Observer Design pattern - Getting a segfault - c++

I am writing an Observer design pattern where Subject knows what Observer it has (same as the original design) and Observer also knows what Subject it's attached to, mainly to tackle scenarios like Observer going out of scope and Subject has a reference to a destroyed object.
So if an Observer watches a Subject, both know about each other. This is handled via observer->removeSubject and observer->addSubject.
In the following snippet, I am testing a case where Observers go out of scope, meaning ~Observer() gets invoked first however I seem to be getting a segfault on the following line when I debug in an online gdb tool in the second iteration of ~Observer()
std::cout << "Observers size = " << _observers.size() << "\n";
template<typename T>
class Subject;
template<typename T>
class Observer
{
std::set<Subject<T>*> _subjects;
public:
virtual void update(T val) = 0;
void addSubject(Subject<T>* subject)
{
printf ("[Observer] Adding Subject to observer - ");
_subjects.insert(subject);
std::cout << "Subject size = " << _subjects.size() << "\n\n";
}
void removeSubject(Subject<T>* subject)
{
printf ("[Observer] Removing Subject from observer - ");
_subjects.erase(subject);
std::cout << "Subject size = " << _subjects.size() << "\n";
}
virtual ~Observer()
{
printf ("\n~Observer\nSubject Size = %ld\n", _subjects.size());
for (auto& subject : _subjects)
{
subject->detach(this);
}
}
};
template<typename T>
class Subject
{
std::set<Observer<T>*> _observers;
protected:
Subject() = default;
public:
void attach(Observer<T>* observer)
{
printf ("~~ [Subject] Attaching observer ~~\n");
_observers.insert(observer);
observer->addSubject(this);
}
void detach(Observer<T>* observer)
{
printf ("~~ [Subject] Detaching observer ~~\n");
std::cout << "Observers size = " << _observers.size() << "\n";
_observers.erase(observer);
observer->removeSubject(this);
}
void notify(const T& val)
{
for (auto& observer : _observers)
{
observer->update(val);
}
}
virtual ~Subject()
{
printf ("\n~Subject\n");
printf ("Observer size = %ld\n", _observers.size());
for (auto& obs : _observers)
{
obs->removeSubject(this);
}
}
};
template<typename T>
class ConcreteSubject : public Subject<T>
{
T _value;
public:
void set(const T& value)
{
_value = value;
this->notify(value);
}
};
template<typename T>
class ConcreteObserver : public Observer<T>
{
public:
void update(T value)
{
std::cout << "Observer Notified: " << value << "\n";
}
};
int main()
{
ConcreteSubject<int> sub;
{
ConcreteObserver<int> obs;
ConcreteObserver<int> obs1;
sub.attach(&obs);
sub.attach(&obs1);
sub.set(5);
}
}
One part that I am concerned about is the following where subject is removed from _subjects while _subjects is being iterated over.
Should a copy of _subjects be made to be iterated over in ~Observer() instead?
void removeSubject(Subject<T>* subject)
{
printf ("[Observer] Removing Subject from observer - ");
_subjects.erase(subject);
std::cout << "Subject size = " << _subjects.size() << "\n";
}
virtual ~Observer()
{
printf ("\n~Observer\nSubject Size = %ld\n", _subjects.size());
for (auto& subject : _subjects)
{
subject->detach(this);
}
}

There may be more problems in your code but I can see at last this one:
When Observer is being destroyed in destructor, it iterates over _subjects collection. You call Subject::detach() on each subject. Subject::detach() in turn calls Observer::removeSubject() on the very same observer and Observer::removeSubject() removes the subject from the very same _subjects collection which you are currently iterating upon. This is undefined behaviour which later probably leads to the segfault you are having.
Solution 1
In Observer::~Observer() you can make a copy of the _subjects collection and iterate on this copy. This seems to be the simplest solution.
Solution 2
virtual ~Observer()
{
while (!_subjects.empty())
{
(*_subjects.begin())->detach(this);
}
}
Solution 3
This solution may actually be the most performant one.
If you are destroying the Observer you do not need to clear the _subjects collection one by one because the observer object will be destroyed anyway. Therefore you may introduce a private bool _destroying member variable. Its default value will be false but in the destructor it would be set to true. And when true, it would prevent removing from _subjects collection in removeSubject().
void removeSubject(Subject<T>* subject)
{
if (!_destroying)
{
_subjects.erase(subject);
}
}
virtual ~Observer()
{
_destroying = true;
for (auto& subject : _subjects)
{
subject->detach(this);
}
}

Related

identifying the design pattern name used

I want to check if the examples below (from a test interview) corresponds to the correct design pattern name :
Example 1 : can that piece of code illustrate the "Builder" pattern or it might be the "Strategy" one ?
FileStream* files = new FileStream("my_file.zip");
BufferedStream* bufferds = new BufferedStream(files);
ZipStream* zips = new ZipStream(bufferds);
Example 2 : is the code below represent the "Strategy" pattern ?
struct UnixText {
void write(string str) { cout << str; }
void lf() { cout << "\n"; }
};
struct WindowsText {
void write(string str) { cout << str; }
void crlf() { cout << "\r\n"; }
};
struct Writer {
virtual void write(string str) = 0;
virtual void newline() = 0;
virtual ~Writer() {}
};
struct UnixWriter : Writer {
UnixWriter(UnixText* tx) { _target = tx; }
virtual void write(string str) { _target->write(str); }
virtual void newline() { _target->lf(); }
private:
UnixText* _target;
};
struct WindowsWriter : Writer {
WindowsWriter(WindowsText* tx) { _target = tx; }
virtual void write(string str) { _target->write(str); }
virtual void newline() { _target->crlf(); }
private:
WindowsText* _target;
};
int main()
{
Writer* writer = (g_IsUnix) ? (Writer*) new UnixWriter(new UnixText()) : (Writer*) new WindowsWriter(new WindowsText());
writer->write("Hello");
writer->newline();
writer->write("World");
}
The first example uses I/O streams and it is a good use of Decorator pattern. Here it has a constructor that takes an instance of the same abstract class or interface. That's the recognition key of the Decorator pattern
The second one, you are passing some Writing Strategy to the UnixWriter and WindowsWriter which is the context. So it can be considered as Strategy pattern. But you can still improve it by having a contract for Writing Strategy. So your concrete writers should only know about that super type rather than having references to concrete implementations. That will make your system more flexible.

C++ virtual method, that doesn't require "this" pointer - optimization

I'd like to implement access to a certain class:
class A { some properties and methods };
The problem is there are multiple states A can be in and the methods need to behave accordingly. One way is this:
class A
{
void Method1() {
if (A is in state 1) { do something }
else if (A is in state 2) { do something else }
...
}
};
That obviously isn't very optimal, if the methods are called many times. So a solution, which is simple to implement, would be to create several classes for different states:
class A
{
class State1 {
virtual void Method1(A& a) { do something; }
...
} State1Instance;
class State2 { ... }
...
};
And then manage a pointer to the object depending on current state (e.g. State1Instance) and call methods of this object. That avoids the CPU consuming condition.
BUT the State# methods also receive the completely useless "this" pointer to the State object. Is there a way to avoid this? I know the difference is minimal, but I'm trying to make this as optimal as possible and using a CPU register for a completely pointless value is not ideal. This would actually be a good use for "virtual static", which is forbidden however.
Just use good old function pointers if you're really concerned about the repeated branches, which usually you shouldn't.
struct A
{
using StateFn = void (*)(A&);
static void State1(A& a) { a.i = 42; }
static void State2(A& a) { a.i = 420; }
void Method1() { s(*this); }
StateFn s = State1;
int i;
};
If you have multiple methods associated with each state, a table of methods can be constructed as such
struct A
{
static void State1M1(A& a) { a.i = 42; }
static void State2M1(A& a) { a.i = 420; }
static int State1M2(A& a) { return a.i * 42; }
static int State2M2(A& a) { return a.i * 420; }
// The naming sucks, you should find something better
static constexpr struct {
void (*Method1)(A&);
int (*Method2)(A&);
} State[] = {{State1M1, State1M2}, {State2M1, State2M2}};
void Method1() { State[s].Method1(*this); }
int Method2() { return State[s].Method2(*this); }
int s, i;
};
I'm curious if this is even a speedup over a switch statement, do benchmark before you adopt it. You really aren't doing something too different from polymorphism, in a rather un-optimized manner, when you start constructing a method table like in the second case.
If you really want to go with this, use free or static functions, not polymorphy, and encapsulate them with ::std::function. You can even use lambdas, here.
class A {
public:
::std::function<void(A*)> state = func1;
static void func1(A* that) {
::std::cout << "func1\n";
that->state = func2;
}
static void func2(A* that) {
::std::cout << "func2\n";
that->state = [](A* that) { ::std::cout << "lambda\n"; that->state = func1; };
}
public:
void method() {
state(this);
}
};
However, in most cases a switch or else if block would be better as it can be optimised by the compiler, which may translate it into a jump table. If in doubt, benchmark it!
One of the most versatile solutions available out of the box in c++17, and courtesy of boost prior is the variant type and the concept of a static_visitor.
Using c++14 and boost::variant I have created a very simple state machine that uses type-based switching of code paths plus automatic catching of un-accounted-for state/event combinations.
For a fuller solution I would refer you to the boost fsm header-only library.
#include <boost/variant.hpp>
#include <iostream>
#include <typeinfo>
struct event1 {
};
struct event2 {
};
struct state_machine {
struct state1 {
};
struct state2 {
};
struct state3 {
};
using state_type = boost::variant<state1, state2, state3>;
struct handle_event {
// default case for event/state combinations we have not coded for
template<class SM, class State, class Event>
void operator()(SM &sm, State &state, Event const&event) const {
std::cout << "unhandled event "
"state=" << typeid(state).name() << " "
"event=" << typeid(event).name() << std::endl;
}
template<class SM>
void operator()(SM &sm, state1 &state, event1 const&event) const {
std::cout << "received event1 while in state1 - switching to state 2" << std::endl;
sm.change_state(state2());
}
template<class SM>
void operator()(SM &sm, state2 &state, event2 const&event) const {
std::cout << "received event2 while in state2 - switching to state 1" << std::endl;
sm.change_state(state1());
}
template<class SM>
void operator()(SM &sm, state1 &state, event2 const&event) const {
std::cout << "received event2 while in state1 - switching to state 3" << std::endl;
sm.change_state(state3());
}
};
template<class Event>
auto notify_event(Event const&evt) {
return boost::apply_visitor([this, &evt](auto& state)
{
handle_event()(*this, state, evt);
}, state_);
}
template<class NewState>
void change_state(NewState&& ns) {
state_ = std::forward<NewState>(ns);
}
private:
state_type state_ = state1{};
};
int main()
{
state_machine sm {};
sm.notify_event(event1());
sm.notify_event(event2());
sm.notify_event(event2());
// we have not coded for this one
sm.notify_event(event2());
}
example output (exact output will depend on compiler ABI):
received event1 while in state1 - switching to state 2
received event2 while in state2 - switching to state 1
received event2 while in state1 - switching to state 3
unhandled event state=N13state_machine6state3E event=6event2

How to work around C++ pointer-to-member function limitation

C++ has limited ability to use pointer-to-member functions. I need something that will allow me to dynamically choose a callback member function, in order to use the Visitor pattern of the XMLNode::Accept(XMLVisitor *visitor) method from the TinyXML2 library.
To use XMLNode::Accept(), I must call it with a class which implements the XMLVisitor interface. Hence:
typedef bool (*Callback)(string, string);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText());
}
Callback callback;
}
This works fine if my caller is NOT an object which wants to use one of its own methods as a callback function (so that it can access class variables). For example, this works:
bool myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int main(...) {
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
}
However, in my use case, the parsing is done inside a method in a class. I have multiple applications which have similar but unique such classes. I'd like to use only one generic MyVisitor class, rather than have the visitor class have unique knowledge of the internals of each class which will call it.
Thus, it would be convenient if the callback function were a method in each calling class so that I can affect the internal state of the object instantiated from that calling class.
Top level: I have 5 server applications which talk to 5 different trading partners, who all send XML responses, but each is enough different that each server app has a class which is unique to that trading partner. I'm trying to follow good OO and DRY design, and avoid extra classes having unique knowledge while still doing basically the same work.
Here's the class method I want Accept() to call back.
ServiceClass::changeState(string elem, string value) {
// Logic which sets member vars based on element found and its value.
}
Here's the class method which will call Accept() to walk the XML:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
MyVisitor visit;
visit.callback = &changeState; // ERROR. Does not work.
visit.callback = &ServiceClass::changeState; // ERROR. Does not work.
doc.Accept(&visit);
}
What's a simple way to get what I want? I can imagine more classes with derived classes unique to each situation, but that seems extremely verbose and clumsy.
Note: In the interest of brevity, my sample code above has no error checking, no null checking and may even have minor errors (e.g. treating const char * as a string ;-).
Below is the std::bind(..) example for what you're trying to do in C++11. For earlier C++ versions you could use the boost::bind utilities.
Fix your MyVisitor::VisitExit(...) method to return a boolean, by the way.
The code is converting const char * to std::string. tinyxml2 does not guarantee that the char * arguments from Name() or GetText() are not null. In fact in my experience they will be null at some point. You should guard against this. For the sake of not modifying your example too much I've not protected against this possibility everywhere in the example.
typedef bool(*Callback)(string, string);
using namespace std;
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
// return callback(e.Name(), e.GetText());
return true;
}
Callback callback;
};
/** Typedef to hopefully save on confusing syntax later */
typedef std::function< bool(const char * element_name, const char * element_text) > visitor_fn;
class MyBoundVisitor : public tinyxml2::XMLVisitor {
public:
MyBoundVisitor(visitor_fn fn) : callback(fn) {}
bool VisitExit(const tinyxml2::XMLElement &e) {
return callback(e.Name() == nullptr ? "\0" : e.Name(), e.GetText() == nullptr ? "\0": e.GetText());
}
visitor_fn callback;
};
bool
myCallBackFunc(string e, string v) {
cout << "Element " << e << " has value " << v << endl;
return true;
}
int
main()
{
tinyxml2::XMLDocument doc;
doc.LoadFile("somefile.xml");
MyVisitor visit;
visit.callback = myCallBackFunc;
doc.Accept(&visit);
visitor_fn fn = myCallBackFunc; // copy your function pointer into the std::function<> type
MyBoundVisitor visit2(fn); // note: declare this outside the Accept(..) , do not use a temporary
doc.Accept(&visit2);
}
So from within the ServiceClass method you'd do:
ServiceClass::processResponse(string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
// presuming changeState(const char *, const char *) here
visitor_fn fn = std::bind(&ServiceClass::changeState,this,std::placeholders::_1,std::placeholders::_2);
MyBoundVisitor visit2(fn); // the method pointer is in the fn argument, together with the instance (*this) it is a method for.
doc.Accept(&visit);
}
You can use generics in order to support whichever callback you'd like.
I've tried to mock the classes of the library in order to give you a fully runnable example:
#include <string>
#include <iostream>
#include <functional>
class XmlNode {
public:
XmlNode(const std::string& n, const std::string t) : name(n), txt(t) {}
const std::string& Name() const { return name; }
const std::string& GetText() const { return txt; }
private:
std::string name;
std::string txt;
};
class XMLVisitor {
public:
virtual void VisitExit(const XmlNode& node) = 0;
virtual ~XMLVisitor() {}
};
template<typename T>
class MyVisitor : XMLVisitor {
public:
MyVisitor() {}
void myInnerPrint(const XmlNode& node) {
std::cout << "MyVisitor::myInnerPrint" << std::endl;
std::cout << "node.Name(): " << node.Name() << std::endl;
std::cout << "node.GetText(): " << node.GetText() << std::endl;
}
void SetCallback(T newCallback) {
callback = newCallback;
}
virtual void VisitExit(const XmlNode& node) {
callback(node);
}
T callback;
};
int main() {
XmlNode node("In", "Member");
MyVisitor<std::function<void(const XmlNode&)>> myVisitor;
auto boundCall =
[&myVisitor](const XmlNode& node) -> void {
myVisitor.myInnerPrint(node);
};
myVisitor.SetCallback(boundCall);
myVisitor.VisitExit(node);
return 0;
}
First define a template and a helper function:
namespace detail {
template<typename F>
struct xml_visitor : tinyxml2::XMLVisitor {
xml_visitor(F&& f) : f_(std::move(f)) {}
virtual void VisitExit(const tinyxml2::XMLElement &e) {
f_(e);
}
private:
F f_;
};
}
template<class F>
auto make_xml_visitor(F&& f)
{
return detail::xml_visitor<std::decay_t<F>>(std::forward<F>(f));
}
Then use the helper function to construct a custom visitor from a lambda which captures this:
void ServiceClass::processResponse(std::string xml) {
// Parse XML and do something only if certain elements present.
tinyxml2::XMLDocument doc;
doc.Parse(xml.c_str(), xml.length());
auto visit = make_xml_visitor([this](const auto& elem)
{
this->changeState(elem.Name(), elem.GetText);
});
doc.Accept(std::addressof(visit));
}
The rule is that a function pointer must always accept a void * which is passed in to the module which calls it, and passed back. Or use a lambda which is the same thing with some of the machinery automated for you. (The void * is the "closure").
So
typedef bool (*Callback)(string, string, void *context);
class MyVisitor : public tinyxml2::XMLVisitor {
public:
bool VisitExit(const tinyxml2::XMLElement &e) {
callback(e.Name(), e.GetText(), contextptr);
}
Callback callback;
void *contextptr;
}
bool myCallBackFunc(string e, string v, void *context) {
ServiceClass *service = (ServiceClass *) context;
cout << "Element " << e << " has value " << v << endl;
service->ChangeState(e, v);
return true;
}

Accessing variables shared between classes within an aggregator class

I have a problem in hand which requires to make a very modular design for different algorithms. For example population based optimization algorithms like genetic algorithm, particle swarm algorithm etc. There are several variants of these algorithms, therefore I planned to make the smaller building blocks as an abstract class and let the specific building block to be plugged in.
For example lets say we have algo1 which can be divided in the following subroutines
algo1
loop
{
sub1 ()
sub2 ()
sub3 ()
}
For this I can create three interfaces which the implementation will override as per their implementation. Therefore
//Sub1Class, Sub2Class, Sub3Class are interfaces/abstract classes
class algo1
{
sub1Class *sub1Obj;
sub2Class *sub2Obj;
sub3Class *sub3Obj;
}
// constructor or setter method to set the implementation
algo1 (Sub1Class *myAlgo1Obj, Sub2Class myAlgo1Obj, Sub3Class myAlgo1Obj)
{
sub1Obj = myAlgo1Obj;
sub2Obj = myAlgo2Obj;
sub3Obj = myAlgo3Obj;
}
doAlgo1
{
loop
{
sub1Obj->algo ();
sub2Obj->algo ();
sub3Obj->algo ();
}
}
This can be done, but all the algorithms uses the attributes of the algo class and there are intermediate variables shared by the algorithms which I do not want to give a getter/setter.
My question is what are the techniques which can be used to manage the shared intermediate variables between the algorithms. I can pass it as the algo method implementation argument, but the number of intermediates and the types may change from one implementation to another. In that case will it be a good idea to create a separate class of temporary variable or make something like friend in cpp? Note that the intermediate results can be large vectors and matrices.
Please let me know if you need more information or clarification.
NOTE: I can possibly omit the variables shared between the algorithms by introducing locals and re-computation, but the algorithms are iterative and computation intensive involving large matrices therefore I want to make object creation and destruction as minimum as possible.
I can propose to use Inverse of Control container to solve your problem.
First you should create several abstract classes to keep it in the container:
class ISubroutineState {
public:
ISubroutineState() = default;
virtual int getVar1() const = 0;
virtual void setVar1(int v1) = 0;
};
class ISubroutineState1 : public ISubroutineState {
public:
virtual std::string getVar2() const = 0;
virtual void setVar2(std::string& v2) = 0;
};
The example of the subroutine state class implementation:
class SubState1 : public ISubroutineState1 {
int var1;
std::string var2;
public:
int getVar1() const {
return var1;
}
std::string getVar2() const {
return var2;
}
void setVar1(int v1) { var1 = v1; }
void setVar2(std::string& v) { var2 = v; }
};
The the IoC container (please note it can be accessed in any way allowed - i used just static pointer for simplicity):
class StateBroker
{
std::map<const char*, ISubroutineState*> *storage;
public:
StateBroker();
template <class S>
void StateBroker::bind(S* state) {
storage->emplace(typeid(S).name(), state);
}
template <class S>
S* StateBroker::get() const {
auto found = storage->find(typeid(S).name());
if (found == storage->end()) return NULL;
return (S*)found->second;
}
~StateBroker();
};
StateBroker* stateBroker;
Now you can implement any type of the subroutines:
class ISubroutine {
public:
virtual void Execute() = 0;
};
class Sub1Class : public ISubroutine {
public:
void Execute()
{
if (stateBroker == NULL)
{
std::cout << "Sub1 called" << std::endl;
}
else {
ISubroutineState1* ss1 = stateBroker->get<ISubroutineState1>();
std::cout << "Sub1 with state called" << std::endl;
ss1->setVar1(1);
ss1->setVar2(std::string("State is changed by Sub1Class"));
std::cout << *static_cast<SubState1*>(ss1) << std::endl;
}
}
};
class Sub2Class : public ISubroutine {
public:
void Execute()
{
if (stateBroker == NULL)
{
std::cout << "Sub2 called" << std::endl;
}
else {
ISubroutineState* ss1 = stateBroker->get<ISubroutineState>();
std::cout << "Sub2 with state called" << std::endl;
ss1->setVar1(2);
std::cout << *static_cast<SubState1*>(ss1) << std::endl;
}
}
};
class Sub3Class : public ISubroutine {
public:
void Execute()
{
if (stateBroker == NULL)
{
std::cout << "Sub3 called" << std::endl;
}
else {
ISubroutineState1* ss1 = stateBroker->get<ISubroutineState1>();
std::cout << "Sub3 with state called" << std::endl;
ss1->setVar1(3);
ss1->setVar2(std::string("State is changed by Sub3Class"));
std::cout << *static_cast<SubState1*>(ss1) << std::endl;
}
}
};
Also please note that subroutine' Execute() can request any type of subroutine state it requires to perform their tasks. It can even create additional state instances (to use in later stage of the algorithm, for example).
Now the main algorithm would look like this:
class Algo {
private:
Sub1Class* sub1;
Sub2Class* sub2;
Sub3Class* sub3;
public:
Algo(Sub1Class* s1, Sub2Class* s2, Sub3Class* s3) : sub1(s1), sub2(s2), sub3(s3){}
void Execute()
{
sub1->Execute();
sub2->Execute();
sub3->Execute();
}
};
... and it's usage (please note it can be used as stateless and as statefull depending on the fact the StateBroker is initialized or not)
Sub1Class s1;
Sub2Class s2;
Sub3Class s3;
std::cout << "Stateless algorithm" << std::endl;
Algo mainAlgo(&s1, &s2, &s3);
mainAlgo.Execute();
stateBroker = new StateBroker();
SubState1* state = new SubState1();
stateBroker->bind<ISubroutineState>(state);
stateBroker->bind<ISubroutineState1>(state);
std::cout << "Statefull algorithm" << std::endl;
Algo statefulAlgo(&s1, &s2, &s3);
statefulAlgo.Execute();
Please note that Algo class doesn't know anything about subroutine states, state broker, etc.; Sub2Class doesn't know about ISubroutineState1; and StateBroker doesn't care about state and subroutine implementation.
BTW, you can review the example project at https://github.com/ohnefuenfter/cppRestudy (VS2015)

Implementing Observer pattern when observers wish to observe different items

Below I have attempted to write a sudo code for the Observer pattern when observers wish to observe different items.
Ignore the syntax errors. I wish to know if this is the correct way to implement this. If not, please suggest better ways.
// Used by the subject for keeping a track of what items the observer wants to observe
typedef struct observerListStruct
{
bool getTemperatureUpdate;
bool getHumidityUpdate;
bool getPressureUpdate;
observer's-function pointer's address;
};
// Subject's class
class weatherData
{
public:
// Observers will call this function to register themselves. The function pointer will point to the function which will get called when updates are available.
void registerObservers (observer obj, observer's-FunctionPointer)
{
// This observer's function returns which items to observe.
char* f = obj.returnItemsToObserve ();
if f[0] = `1`
observerListStruct.getTemperatureUpdate = true;
}
void unregisterObservers (observer obj) {}
private:
vector <observerListStruct> observerList;
float temperature;
float humidity;
float pressure;
void notifyObservers () {}
float getTemperature () {}
float getHumidity () {}
float getPressure () {}
} weatherDataObject;
// Base class for observers containing common functions
class observers
{
char ItemsToObserve [3] = {1, 2, 3};
// This observer's function returns which items to observe. Default - return all items
virtual char* returnItemsToObserve ()
{
return ItemsToObserve;
}
};
class observerDisplayElementCurrentConditions : public observers
{
char ItemsToObserve [3] = {1, 2};
char* returnItemsToObserve ()
{
return ItemsToObserve;
}
// this function will be used as a function pointer for getting updates
void getUpdatesAndDisplayWeatherData (float, float) {}
};
A more pattern oriented solution (but without function pointers) could be the following. You could parametrize the WeatherObserver-Class to get only the values, you want.
#include <list>
#include <iostream>
class Observable; //forward declaration
//Base class for all observers
class Observer {
friend class Observable; //allow access to observedSubject
protected:
Observable *observedSubject;
public:
virtual void update(){};
};
//Base class for all observables
class Observable {
private:
std::list<Observer * const> m_registeredObservers;
public:
~Observable()
{
//delete the observers
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
delete *it;
it = m_registeredObservers.erase(it);
}
}
void addObserver(Observer * const _pObserver)
{
_pObserver->observedSubject = this;
m_registeredObservers.push_back(_pObserver);
}
void removeObserver(Observer * const _pObserver)
{
m_registeredObservers.remove(_pObserver);
delete _pObserver;
}
void notifyObservers()
{
std::list<Observer * const>::iterator it = m_registeredObservers.begin();
while (it != m_registeredObservers.end())
{
(*it)->update();
it++;
}
}
};
//Concrete Observable
class WeatherData : public Observable {
private:
float temperature;
float humidity;
float pressure;
public:
WeatherData(): temperature(0), humidity(0), pressure(0)
{};
float getTemperature () const
{
return temperature;
}
float getHumidity () const
{
return humidity;
}
float getPressure () const
{
return pressure;
}
void setTemperature(float _temperature)
{
if (temperature != _temperature)
{
temperature = _temperature;
notifyObservers();
}
}
void setHumidity(float _humidity)
{
if (humidity != _humidity)
{
humidity = _humidity;
notifyObservers();
}
}
void setPressure(float _pressure)
{
if (pressure != _pressure)
{
pressure = _pressure;
notifyObservers();
}
}
};
//Concrete implementation of an weather observer
class WeatherObserver : public Observer
{
public:
WeatherObserver():Observer(){};
void update()
{
WeatherData* pWeatherPtr = static_cast<WeatherData*>(observedSubject);
if (pWeatherPtr != 0)
{
float actHumidity = pWeatherPtr->getHumidity();
float actPressure = pWeatherPtr->getPressure();
float actTemperature = pWeatherPtr->getTemperature();
//do something with the data
std::cout << "WeatherObserver update" << std::endl;
std::cout << "Temperature : " << actTemperature << std::endl;
std::cout << "Humidity : " << actHumidity << std::endl;
std::cout << "Pressure : " << actPressure << std::endl;
}
}
};
int main()
{
WeatherData weatherData;
Observer * pObserver = new WeatherObserver();
weatherData.addObserver(pObserver);
weatherData.setHumidity(100);
weatherData.setTemperature(100);
}
#include <algorithm>
#include <vector>
class WeatherFlags
{
public:
WeatherFlags()
: mask_(0)
{}
union {
struct {
unsigned int temperature_ : 1;
unsigned int humidity_ : 1;
unsigned int pressure_ : 1;
};
unsigned int mask_;
};
};
class WeatherData;
class WeatherEvent
{
public:
WeatherEvent(WeatherData* data, WeatherFlags const& flags)
: data_(data)
, flags_(flags)
{}
double getTemperature() const;
WeatherData* data_;
WeatherFlags flags_;
};
class WeatherListener
{
public:
virtual ~WeatherListener() = 0;
virtual void onWeatherUpdate(WeatherEvent& e) = 0;
};
inline WeatherListener::~WeatherListener() {}
class WeatherListenerEntry
{
public:
WeatherListenerEntry()
: listener_(0)
{}
WeatherListenerEntry(WeatherListener* listener, WeatherFlags const& flags)
: listener_(listener)
, flags_(flags)
{}
WeatherListener* listener_;
WeatherFlags flags_;
};
class WeatherData
{
public:
WeatherData();
void addListener(WeatherListener* listener, WeatherFlags const& flags);
void removeListener(WeatherListener* listener);
void notify(WeatherFlags const& flags);
double getTemperature() const { return temperature_; }
private:
typedef std::vector<WeatherListenerEntry> Listeners;
Listeners listeners_;
double temperature_;
};
WeatherData::WeatherData()
: temperature_(0)
{}
void WeatherData::addListener(WeatherListener* listener, WeatherFlags const& flags)
{
// TODO Could maybe check for the addition of duplicates here...
listeners_.push_back(WeatherListenerEntry(listener, flags));
}
void WeatherData::removeListener(WeatherListener* listener)
{
struct ListenerEquals {
WeatherListener* listener_;
ListenerEquals(WeatherListener* listener)
: listener_(listener)
{}
bool operator()(WeatherListenerEntry const& e) const {
return (e.listener_ == listener_);
}
};
listeners_.erase(
std::remove_if(listeners_.begin(), listeners_.end(), ListenerEquals(listener)),
listeners_.end());
}
void WeatherData::notify(WeatherFlags const& flags)
{
WeatherEvent evt(this, flags);
for (Listeners::iterator i = listeners_.begin(); i != listeners_.end(); ++i)
{
if (0 != (i->flags_.mask_ & flags.mask_)) {
i->listener_->onWeatherUpdate(evt);
}
}
}
double
WeatherEvent::getTemperature() const
{
return data_->getTemperature();
}
#include <iostream>
class WeatherObserverStdout : public WeatherListener
{
public:
void observe(WeatherData& data) {
WeatherFlags flags;
flags.temperature_ = true; // interested in temperature only.
data.addListener(this, flags);
}
virtual void onWeatherUpdate(WeatherEvent& e);
};
void
WeatherObserverStdout::onWeatherUpdate(WeatherEvent& e)
{
double temp = e.getTemperature();
std::cout << "Temperatrure: " << temp << std::endl;
}
int _tmain(int argc, _TCHAR* argv[])
{
WeatherData wdata;
WeatherObserverStdout obs;
obs.observe(wdata);
WeatherFlags flags;
wdata.notify(flags);
flags.temperature_ = true;
wdata.notify(flags);
return 0;
}
I think it is easier, and more scalable, to define a set of event types that each observer can listen to. Then you register the observer to listen to that particular event type. The observed then keeps a list of observers registered for each event, and notifies them if and when the event occurs. Using a combination of std::function, std::bind (or boost equivalents), it is easy to register callbacks for a given event type. You could put the callbacks in a map of event type to callback.
For example, something along these lines (almost pseudo-code, has not been tested)
class Publisher {
public :
void subscribe(const std::string& event,
std::function<void(double)> callback) {
m_subscribers[s].push_back(callback);
}
void publish(const std::string& event) const {
for (auto& f : m_subscribers[event]) f( some double );}
void event(const std::string& event) const { publish(event);}
private:
// map of event types (here simply strings) to list of callbacks
std::map<std::string&,
std::list<std::function<void(const std::string&)>>> m_subscribers;
};
struct Foo {
void foo(double x) {
std::cout << "Foo received message: " << x << "\n";
}
};
struct Bar {
void bar(double x) {
std::cout << "Bar received message: " << x << "\n";
}
};
int main() {
Publisher pub;
Foo f0;
Foo f1;
Bar bar0;
pub.subscribe("RED", std::bind(&Foo::foo, &foo0, _1));
pub.subscribe("GREEN", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("WHITE", std::bind(&Foo::foo, &foo1, _1));
pub.subscribe("RED", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("BLUE", std::bind(&Bar::bar, &bar0, _1));
pub.subscribe("MAGENTA", std::bind(&Bar::bar, &bar0, _1));
// trigger a "GREEN" event
pub.event("GREEN");
}
Here, the observers (or subscribers) register to some events, represented by strings here, and their registered callbacks get called when this event happens. In the example above I manually trigger an event to illustrate the mechanism.
This event-callback mechanism allows to decouple the actual items from the callback action. The Observed (or publisher) knows what parameter to pass the callback for a given event, and which callbacks to call, so the observers are not dependent on the internal data of the observed object.
I write a lot of C++ code and needed to create an Observer for some game components I was working on. I needed something to distribute "start of frame", "user input", etc., as events in the game to interested parties.
I also wanted more granularity in the events that could be handled. I have a lot of little things that go off...I don't need to have the parts that are interested in resetting for the next frame worried about a change in the user input.
I also wanted it to be straight C++, not dependent on the platform or a specific technology (such as boost, Qt, etc.) because I often build and re-use components (and the ideas behind them) across different projects.
Here is the rough sketch of what I came up with as a solution:
The Observer is a singleton with keys (enumerated values, not strings; this is a speed tradeoff since the keys are not searched hashed, but it means no easy "string" names and you have to define them ahead of time) for Subjects to register interest in. Because it is a singleton, it always exists.
Each subject is derived from a common base class. The base class has an abstract virtual function Notify(...) which must be implemented in derived classes, and a destructor that removes it from the Observer (which it can always reach) when it is deleted.
Inside the Observer itself, if Detach(...) is called while a Notify(...) is in progress, any detached Subjects end up on a list.
When Notify(...) is called on the Observer, it creates a temporary copy of the Subject list. As it iterates over it, it compare it to the recently detached. If the target is not on it, Notify(...) is called on the target. Otherwise, it is skipped.
Notify(...) in the Observer also keeps track of the depth to handle cascading calls (A notifies B, C, D, and the D.Notify(...) triggers a Notify(...) call to E, etc.)
This is what the interface ended up looking like:
/*
The Notifier is a singleton implementation of the Subject/Observer design
pattern. Any class/instance which wishes to participate as an observer
of an event can derive from the Notified base class and register itself
with the Notiifer for enumerated events.
Notifier derived classes MUST implement the notify function, which has
a prototype of:
void Notify(const NOTIFIED_EVENT_TYPE_T& event)
This is a data object passed from the Notifier class. The structure
passed has a void* in it. There is no illusion of type safety here
and it is the responsibility of the user to ensure it is cast properly.
In most cases, it will be "NULL".
Classes derived from Notified do not need to deregister (though it may
be a good idea to do so) as the base class destructor will attempt to
remove itself from the Notifier system automatically.
The event type is an enumeration and not a string as it is in many
"generic" notification systems. In practical use, this is for a closed
application where the messages will be known at compile time. This allows
us to increase the speed of the delivery by NOT having a
dictionary keyed lookup mechanism. Some loss of generality is implied
by this.
This class/system is NOT thread safe, but could be made so with some
mutex wrappers. It is safe to call Attach/Detach as a consequence
of calling Notify(...).
*/
class Notified;
class Notifier : public SingletonDynamic<Notifier>
{
public:
typedef enum
{
NE_MIN = 0,
NE_DEBUG_BUTTON_PRESSED = NE_MIN,
NE_DEBUG_LINE_DRAW_ADD_LINE_PIXELS,
NE_DEBUG_TOGGLE_VISIBILITY,
NE_DEBUG_MESSAGE,
NE_RESET_DRAW_CYCLE,
NE_VIEWPORT_CHANGED,
NE_MAX,
} NOTIFIED_EVENT_TYPE_T;
private:
typedef vector<NOTIFIED_EVENT_TYPE_T> NOTIFIED_EVENT_TYPE_VECTOR_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T> NOTIFIED_MAP_T;
typedef map<Notified*,NOTIFIED_EVENT_TYPE_VECTOR_T>::iterator NOTIFIED_MAP_ITER_T;
typedef vector<Notified*> NOTIFIED_VECTOR_T;
typedef vector<NOTIFIED_VECTOR_T> NOTIFIED_VECTOR_VECTOR_T;
NOTIFIED_MAP_T _notifiedMap;
NOTIFIED_VECTOR_VECTOR_T _notifiedVector;
NOTIFIED_MAP_ITER_T _mapIter;
// This vector keeps a temporary list of observers that have completely
// detached since the current "Notify(...)" operation began. This is
// to handle the problem where a Notified instance has called Detach(...)
// because of a Notify(...) call. The removed instance could be a dead
// pointer, so don't try to talk to it.
vector<Notified*> _detached;
int32 _notifyDepth;
void RemoveEvent(NOTIFIED_EVENT_TYPE_VECTOR_T& orgEventTypes, NOTIFIED_EVENT_TYPE_T eventType);
void RemoveNotified(NOTIFIED_VECTOR_T& orgNotified, Notified* observer);
public:
virtual void Reset();
virtual bool Init() { Reset(); return true; }
virtual void Shutdown() { Reset(); }
void Attach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for a specific event
void Detach(Notified* observer, NOTIFIED_EVENT_TYPE_T eventType);
// Detach for ALL events
void Detach(Notified* observer);
/* The design of this interface is very specific. I could
* create a class to hold all the event data and then the
* method would just have take that object. But then I would
* have to search for every place in the code that created an
* object to be used and make sure it updated the passed in
* object when a member is added to it. This way, a break
* occurs at compile time that must be addressed.
*/
void Notify(NOTIFIED_EVENT_TYPE_T, const void* eventData = NULL);
/* Used for CPPUnit. Could create a Mock...maybe...but this seems
* like it will get the job done with minimal fuss. For now.
*/
// Return all events that this object is registered for.
vector<NOTIFIED_EVENT_TYPE_T> GetEvents(Notified* observer);
// Return all objects registered for this event.
vector<Notified*> GetNotified(NOTIFIED_EVENT_TYPE_T event);
};
/* This is the base class for anything that can receive notifications.
*/
class Notified
{
public:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const void* eventData) = 0;
virtual ~Notified();
};
typedef Notifier::NOTIFIED_EVENT_TYPE_T NOTIFIED_EVENT_TYPE_T;
NOTE: The Notified class has a single function, Notify(...) here. Because the void* is not type safe, I created other versions where notify looks like:
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, int value);
virtual void Notify(Notifier::NOTIFIED_EVENT_TYPE_T eventType, const string& str);
Corresponding Notify(...) methods were added to the Notifier itself. All these used a single function to get the "target list" then called the appropriate function on the targets. This works well and keeps the receiver from having to do ugly casts.
This seems to work well. The solution is posted on the web here along with the source code. This is a relatively new design, so any feedback is greatly appreciated.
My two cents...
Classic (Gang of Four) implementation of Observer pattern notifies observer on changes in any property of the subject. In your question you want to register observer to particular properties, not to a subject as a whole. You can move Observer pattern one level down and take properties as concrete subjects and define their observers (per property) but there is one nicer way to solve this problem.
In C# Observer pattern is implemented through events and delegates. Delegates represent event handlers - functions that should be executed when an event is fired. Delegates can be added (registered) or removed(unregistered) from events.
In C++, functors act as delegates - they can store all necessary information to call some global function or class method in a different context. Events are collections of (registered) functors and when event is raised (called) it basically goes through that list and calls all functors (see Publisher::publish method in juanchopanza's solution).
I tried to implement C++ version of events and delegates and use them in modified Observer pattern which could be applied in your case. This is what I came up with:
#include <list>
#include <iostream>
#include <algorithm>
// use base class to resolve the problem of how to put into collection objects of different types
template <typename TPropertyType>
struct PropertyChangedDelegateBase
{
virtual ~PropertyChangedDelegateBase(){};
virtual void operator()(const TPropertyType& t) = 0;
};
template <typename THandlerOwner, typename TPropertyType>
struct PropertyChangedDelegate : public PropertyChangedDelegateBase<TPropertyType>
{
THandlerOwner* pHandlerOwner_;
typedef void (THandlerOwner::*TPropertyChangeHandler)(const TPropertyType&);
TPropertyChangeHandler handler_;
public:
PropertyChangedDelegate(THandlerOwner* pHandlerOwner, TPropertyChangeHandler handler) :
pHandlerOwner_(pHandlerOwner), handler_(handler){}
void operator()(const TPropertyType& t)
{
(pHandlerOwner_->*handler_)(t);
}
};
template<typename TPropertyType>
class PropertyChangedEvent
{
public:
virtual ~PropertyChangedEvent(){};
void add(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
throw std::runtime_error("Observer already registered");
observers_.push_back(d);
}
void remove(PropertyChangedDelegateBase<TPropertyType>* const d)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = std::find(observers_.begin(), observers_.end(), d);
if(it != observers_.end())
observers_.remove(d);
}
// notify
void operator()(const TPropertyType& newValue)
{
std::list<PropertyChangedDelegateBase<TPropertyType>* const>::const_iterator it = observers_.begin();
for(; it != observers_.end(); ++it)
{
(*it)->operator()(newValue);
}
}
protected:
std::list<PropertyChangedDelegateBase<TPropertyType>* const> observers_;
};
// class that owns concrete subjects
class PropertyOwner1
{
int property1_;
float property2_;
public:
PropertyChangedEvent<int> property1ChangedEvent;
PropertyChangedEvent<float> property2ChangedEvent;
PropertyOwner1() :
property1_(0),
property2_(0.0f)
{}
int property1() const {return property1_;}
void property1(int n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner1::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
float property2() const {return property2_;}
void property2(float n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner1::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that owns concrete subjects
class PropertyOwner2
{
bool property1_;
double property2_;
public:
PropertyChangedEvent<bool> property1ChangedEvent;
PropertyChangedEvent<double> property2ChangedEvent;
PropertyOwner2() :
property1_(false),
property2_(0.0)
{}
bool property1() const {return property1_;}
void property1(bool n)
{
if(property1_ != n)
{
property1_ = n;
std::cout << "PropertyOwner2::property1(): property1_ set to " << property1_ << std::endl;
property1ChangedEvent(property1_);
}
}
double property2() const {return property2_;}
void property2(double n)
{
if(property2_ != n)
{
property2_ = n;
std::cout << "PropertyOwner2::property2(): property2_ set to " << property2_ << std::endl;
property2ChangedEvent(property2_);
}
}
};
// class that observes changes in property1 of PropertyOwner1 and property1 of PropertyOwner2
struct PropertyObserver1
{
void OnPropertyOwner1Property1Changed(const int& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner1Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property1Changed(const bool& newValue)
{
std::cout << "\tPropertyObserver1::OnPropertyOwner2Property1Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
// class that observes changes in property2 of PropertyOwner1 and property2 of PropertyOwner2
struct PropertyObserver2
{
void OnPropertyOwner1Property2Changed(const float& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner1Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
void OnPropertyOwner2Property2Changed(const double& newValue)
{
std::cout << "\tPropertyObserver2::OnPropertyOwner2Property2Changed(): \n\tnew value is: " << newValue << std::endl;
}
};
int main(int argc, char** argv)
{
PropertyOwner1 propertyOwner1;
PropertyOwner2 propertyOwner2;
PropertyObserver1 propertyObserver1;
PropertyObserver2 propertyObserver2;
// register observers
PropertyChangedDelegate<PropertyObserver1, int> delegate1(&propertyObserver1, &PropertyObserver1::OnPropertyOwner1Property1Changed);
propertyOwner1.property1ChangedEvent.add(&delegate1);
PropertyChangedDelegate<PropertyObserver2, float> delegate2(&propertyObserver2, &PropertyObserver2::OnPropertyOwner1Property2Changed);
propertyOwner1.property2ChangedEvent.add(&delegate2);
PropertyChangedDelegate<PropertyObserver1, bool> delegate3(&propertyObserver1, &PropertyObserver1::OnPropertyOwner2Property1Changed);
propertyOwner2.property1ChangedEvent.add(&delegate3);
PropertyChangedDelegate<PropertyObserver2, double> delegate4(&propertyObserver2, &PropertyObserver2::OnPropertyOwner2Property2Changed);
propertyOwner2.property2ChangedEvent.add(&delegate4);
propertyOwner1.property1(1);
propertyOwner1.property2(1.2f);
propertyOwner2.property1(true);
propertyOwner2.property2(3.4);
// unregister PropertyObserver1
propertyOwner1.property1ChangedEvent.remove(&delegate1);
propertyOwner2.property1ChangedEvent.remove(&delegate3);
propertyOwner1.property1(2);
propertyOwner1.property2(4.5f);
}
Output:
PropertyOwner1::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner1Property1Changed():
new value is: 1
PropertyOwner1::property2(): property2_ set to 1.2
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 1.2
PropertyOwner2::property1(): property1_ set to 1
PropertyObserver1::OnPropertyOwner2Property1Changed():
new value is: 1
PropertyOwner2::property2(): property2_ set to 3.4
PropertyObserver2::OnPropertyOwner2Property2Changed():
new value is: 3.4
PropertyOwner1::property1(): property1_ set to 2
PropertyOwner1::property2(): property2_ set to 4.5
PropertyObserver2::OnPropertyOwner1Property2Changed():
new value is: 4.5
Each observer is registered with a particular property and when notified, each observer knows exactly who is the owner of the property and what's property's new value.