance
A.

To my knowledge, nsolve looks in the proximity of the provided initial guess to find one root for each equations.
I would plot the expression to find suitable initial guesses:
from sympy import *
from sympy.plotting import PlotGrid
expr = -4*x**(S(11)/2)-24*x**(S(9)/2)-16*x**(S(7)/2)+2*x**(S(5)/2)+16*x**(5)+23*x**(4)+5*x**(3)-x**(2)
p1 = plot(expr, (x, 0, 0.5), adaptive=False, n=1000, ylim=(-0.01, 0.05), show=False)
p2 = plot(expr, (x, 0, 5), adaptive=False, n=1000, ylim=(-200, 200), show=False)
PlotGrid(1, 2, p1, p2)
Now, we can do:
nsolve(expr, x, 0.2)
# out: 0.169003536680445
nsolve(expr, x, 4)
# out: 4.28968831654177
EDIT: to find all roots (even the complex one), we can:
compute the derivative of the expression.
convert both the expression and the derivative to numerical functions with sympy's lambdify.
visually inspect the expression in the complex plane to determine good initial values for the root finding algorithm. I'm going to use this plotting module, SymPy Plotting Backend which exposes a very handy function, plot_complex, to generate domain coloring plots. In particular, I will plot alternating black and white stripes corresponding to modulus.
use scipy's newton method to compute the actual roots. EDIT: I just discovered that nsolve works too :)
# step 1 and 2
f = lambdify(x, expr)
f_der = lambdify(x, expr.diff(x))
# step 3
from spb import plot_complex
r = (x, -1-0.8j, 4.5+0.8j)
w = r[1].real - r[2].real
h = r[1].imag - r[2].imag
# number of discretization points, watch out memory usage
n1 = 1500
n2 = int(h / w * n1)
plot_complex(expr, r, {"interpolation": "spline36"}, grid=False, coloring="e", n1=n1, n2=n2, size=(10, 5))
In the above picture we see circular stripes getting bigger and deforming. The center of these circular stripes represent a pole or a zero. But this is an easy case: there are no poles. So, from the above pictures we count 7 zeros. We already know 3, the two computed above and the value 0. Let's find the others:
from scipy.optimize import newton
r1 = newton(f, x0=-0.9+0.1j, fprime=f_der)
r2 = newton(f, x0=-0.9-0.1j, fprime=f_der)
r3 = newton(f, x0=0.6+0.6j, fprime=f_der)
r4 = newton(f, x0=0.6-0.6j, fprime=f_der)
for r in (r1, r2, r3, r4):
print(r, ": is it a zero?", expr.subs(x, r).evalf())
# out:
# (-0.9202719950522663+0.09010409402273806j) : is it a zero? -8.21787666002984e-15 + 2.06697764417957e-15*I
# (-0.9202719950522663-0.09010409402273806j) : is it a zero? -8.21787666002984e-15 - 2.06697764417957e-15*I
# (0.6323265751497729+0.6785871500619469j) : is it a zero? -2.2103533615688e-15 - 2.77549897301442e-15*I
# (0.6323265751497729-0.6785871500619469j) : is it a zero? -2.2103533615688e-15 + 2.77549897301442e-15*I
As you can see, inserting those values into the original expression get values very very close to zero. It is perfectly normal to see these kind of errors.
I just discovered that you can use also use nsolve instead of newton to compute complex roots. This makes step 1 and 2 unnecessary.
nsolve(expr, x, -0.9+0.1j)
# out: −0.920271995052266+0.0901040940227375𝑖

Related

In Sympy is there a way to get a representation of Groebner basis in terms of defining polynomials?

In Sympy one can obtain the representation of a polynomial's reduction by a Grobner basis:
from sympy import groebner, expand
from sympy.abc import x, y
f = 2*x**4 - x**2 + y**3 + y**2
G = groebner([x**3 - x, y**3 - y])
Q, r = G.reduce(f)
assert f == expand(sum(q*g for q, g in zip(Q, G)) + r)
But what I'm looking for is a way to get the expression of the elements of a Groebner basis in terms of the polynomials defining it, essentially just storing the computations performed in the Buchberger algorithm used in producing the basis.
For example
groebner([2*x+3*y+5, 3*x+5*y+2, 5*x+2*y+3]) # GroebnerBasis([1], x, y, domain='ZZ', order='lex')
It indicates that these three polynomials generate the unit ideal, but I would like an explicit combination of these polynomials that equals 1. In the example given it is a linear combination, but I would like a method that works with nonlinear as well.
In the first example I obtained Q,r. In the second example I obtained the analog of the remainder r but I would like the polynomials Q realizing it.
Similarly, the method G.contains() will indicate if the ideal contains the polynomial, but it won't tell you how to produce it. Is there a way to do this too?

How to solve an algebraic equation in formal power series?

Motivation. It is well known that generating function for Catalan numbers satisfies quadratic equation. I would like to have first several coefficients of a function, implicitly defined by an algebraic equation (not necessarily a quadratic one!).
Example.
import sympy as sp
sp.init_printing() # math as latex
from IPython.display import display
z = sp.Symbol('z')
F = sp.Function('F')(z)
equation = 1 + z * F**2 - F
display(equation)
solution = sp.solve(equation, F)[0]
display(solution)
display(sp.series(solution))
Question. The approach where we explicitly solve the equation and then expand it as power series, works only for low-degree equations. How to obtain first coefficients of formal power series for more complicated algebraic equations?
Related.
Since algebraic and differential framework may behave differently, I posted another question.
Sympy: how to solve differential equation in formal power series?
I don't know a built-in way, but plugging in a polynomial for F and equating the coefficients works well enough. Although one should not try to find all coefficients at once from a large nonlinear system; those will give SymPy trouble. I take iterative approach, first equating the free term to zero and solving for c0, then equating 2nd and solving for c1, etc.
This assumes a regular algebraic equation, in which the coefficient of z**k in the equation involves the k-th Taylor coefficient of F, and does not involve higher-order coefficients.
from sympy import *
z = Symbol('z')
d = 10 # how many coefficients to find
c = list(symbols('c:{}'.format(d))) # undetermined coefficients
for k in range(d):
F = sum([c[n]*z**n for n in range(k+1)]) # up to z**k inclusive
equation = 1 + z * F**2 - F
coeff_eqn = Poly(series(equation, z, n=k+1).removeO(), z).coeff_monomial(z**k)
c[k] = solve(coeff_eqn, c[k])[0]
sol = sum([c[n]*z**n for n in range(d)]) # solution
print(series(sol + z**d, z, n=d)) # add z**d to get SymPy to print as a series
This prints
1 + z + 2*z**2 + 5*z**3 + 14*z**4 + 42*z**5 + 132*z**6 + 429*z**7 + 1430*z**8 + 4862*z**9 + O(z**10)

Python (Scipy): Finding the scale parameter (standard deviation) of a gaussian distribution

it is quite common to calculate the probability density of a value within a probability density function (PDF). Imagine we have a gaussian distribution with mean = 40, a standard deviation of 5 and now would like to get the probability density of value 32. We'd go like:
In [1]: import scipy.stats as stats
In [2]: print stats.norm.pdf(32, loc=40, scale=5)
Out [2]: 0.022
--> The probability density is 2.2%.
But now, let's consider the inverse problem. I have the mean value, I have the value at probabilty density of 0.05 and I would like to get the standard deviation (i.e. the scale parameter).
What I could implement is a numerical approach: create stats.norm.pdf several times with the scale-parameter increased stepwise and take that one with the result getting as closest as possible.
In my case, I specify the value 30 as the 5% mark. So I need to solve this "equation":
stats.norm.pdf(30, loc=40, scale=X) = 0.05
There is a scipy function called "ppf" which is the inverse of the PDF, so it will return the value for a specific probability density, but I haven't found a function to return the scale parameter.
Implementing an iteration would take too much time (both creating and calculating). My script is going to be huge, so I should save computation time. Could the lambda-function help in this case? I roughly know what it's doing, but I haven't used it so far. Any ideas on this?
Thank you!
The normal probability density function, f is given by
Given f and x we wish to solve for 𝞼. Let's ask sympy if it can solve the equation:
import sympy as sy
from sympy.abc import x, y, sigma
expr = (1/(sy.sqrt(2*sy.pi)*sigma) * sy.exp(-x**2/(2*sigma**2))) - y
ans = sy.solve(expr, sigma)[0]
print(ans)
# sqrt(2)*exp(LambertW(-2*pi*x**2*y**2)/2)/(2*sqrt(pi)*y)
So it appears there is a closed-formed solution in terms of the LambertW function, W, which satisfies
z = W(z) * exp(W(z))
for all complex-valued z.
We could use sympy to also find the numerical result for given x and y, but
perhaps it would be faster to do the numerical work with
scipy.special.lambertw:
import numpy as np
import scipy.special as special
def sigma_func(x, y):
results = set([np.real_if_close(
np.sqrt(2)*np.exp(special.lambertw(-2*np.pi*x**2*y**2, k=k)/2)
/(2*np.sqrt(np.pi)*y)).item() for k in (0, -1)])
results = [s for s in results if np.isreal(s)]
return results
In general, the LambertW function returns complex values, but we are only
interested in real-valued solutions for sigma. Per the
docs,
special.lambertw has two partially-real branches, when k=0 and k=1. So the
code above checks if the returned value (for those two branches) is real, and
returns a list of any real solutions if they exist. If no real solution exists,
then an empty list is returned. That happens if the pdf value y is not
attained for any real value of sigma (for the given value of x).
You can use it like this:
x = 30.0
loc = 40.0
y = 0.02
s = sigma_func(loc-x, y)
print(s)
# [16.65817044316178, 6.830458938511113]
import scipy.stats as stats
for si in s:
assert np.allclose(stats.norm.pdf(x, loc=loc, scale=si), y)
In the example you gave, with y = 0.025, there is no solution for sigma:
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
x = 30.0
loc = 40.0
y = 0.025
s = np.linspace(5, 20, 100)
plt.plot(s, stats.norm.pdf(x, loc=loc, scale=s))
plt.hlines(y, 4, 20, color='red') # the horizontal line y = 0.025
plt.ylabel('pdf')
plt.xlabel('sigma')
plt.show()
and so sigma_func(40-30, 0.025) returns an empty list:
In [93]: sigma_func(40-30, 0.025)
Out [93]: []
The plot above is typical in the sense that when y is too large there are zero
solutions, at the maximum of the curve (let's call it y_max) there is one
solution
In [199]: y_max = np.nextafter(np.sqrt(1/(np.exp(1)*2*np.pi*(10)**2)), -np.inf)
In [200]: y_max
Out[200]: 0.024197072451914336
In [201]: sigma_func(40-30, y_max)
Out[201]: [9.9999999776424]
and for y smaller than the y_max there are two solutions.
The will be two solutions, because normal PDF is symmetric around the mean.
As it stands, you have a single-variable equation to solve. It won't have a closed-form solution, so you can use e.g. scipy.optimize.fsolve to solve it.
EDIT: see #unutbu's answer for the closed form solution in terms of Lambert W function.

Parameter optimization using a genetic algorithm?

I am trying to optimize parameters for a known function to fit an experimental data plot. The function is fairly involved
where x sweeps along a know set of numbers and p, g and c are the independent parameters to be optimized. Any ideas or resources that could be of assistance?
I would not recommend Genetic Algorithms. Instead go for straight forward Optimization.
Scipy has some resources.
You haven't provided any data or so, so I'll just go for something that should run. Below is something to get you started. I can't know if it works without seeing the data. Also, there must probably is a way to dynamically feed objectivefunc your x and y data. That's probably in the docs to scipy.optimize.minimize.
What I've done. Create a function to minimize. Here, I've called it objectivefunc. For that I've taken your function y = x^2 * p^2 * g / ... and transformed it to be of the form x^2 * p^2 * g / (...) - y = 0. Then square the left hand side and try to minimise it. Because you will have multiple (x/y) data samples, I'd minimise the sum of the squares. Put it all in a function and pass it to the minimize from scipy.
import numpy as np
from scipy.optimize import minimize
def objectivefunc(pgq):
"""Your function transformed so that it can be minimised.
I've renamed the input pgq, so that pgq[0] is p, pgq[1] is g, etc.
"""
p = pgq[0]
g = pgq[1]
q = pgq[2]
x = [10, 9.4, 17] # Some input data.
y = [12, 42, 0.8]
sum_ = 0
for i in range(len(x)):
sum_ += (x[i]**2 * p**2 * g - y[i] * ( (c**2 - x**2)**2 + x**2 * g**2) )**2
return sum_
pgq = np.array([1.3, 0.7, 0.5]) # Supply sensible initivial values
res = minimize(objectivefunc, pgq, method='nelder-mead',
options={'xtol': 1e-8, 'disp': True})
Have you tired old good Levenberg-Marquardt as implemented in Levenberg-Marquardt.vi. If it does not suite your needs, you can try Waptia libraryfor LabVIEW with one of the genetic algorithms implemented.

Is it possible for matplotlib's alpha transparency values to "sum" to 1?

I am using matplotlib to plot a series of horizontal lines that overlap. I would like to indicate (in a very rough way) how much overlap there is via transparency. For example if I have ten lines and 5 of them overlap over a certain interval, I would like that interval to have an alpha value of 0.5. If all of them overlap over a certain interval then the interval should have an alpha value of 1.0. The following code should illustrate what I want:
import matplotlib.pyplot as plt
y = [1,1,1,1,1,1,1,1,1,1]
x_start = [0,0,0,0,0,0,0,0,0,0]
x_end = [1,2,3,4,5,6,7,8,9,10]
plt.hlines(y, x_start, x_end, linewidth=7, colors='red', alpha=0.1)
plt.hlines(1.2, 0, 10, linewidth=7, colors='red', alpha=1)
plt.ylim(0.8, 1.4)
plt.show()
I would like the transparency of the red from x=0 to x=1 for the line at y=1 to be the same as that of the horizontal line at y=1.2 (not transparent at all). However this is not the case.
Is there a way to achieve what I want with matplotlib and the alpha values? I will know the total number of lines that can possibly overlap (i.e., how many lines overlapping should correspond to 0 transparency).
Thanks to #cphlewis who got me pointed in the right direction I now have an approximation that works well enough for my needs.
My problem is much easier than the general problem since I want to assign each line (layer) the exact same transparency level s. If there are n=2 lines I want the transparency when both lines overlap to be close to 0, e.g. alpha=0.97.
If n=2 and alpha=0.97, solving
0.97 = s + s(1-s)
for s yields s=0.827.
Generalizing this for any n leads to solving a polynomial where the coefficients are given by the n'th row of Pascal's triangle and where the sign of each coefficient is equal to
(-1)^(n + pos)
where pos is the position of the coefficient in Pascal's triangle from left to right and where pos starts at 1. Also, the last coefficient in Pascal's triangle is replaced with the desired alpha value.
So for n=5 the polynomial to be solved is
s^5 - 5s^4 + 10s^3 - 10s^2 + 5s - 0.97 = 0
The following Python code solves for the smallest real root (which is the alpha value that I want) given n and alpha (note that alpha < 1).
import numpy as np
import scipy.linalg
num_lines = 5
end_alpha_value = 0.97 ## end_alpha_value must be in the interval (0, 1)
pascal_triangle = scipy.linalg.pascal(num_lines + 1, kind='lower')
print 'num_reps: 1, minimum real root: %.3f' % end_alpha_value
for i in range(2, num_lines + 1):
coeff_list = []
for j, coeff in enumerate(pascal_triangle[i][:i]):
coeff_list.append(coeff * ((-1)**(i+j+1)))
coeff_list.append(-end_alpha_value)
all_roots = np.roots(coeff_list)
real_roots = all_roots[np.isreal(all_roots)]
min_real_root = min(real_roots)
real_valued = min_real_root.real[abs(min_real_root.imag) < 1e-5]
print 'num_reps: %i, minimum real root: %.3f' % (i, real_valued[0])
For the case n=10 if the desired transparency is alpha=0.97 then s=0.296 resulting in the following output:
I believe what is going on shows up better using black as the color: