How to reduce the time cost of parallel_for in DPC++? - c++

I've wrote the following code in DPC++ to test time consumption.
// ignore sth for defining subdevices
cl::sycl::queue q[4] = {cl::sycl::queue{SubDevices1[0]}, cl::sycl::queue{SubDevices1[1]},
cl::sycl::queue{SubDevices2[0]}, cl::sycl::queue{SubDevices2[1]}};
void run(){
for(int i = 0; i < 4; i++){
q[i].submit([&](auto &h) {
h.parallel_for(
sycl::nd_range<2>(sycl::range<2>(1, 1), sycl::range<2>(1, 1)),
[=](sycl::nd_item<2> it){
// just empty
}
);
});
}
}
It cost about 0.6s.
When testing for one queue with one parallel_for, it cost about 0.15s.
A more wired thing happened when testing
q[i].submit([&](auto &h) {h.memcpy(...);});
When the array copied is small, this command consumes nearly no time.
How to optimize the above code in run()? Very thanks!

If you run on different devices then all queues will execute parallelly.
If you want to run on a single device, you need to create a context for each queue then it will execute in a parallel manner.
context c1{};
queue q1{c1,gpu_selector()};

Related

OpenMP parallel only one thread seems to run at a time

I'm trying to parallelize the below for loop with OpenMP, however only one thread seems to be running at a time. I can tell this based on the below observations:
Normally when I have prints inside the loop, the output will be jumbled and lines will be mixed together, however here, all my outputs are printed cleanly, suggesting that only one thread is executing at a time.
There is some heavy dynamic programming computation going on inside the loop, however I only see CPU usage on one core in htop.
If I print the current thread number omp_get_thread_num() I only see one active thread at a time. e.g I see some iterations all from thread 4, then some iterations all from thread 3 and so on.
This only happens after a while. For the first few iterations, things seem to run in parallel.
I'm not sure if there is anything wrong with the code that prevents OpenMP from running two threads in parallel. Below is the for loop and the templates for the functions called inside it. The functions only work with what's passed into them and don't modify any other data structures.
I'm suspecting this may have something to do with the fact that I'm passing const references to things around, could that be the case?
// variables
string ref ; // read-only access
vector<vector<Cluster>> _clusters(24) ;
vector<Cluster> position_clusters = some_function() ;
#pragma omp parallel for num_threads(24) schedule(dynamic, 10)
for (int i = 0; i < position_clusters.size(); i++) {
auto& pc = position_clusters[i] ;
if (pc.size() < 2) {
continue ;
}
vector<Cluster> type_clusters = type_cluster(pc);
for (Cluster &tc : type_clusters) {
if (tc.size() < 2) {
continue ;
}
auto clusters = cluster_breakpoints(tc, 0.7) ; // dynamic programming
for (const Cluster &c : clusters) {
auto result = dynamic_programming(c, ref) ; // dynamic programming
_clusters[omp_get_thread_num()].push_back(result);
}
}
}
// Templates:
vector<Cluster> type_cluster(const Cluster &c) ;
vector<Cluster> cluster_breakpoints(Cluster& cluster, float ratio) ;
vector<Cluster> dynamic_programming(const Cluster& cluster, const string& ref) ;

TBB Parallel Pipeline seems to run in-order?

I am working on a data processing pipeline with some OpenCV code, after implementing my pipeline I found no speedup, also no slowdown. I am trying to investigate why this is so.
I came up with the following example:
int start = 0;
tbb::parallel_pipeline(16,
tbb::make_filter<void, int>(tbb::filter::serial_out_of_order, [&](tbb::flow_control& fc){
if(start < 1000) {
return start++;
}
fc.stop();
return start;
}) &
tbb::make_filter<int, int>(tbb::filter::parallel, [](int num){
std::cout << num << std::endl;
return num + 1;
}) &
tbb::make_filter<int, void>(tbb::filter::parallel, [](int num){
})
);
When this code executes, 1-1000 is printed sequentially. Is this correct behavior? Or do I have an issue with my environment?
Reordering is rather unlikely to be seen at the start of the second filter in practice.
The parallel_pipeline works in such a way that the same thread puts a given item through the pipeline for as long as possible (in your pipeline, all filters after the first are parallel, so the same thread will execute all three filters for an item). The overhead for a thread to move an item to the next filter is much less than what another thread needs to steal a task for the next item, process the first filter, and then also move to the second one. Reordering is still possible if e.g. the first thread is preempted by OS, but rather unlikely.
For better chances to observe out-of-order execution, move your print statements to the third filter and add some random amount of "work" to the second one, so that the time for it to process an item varies.

How to let different threads fill an array together?

Suppose I have some tasks (Monte Carlo simulations) that I want to run in parallel. I want to complete a given number of tasks, but tasks take different amount of time so not easy to divide the work evenly over the threads. Also: I need the results of all simulations in a single vector (or array) in the end.
So I come up with below approach:
int Max{1000000};
//SimResult is some struct with well-defined default value.
std::vector<SimResult> vec(/*length*/Max);//Initialize with default values of SimResult
int LastAdded{0};
void fill(int RandSeed)
{
Simulator sim{RandSeed};
while(LastAdded < Max)
{
// Do some work to bring foo to the desired state
//The duration of this work is subject to randomness
vec[LastAdded++]
= sim.GetResult();//Produces SimResult.
}
}
main()
{
//launch a bunch of std::async that start
auto fut1 = std::async(fill,1);
auto fut2 = std::async(fill,2);
//maybe some more tasks.
fut1.get();
fut2.get();
//do something with the results in vec.
}
The above code will give race conditions I guess. I am looking for a performant approach to avoid that. Requirements: avoid race conditions (fill the entire array, no skips) ; final result is immediately in array ; performant.
Reading on various approaches, it seems atomic is a good candidate, but I am not sure what settings will be most performant in my case? And not even sure whether atomic will cut it; maybe a mutex guarding LastAdded is needed?
One thing I would say is that you need to be very careful with the standard library random number functions. If your 'Simulator' class creates an instance of a generator, you should not run Monte Carlo simulations in parallel using the same object, because you'll get likely get repeated patterns of random numbers between the runs, which will give you inaccurate results.
The best practice in this area would be to create N Simulator objects with the same properties, and give each one a different random seed. Then you could pool these objects out over multiple threads using OpenMP, which is a common parallel programming model for scientific software development.
std::vector<SimResult> generateResults(size_t N_runs, double seed)
{
std::vector<SimResult> results(N_runs);
#pragma omp parallel for
for(auto i = 0; i < N_runs; i++)
{
auto sim = Simulator(seed + i);
results[i] = sim.GetResult();
}
}
Edit: With OpenMP, you can choose different scheduling models, which allow you to for e.g. dynamically split work between threads. You can do this with:
#pragma omp parallel for schedule(dynamic, 16)
which would give each thread chunks of 16 items to work on at a time.
Since you already know how many elements your are going to work with and never change the size of the vector, the easiest solution is to let each thread work on it's own part of the vector. For example
Update
to accomodate for vastly varying calculation times, you should keep your current code, but avoid race conditions via a std::lock_guard. You will need a std::mutex that is the same for all threads, for example a global variable, or pass a reference of the mutex to each thread.
void fill(int RandSeed, std::mutex &nextItemMutex)
{
Simulator sim{RandSeed};
size_t workingIndex;
while(true)
{
{
// enter critical area
std::lock_guard<std::mutex> nextItemLock(nextItemMutex);
// Acquire next item
if(LastAdded < Max)
{
workingIndex = LastAdded;
LastAdded++;
}
else
{
break;
}
// lock is released when nextItemLock goes out of scope
}
// Do some work to bring foo to the desired state
// The duration of this work is subject to randomness
vec[workingIndex] = sim.GetResult();//Produces SimResult.
}
}
Problem with this is, that snychronisation is quite expensive. But it's probably not that expensive in comparison to the simulation you run, so it shouldn't be too bad.
Version 2:
To reduce the amount of synchronisation that is required, you could acquire blocks to work on, instead of single items:
void fill(int RandSeed, std::mutex &nextItemMutex, size_t blockSize)
{
Simulator sim{RandSeed};
size_t workingIndex;
while(true)
{
{
std::lock_guard<std::mutex> nextItemLock(nextItemMutex);
if(LastAdded < Max)
{
workingIndex = LastAdded;
LastAdded += blockSize;
}
else
{
break;
}
}
for(size_t i = workingIndex; i < workingIndex + blockSize && i < MAX; i++)
vec[i] = sim.GetResult();//Produces SimResult.
}
}
Simple Version
void fill(int RandSeed, size_t partitionStart, size_t partitionEnd)
{
Simulator sim{RandSeed};
for(size_t i = partitionStart; i < partitionEnd; i++)
{
// Do some work to bring foo to the desired state
// The duration of this work is subject to randomness
vec[i] = sim.GetResult();//Produces SimResult.
}
}
main()
{
//launch a bunch of std::async that start
auto fut1 = std::async(fill,1, 0, Max / 2);
auto fut2 = std::async(fill,2, Max / 2, Max);
// ...
}

Boost Thread_Group in a loop is very slow

I wanted to use threading to run check multiple images in a vector at the same time. Here is the code
boost::thread_group tGroup;
for (int line = 0;line < sourceImageData.size(); line++) {
for (int pixel = 0;pixel < sourceImageData[line].size();pixel++) {
for (int im = 0;im < m_images.size();im++) {
tGroup.create_thread(boost::bind(&ClassX::ClassXFunction, this, line, pixel, im));
}
tGroup.join_all();
}
}
This creates the thread group and loops thru lines of pixel data and each pixel and then multiple images. Its a weird project but anyway I bind the thread to a method in the same instance of the class this code is in so "this" is used. This runs through a population of about 20 images, binding each thread as it goes and then when it is done looping the join_all function takes effect when the threads are done. Then it goes to the next pixel and starts over again.
I'v tested running 50 threads at the same time with this simple program
void run(int index) {
for (int i = 0;i < 100;i++) {
std::cout << "Index : " <<index<<" "<<i << std::endl;
}
}
int main() {
boost::thread_group tGroup;
for (int i = 0;i < 50;i++){
tGroup.create_thread(boost::bind(run, i));
}
tGroup.join_all();
int done;
std::cin >> done;
return 0;
}
This works very quickly. Even though the method the threads are bound to in the previous program is more complicated it shouldn't be as slow as it is. It takes like 4 seconds for one loop of sourceImageData (line) to complete. I'm new to boost threading so I don't know if something is blatantly wrong with the nested loops or otherwise. Any insight is appreciated.
The answer is simple. Don't start that many threads. Consider starting as many threads as you have logical CPU cores. Starting threads is very expensive.
Certainly never start a thread just to do one tiny job. Keep the threads and give them lots of (small) tasks using a task queue.
See here for a good example where the number of threads was similarly the issue: boost thread throwing exception "thread_resource_error: resource temporarily unavailable"
In this case I'd think you can gain a lot of performance by increasing the size of each task (don't create one per pixel, but per scan-line for example)
I believe the difference here is in when you decide to join the threads.
In the first piece of code, you join the threads at every pixel of the supposed source image. In the second piece of code, you only join the threads once at the very end.
Thread synchronization is expensive and often a bottleneck for parallel programs because you are basically pausing execution of any new threads until ALL threads that need to be synchronized, which in this case is all the threads that are active, are done running.
If the iterations of the innermost loop(the one with im) are not dependent on each other, I would suggest you join the threads after the entire outermost loop is done.

Mergesort pThread implementation taking same time as single-threaded

(I have tried to simplify this as much as i could to find out where I'm doing something wrong.)
The ideea of the code is that I have a global array *v (I hope using this array isn't slowing things down, the threads should never acces the same value because they all work on different ranges) and I try to create 2 threads each one sorting the first half, respectively the second half by calling the function merge_sort() with the respective parameters.
On the threaded run, i see the process going to 80-100% cpu usage (on dual core cpu) while on the no threads run it only stays at 50% yet the run times are very close.
This is the (relevant) code:
//These are the 2 sorting functions, each thread will call merge_sort(..). Is this a problem? both threads calling same (normal) function?
void merge (int *v, int start, int middle, int end) {
//dynamically creates 2 new arrays for the v[start..middle] and v[middle+1..end]
//copies the original values into the 2 halves
//then sorts them back into the v array
}
void merge_sort (int *v, int start, int end) {
//recursively calls merge_sort(start, (start+end)/2) and merge_sort((start+end)/2+1, end) to sort them
//calls merge(start, middle, end)
}
//here i'm expecting each thread to be created and to call merge_sort on its specific range (this is a simplified version of the original code to find the bug easier)
void* mergesort_t2(void * arg) {
t_data* th_info = (t_data*)arg;
merge_sort(v, th_info->a, th_info->b);
return (void*)0;
}
//in main I simply create 2 threads calling the above function
int main (int argc, char* argv[])
{
//some stuff
//getting the clock to calculate run time
clock_t t_inceput, t_sfarsit;
t_inceput = clock();
//ignore crt_depth for this example (in the full code i'm recursively creating new threads and i need this to know when to stop)
//the a and b are the range of values the created thread will have to sort
pthread_t thread[2];
t_data next_info[2];
next_info[0].crt_depth = 1;
next_info[0].a = 0;
next_info[0].b = n/2;
next_info[1].crt_depth = 1;
next_info[1].a = n/2+1;
next_info[1].b = n-1;
for (int i=0; i<2; i++) {
if (pthread_create (&thread[i], NULL, &mergesort_t2, &next_info[i]) != 0) {
cerr<<"error\n;";
return err;
}
}
for (int i=0; i<2; i++) {
if (pthread_join(thread[i], &status) != 0) {
cerr<<"error\n;";
return err;
}
}
//now i merge the 2 sorted halves
merge(v, 0, n/2, n-1);
//calculate end time
t_sfarsit = clock();
cout<<"Sort time (s): "<<double(t_sfarsit - t_inceput)/CLOCKS_PER_SEC<<endl;
delete [] v;
}
Output (on 1 million values):
Sort time (s): 1.294
Output with direct calling of merge_sort, no threads:
Sort time (s): 1.388
Output (on 10 million values):
Sort time (s): 12.75
Output with direct calling of merge_sort, no threads:
Sort time (s): 13.838
Solution:
I'd like to thank WhozCraig and Adam too as they've hinted to this from the beginning.
I've used the inplace_merge(..) function instead of my own and the program run times are as they should now.
Here's my initial merge function (not really sure if the initial, i've probably modified it a few times since, also array indices might be wrong right now, i went back and forth between [a,b] and [a,b), this was just the last commented-out version):
void merge (int *v, int a, int m, int c) { //sorts v[a,m] - v[m+1,c] in v[a,c]
//create the 2 new arrays
int *st = new int[m-a+1];
int *dr = new int[c-m+1];
//copy the values
for (int i1 = 0; i1 <= m-a; i1++)
st[i1] = v[a+i1];
for (int i2 = 0; i2 <= c-(m+1); i2++)
dr[i2] = v[m+1+i2];
//merge them back together in sorted order
int is=0, id=0;
for (int i=0; i<=c-a; i++) {
if (id+m+1 > c || (a+is <= m && st[is] <= dr[id])) {
v[a+i] = st[is];
is++;
}
else {
v[a+i] = dr[id];
id++;
}
}
delete st, dr;
}
all this was replaced with:
inplace_merge(v+a, v+m, v+c);
Edit, some times on my 3ghz dual core cpu:
1 million values:
1 thread : 7.236 s
2 threads: 4.622 s
4 threads: 4.692 s
10 million values:
1 thread : 82.034 s
2 threads: 46.189 s
4 threads: 47.36 s
There's one thing that struck me: "dynamically creates 2 new arrays[...]". Since both threads will need memory from the system, they need to acquire a lock for that, which could well be your bottleneck. In particular the idea of doing microscopic array allocations sounds horribly inefficient. Someone suggested an in-place sort that doesn't need any additional storage, which is much better for performance.
Another thing is the often-forgotten starting half-sentence for any big-O complexity measurements: "There is an n0 so that for all n>n0...". In other words, maybe you haven't reached n0 yet? I recently saw a video (hopefully someone else will remember it) where some people tried to determine this limit for some algorithms, and their results were that these limits are surprisingly high.
Note: since OP uses Windows, my answer below (which incorrectly assumed Linux) might not apply. I left it for sake of those who might find the information useful.
clock() is a wrong interface for measuring time on Linux: it measures CPU time used by the program (see http://linux.die.net/man/3/clock), which in case of multiple threads is the sum of CPU time for all threads. You need to measure elapsed, or wallclock, time. See more details in this SO question: C: using clock() to measure time in multi-threaded programs, which also tells what API can be used instead of clock().
In the MPI-based implementation that you try to compare with, two different processes are used (that's how MPI typically enables concurrency), and the CPU time of the second process is not included - so the CPU time is close to wallclock time. Nevertheless, it's still wrong to use CPU time (and so clock()) for performance measurement, even in serial programs; for one reason, if a program waits for e.g. a network event or a message from another MPI process, it still spends time - but not CPU time.
Update: In Microsoft's implementation of C run-time library, clock() returns wall-clock time, so is OK to use for your purpose. It's unclear though if you use Microsoft's toolchain or something else, like Cygwin or MinGW.