Drawing a simple rectangle in OpenGL 4 - c++

According to this wikibook it used to be possible to draw a simple rectangle as easily as this (after creating and initializing the window):
glColor3f(0.0f, 0.0f, 0.0f);
glRectf(-0.75f,0.75f, 0.75f, -0.75f);
This is has been removed however in OpenGL 3.2 and later versions.
Is there some other simple, quick and dirty, way in OpenGL 4 to draw a rectangle with a fixed color (without using shaders or anything fancy)?

Is there some ... way ... to draw a rectangle ... without using shaders ...?
Yes. In fact, AFAIK, it is supported on all OpenGL versions in existence: you can draw a solid rectangle by enabling scissor test and clearing the framebuffer:
glEnable(GL_SCISSOR_TEST);
glScissor(x, y, width, height);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
This is different from glRect in multiple ways:
The coordinates are specified in pixels relative to the window origin.
The rectangle must be axis aligned and cannot be transformed in any way.
Most of the per-sample processing is skipped. This includes blending, depth and stencil testing.
However, I'd rather discourage you from doing this. You're likely to be better off by building a VAO with all the rectangles you want to draw on the screen, then draw them all with a very simple shader.

Related

2D Texture morph in Ortographic Projection

I'm having a hard time figuring out what's going on with my texture:
Basically I am fetching a webcam stream as my underlying 2d texture canvas in OpenGL, and in my paintGL() I'm drawing stuff on it (as RGBA images with GL_BLEND).
Since I'm using a Kinect as a data source, I'm also getting the depth values from a tracked skeleton (a person), and converting them into GL values (XYZ varying between 0.0f and 1.0f).
So my goal is that, for instance, a loaded 2D Texture like a shirt, is now properly tracking the person in my RGB output display. But it seems my understanding of orthographic projection is wrong:
I'm constantly loading the 4 converted vertices into a VBO, but whenever I put the texture on top of this dynamic quad, it's always facing the screen.
I thought that putting this dynamic quad between the "background" canvas and the camera would result in a proper projection of the quad onto the canvas, which would give me the impression of a warping 2D texture, that seems to "bend" whenever the person rotates.
But the texture is always facing the camera and doesnt rotate.
I've also tried to manually rotate via a matrix and set that into my shader, but again, it only rotates the vertice quad itself (as: rotation simply makes the texture smaller) , and THEN puts the texture on top, instead of rotating the texture with it.
So, is it somehow possible to properly apply this to the texture?
I've thought about mixing a perspective projection in, but actually have no idea how to implement this...
EDIT:
I've actually already set my projection matrix up like the following:
In resizeGL():
projection.setToIdentity();
projection.ortho(0.0f, 1.0f, 0.0f, 1.0f, 2.0f, -5.0f);
projection.translate(0.0f, 0.0f, 3.0f);
In paintGL():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_DEPTH_TEST); // turning this on/off makes no difference
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, &textureID);
program.setUniformValue("mvp_matrix", projection);
program.setUniformValue("texture", 0);
//draw 2d background quad
drawQuad();
glClear(GL_DEPTH_BUFFER_BIT);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// switch to frustum to give perspective view
projection.setToIdentity();
projection.frustum(0.0f, 1.0f, 0.0f, 1.0f, 2.0f, -5.0f);
projection.translate(0.0f, 0.0f, 3.0f);
// bind cloth texture and draw ontop 2d quad
clothTexture->bind();
program.setUniformValue("mpv_matrix", projection);
drawShirtQuad();
// reset to ortho view
projection.setToIdentity();
projection.ortho(0.0f, 1.0f, 0.0f, 1.0f, 2.0f, -5.0f);
// release texture
clothTexture->release();
glDisable(GL_BLEND);
clothTexture is a QOpenGLTexture that has successfully loaded an RGBA image from a file.
Result: whenever I activate the frustum perspective, it results in a black screen. I think everything is correctly set up: POV is traversed towards positive z-axis in resizeGL(), and all the cloth vertices vary between 0 and 1 in XYZ, while the background is positioned at:
(0.0f, 0.0f, -1.0f), (1.0f, 0.0f, -1.0f), (1.0f, 1.0f, -1.0f), (0.0f, 1.0f, -1.0f).
So the cloth object is always positioned between background plane and POV. Am i missing something in the frustum setup ? I've simply set it up the same way as ortho...
EDIT:
Sorry for not mentiong; the matrix I'm using is a QMatrix4x4 type:
Frustum
These functions multiply the current matrix with the one you define as an argument, which should yield the same result as if I define a View matrix for instance, and then define my shader uniform "mvp_matrix" as projection * view, if I'm not mistaken. Maybe something like lookAt will do the trick; I'll just try messing around more. :)
You need to use a perspective projection to achieve desired result. Look here for example code for perspective projection matrix creation with glm.
Moving vertices wouldn't be needed as you will get proper positions with rotation applied in your model matrix.
EDIT: in your code where can i look at .frustum and .translate methods or from what library projection object is? It doesn't look like you are doing Projection * View by moving frustum matrix. Some info about roles of standard matrices.
Considering debugging if you get on screen black color instead of GL_COLOR_BUFFER_BIT color problem is not with matrix but earlier. Also i recommend to console.log your perspective matrix and compare it to correct one (which you can get for example in glm library).

OpenGL - PBuffer render to Texture

After my last post, when someone recommended me to use pBuffers, I digged a bit on Google and I found some cool examples to make Offscreen Rendering, using pbuffers. Some example, available on nVidia's website, does a simple offscreen rendering, which just renders on the pbuffer context, reads the pixels into an array and then calls the opengl functions to DrawPixels.
I changed this example, in order to create a texture from the pixels read - Render it offscreen, read the pixels to the array, and then initialize a texture with this colorbit array. But this looks very redundant to me - We render the image, we copy it from Graphical Card memory into our memory (the array), to later copy it back to the graphical card in order to display it on screen, but just in a different rendering context. It looks kinda stupid the copies that I am making just to display the rendered texture, so I tried a different approach using glCopyTexImage2D(), which unfortunately doesn't work. I'll display code and explanations:
mypbuffer.Initialize(256, 256, false, false);
- The false values are for Sharing context and sharing object. They are false cause this fantastic graphical card doesn't support it.
Then I perform the usual initializations, to enable Blending, and GL_TEXTURE_2D.
CreateTexture();
mypbuffer.Activate();
int viewport[4];
glGetIntegerv(GL_VIEWPORT,(int*)viewport);
glViewport(0,0,xSize,ySize);
DrawScene(hDC);
//save data to texture using glCopyTexImage2D
glBindTexture(GL_TEXTURE_2D,texture);
glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
0,0, xSize, ySize, 0);
glClearColor(.0f, 0.5f, 0.5f, 1.0f); // Set The Clear Color To Medium Blue
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(viewport[0],viewport[1],viewport[2],viewport[3]);
// glBindTexture(GL_TEXTURE_2D,texture);
first = false;
mypbuffer.Deactivate();
- The DrawScene function is very simple, it just renders a triangle and a rectangle, which is suposed to be offscreen rendered (I HOPE). CreateTexture() creates an empty texture. The function should work, as it was tested in the previous way I described and it works.
After this, in the main loop, i just do the following:
glClear(GL_COLOR_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D,texture);
glRotatef(theta, 0.0f, 0.0f, 0.01f);
glBegin(GL_QUADS);
//Front Face
glTexCoord2f(0.0f, 0.0f);
glVertex3f(-0.5, -0.5f, 0.5f);
glTexCoord2f(1.0f, 0.0f);
glVertex3f( 0.5f, -0.5f, 0.5f);
glTexCoord2f(1.0f, 1.0f);
glVertex3f( 0.5f, 0.5f, 0.5f);
glTexCoord2f(0.0f, 1.0f);
glVertex3f(-0.5f, 0.5f, 0.5f);
glEnd();
SwapBuffers(hDC);
theta = 0.10f;
Sleep (1);
The final result is just a window with a blue background, nothing got actually Rendered. Any Idea why is this happening? My Graphical Card doesn't support the extension wgl_ARB_render_texture, but this shouldn't be a problem when calling the glCopyTexImage2D() right?
My Card doesn't support FBO either
What you must do is, sort of "connect" your two OpenGL contexts so that the textures of your PBuffer context also show up in the main render context. The term you need to look for is "display list sharing". In Windows you connect the contexts retroactively using wglShareLists, on X11 and MacOS X you must supply the handle of the context to be shared at context creation.
An entirely different possibility and working just as well is reusing the same context on the PBuffer. It's a little known fact, that you can use OpenGL render contexts not only on the drawable it has been created with first, but on any drawable with compatible settings. So if your PBuffer matches your main window's pixel format, you can detach the render context from the main window and attach it to the PBuffer. Of course you then need low level access to the main window's device context/drawable, which is normally hidden behind a framework.
You should check whether your OpenGL implementation supports framebuffer objects: these object are able to be render targets, and they can have attached textures as color buffers, indeed rendering directly into a texture.
This should be the way to go, otherwise your method is the alternative.

OpenGL cube not rendering properly

I have a problem when rendering cubes in OpenGL.I am drawing two cubes, one is a wire cube and is centered around the origin, while the other is offset from the origin and is solid. I have mapped some keys to rotate the objects by some degrees wrt to the origin, so the whole scene can rotate around the origin.
The problem is, when I render the scene, when the wire cube is supposed to be infront of the other solid cube, it does not display itself correctly.
In the image above, the colored cube is supposed to be behind the wire cube. i.e. the green wire cube should be on top.
Also the cube is not behaving properly.
After I rotate it a little bit around the x axis (current horizontal line).
The cube has missing faces and is not rendering correctly.
What am I doing wrong?
I have coded the following
Note that rotateX,rotateY,rotateZ are mapped to keys, and are my global rotation variables.
//The Initialize function, called once:
void Init(){
glEnable(GL_TEXTURE_2D);
glShadeModel(GL_SMOOTH); // Enable Smooth Shading
glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL_DEPTH_TEST); // Depth Buffer Setup // Enables Depth Testing
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
glEnable(GL_LIGHTING);
}
void draw(){
//The main draw function
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity ();
gluPerspective(45, 640/480.0, .5, 100);
glMatrixMode(GL_MODELVIEW); //select the modelview matrix.
glLoadIdentity ();
gluLookAt(0,0,5,
0,0,0,
0,1,0);
glRotatef(rotateX,1,0,0);
glRotatef(rotateY,0,1,0);
glRotatef(rotateZ,0,0,1);
drawScene(); // this just draws the main axis lines,
glutWireCube(1);
glPopMatrix();
glPushMatrix();
glTranslatef(-2,1,0);
drawNiceCube();
glPopMatrix();
glutSwapBuffers();
}
The code for the drawNiceCube() is just using GL_QUADS, while the drawWireCube is built in in GLUT.
EDIT:
I have posted the full code at http://pastebin.com/p1kwPjEM, sorry if it is not well documented.
Did you also request a window with a depth buffer?
glutInitDisplayMode( ... | GLUT_DEPTH | ...);
Update:
Did you somewhere enable face culling?
glEnable(GL_CULL_FACE);
This is may be cause of clockwise
10.090 How does face culling work? Why doesn't it use the surface normal?
OpenGL face culling calculates the signed area of the filled primitive in window coordinate space. The signed area is positive when the window coordinates are in a counter-clockwise order and negative when clockwise. An app can use glFrontFace() to specify the ordering, counter-clockwise or clockwise, to be interpreted as a front-facing or back-facing primitive. An application can specify culling either front or back faces by calling glCullFace(). Finally, face culling must be enabled with a call to glEnable(GL_CULL_FACE); .
OpenGL uses your primitive's window space projection to determine face culling for two reasons. To create interesting lighting effects, it's often desirable to specify normals that aren't orthogonal to the surface being approximated. If these normals were used for face culling, it might cause some primitives to be culled erroneously. Also, a dot-product culling scheme could require a matrix inversion, which isn't always possible (i.e., in the case where the matrix is singular), whereas the signed area in DC space is always defined.
However, some OpenGL implementations support the GL_EXT_ cull_vertex extension. If this extension is present, an application may specify a homogeneous eye position in object space. Vertices are flagged as culled, based on the dot product of the current normal with a vector from the vertex to the eye. If all vertices of a primitive are culled, the primitive isn't rendered. In many circumstances, using this extension
from here
Also you can read here
datenwolf solved my problem. I quote him:
"#JonathanSimbahan: Parts of your code are redundant, but something is missing: You forgot to call Init(); after creating your GLUT window, hence depth testing and all the other state never get enabled. I for one suggest you don't use Init at all and move it's code into the drawing code, where it actually belongs."

gluCylinder() and texture coordinates offset / multiplier?

How can i set the texture coordinate offset and multiplier for the gluCylinder() and gluDisk() etc. functions?
So if normally the texture would start at point 0, i would like to set it start at point 0.6 or 3.2 etc. by multiplier i mean the texture would either get bigger or smaller.
The solution cant be glScalef() because 1) im using normals, 2) i want to adjust the texture start position as well.
Try using the texture matrix stack:
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glTranslatef(0.6f, 3.2f, 0.0f);
glScalef(2.0f, 2.0f, 1.0f);
glMatrixMode(GL_MODELVIEW);
drawObject();
The solution has nothing to do with the GLU functions and is indeed glScalef (and glTranslatef for the offset adjustment), but applying it to the texture matrix (assuming you don't use shaders). The texture matrix, selected by calling glMatrixMode with GL_TEXTURE, transforms the vertices' texture coordinates before they are interpolated and used to access the texture (no matter how these texture coordinates are computed, in this case by GLU, which just computes them on the CPU and calls glTexCoord2f).
So to let the texture start at (0.1,0.2) (in texture space, of course) and make it 2 times as large, you just call:
glMatrixMode(GL_TEXTURE);
glTranslatef(0.1f, 0.2f, 0.0f);
glScalef(0.5f, 0.5f, 1.0f);
before calling gluCylinder. But be sure to revert these changes afterwards (probably wrapping it between glPush/PopMatrix).
But if you want to change the texture coordinates based on the world space coordinates, this might involve some more computation. And of course you can also use a vertex shader to have complete control over the texture coordinate generation.

Generate texture from polygon (openGL)

I have a quad and I would like to use the gradient it produces as a texture for another polygon.
glPushMatrix();
glTranslatef(250,250,0);
glBegin(GL_POLYGON);
glColor3f(255,0,0);
glVertex2f(10,0);
glVertex2f(100,0);
glVertex2f(100,100);
glVertex2f(50,50);
glVertex2f(0,100);
glEnd(); //End quadrilateral coordinates
glPopMatrix();
glBegin(GL_QUADS); //Begin quadrilateral coordinates
glVertex2f(0,0);
glColor3f(0,255,0);
glVertex2f(150,0);
glVertex2f(150,150);
glColor3f(255,0,0);
glVertex2f(0,150);
glEnd(); //End quadrilateral coordinates
My goal is to make the 5 vertex polygon have the gradient of the quad (maybe a texture is not the best bet)
Thanks
Keep it simple!
It is very simple to create a gradient texture in code, e.g.:
// gradient white -> black
GLubyte gradient[2*3] = { 255,255,255, 0,0,0 };
// WARNING: check documentation, I am not quite sure about syntax and order:
glTexture1D( GL_TEXTURE_1D, 0,3, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, gradient );
// setup texture parameters, draw your polygon etc.
The graphics hardware and/or the GL will create a sweet looking gradient from color one to color two for you (remember: that's one of the basic advantages of having hardware accelerated polygon drawing, you don't have to do interpolation work in software).
Your real problem is: which texture coordinates do you use on the 5 vertex polygon. But that was not your question... ;-)
To do that, you'd have to do a render-to-texture. While this is commonplace and supported by practically every board, it's typically used for quite elaborate effects (e.g. mirrors).
If it's really just a gradient, I'd try to create the gradient in am app like Paint.Net. If you really need to create them at run-time, use a pixel shader to implement render-to-texture. However, I'm afraid explaining pixel shaders in a few words is a bit tough - there are lots of tutorials on this on the net, however.
With the pixel shader, you gain a lot of control over the graphic card. This allows you to render your scene to a temporary buffer and then apply that buffer as a texture quite easily, plus a lot more functionality.