Fragments with different depth are blended - opengl

I am wondering about the rendering behavior. I am rendering text mesh "orange" and rectangle mesh "blue". I am using opengl pipeline for rendering.
The depth function is set to GL_LESS and both meshes are such, that all fragments of Rectangle has slightly larger values then text fragments (due to resolution and tolerance errors).
I assumed that all text fragments should be discarded (rectangle depth values), but final image contains a blend of rectangle and text (blending is also disabled):
B.t.w. renderdoc in Texture view shows a rectangle without text overlay as expected, but in preview, text is seen. This is also something I would like to understand. Do I miss some pipeline postprocessing stages that are in action?

Blending may not work as you expect when the Depth Test is enabled. The depth test discards the fragments before they can be blended. If depth test and blending are enabled, a fragment that is not discarded during the depth test will be blended. So it depends on the order in which the objects are drawn.
To achieve correct blending of objects with different depths, draw all objects in order from back to front (depth sorting). Since the objects are drawn from back to front, the depth test is not needed at all.

Related

Can I carry out MSAA for deferred rendering by just rendering the geometry twice?

I have question about 3D rendering.
Deferred rendering is very powerful but popular for not being nice to MSAA.
I clearly see why, but I suddenly came up some idea to solve that.
It's simple : just do deferred rendering completely, and get screen image on texture. This texture(attached on framebuffer or whatever) is of course not-antialiased.
Here comes further processing : then next, draw full scene again but this time fragment shader looks up the exact same position on pre-rendered texture using texelFetch(). And output that. Done.
It's silly but I think it might work. If we draw the geometry again with deferred-rendered result as the output color, it means we re-render the scene with geometry.
So we can now provide super-sampled depth information, and the GPU will be able to perform MSAA with aliased color but super-sampled depth geometry. (It's similar with picking up only the 'center' of fragment and evaluating that on ordinary MSAA process).
I'm not sure whether this description makes sense or not. I tested using opengl, but doing that makes no difference with just deferred-rendering.
Does my idea work?
No, your idea does not work.
If you did not render the initial image with multisampling, reading from it later while doing multisampling will not magically create information that doesn't exist in that image.
In your method, every sample which corresponds to a particular pixel in the multisampled rendering will have the same color value. So if two primitives overlap in a pixel, writing to different samples, it won't matter, since both primitives will be generating the same color. All you would be doing is generating multiple different depth values within a pixel, and that doesn't actually contribute to an antialiased output (directly).

Get pixel behind the current pixel

I'm coding a programm in C++ with glut, rendering a 3D model in a window.
I'm using glReadPixels to get the image of the scenery displayed in the windows.
And I would like to know how I can get, for a specific pixel (x, y), not directly its color but the color of the next object behind.
If I render a blue triangle, and a red triangle in front of it, glReadPixels gives me red colors from the red triangle.
I would like to know how I can get the colors from the blue triangle, the one I would get from glReadPixels if the red triangle wasn't here.
The default framebuffer only retains the topmost color. To get what you're suggesting would require a specific rendering pipeline.
For instance you could:
Create an offscreen framebuffer of the same dimensions as your target viewport
Render a depth-only pass to the offscreen framebuffer, storing the depth values in an attached texture
Re-render the scene with a special shader that only drew pixels where the post-transformation Z values was LESS than the value in the previously recorded depth buffer
The final result of the last render should be the original scene with the top layer stripped off.
Edit:
It would require only a small amount of new code to create the offscreen framebuffer and render a depth only version of the scene to it, and you could use your existing rendering pipeline in combination with that to execute steps 1 and 2.
However, I can't think of any way you could then re-render the scene to get the information you want in step 3 without a shader, because it both the standard depth test plus a test against the provided depth texture. That doesn't mean there isn't one, just that I'm not well versed in GL tricks to think of it.
I can think of other ways of trying to accomplish the same task for specific points on the screen by fiddling with the rendering system, but they're all far more convoluted than just writing a shader.

How to avoid glitches on superposed objects with openGL?

I would like, for example, to stack two cubes A and B.
The matter is that the top face of A is at the exact same position of B's bottom face.
This render some visual glitches as you can see :
Note that the pink grid can sometime be seen through any cube at some angle as well (not expected).
Is there any way to fix this without offsetting all my objects ?
This is called Depth Fighting or Z-Fighting and is caused, that after projection the depth values are subjected to rounding and when depth testing happens the winner of the depth test depends on the rounding of the depth values of the participating fragments.
Is there any way to fix this without offsetting all my objects ?
Yes, there are some techniques using the stencil buffer, with the caveat, that it works only for convex geometry. First you render your overlapping objects with depth testing and depth writes, but without color writes, setting a stencil mask. Next iteration you enable back face culling and draw with depth test disable, stencil test enabled (pass on the used stencil value) and color writes enabled. Within the region of the stencil mask things will overdraw according to the Painter's algorithm (i.e. the layers are in order as they're drawn).

Reverse triangle lookup from affected pixels?

Assume I have a 3D triangle mesh, and a OpenGL framebuffer to which I can render the mesh.
For each rendered pixel, I need to build a list of triangles that rendered to that pixel, even those that are occluded.
The only way I could think of doing this is to individually render each triangle from the mesh, then go through each pixel in the framebuffer to determine if it was affected by the triangle (using the depth buffer or a user-defined fragment shader output variable). I would then have to clear the framebuffer and do the same for the next triangle.
Is there a more efficient way to do this?
I considered, for each fragment in the fragment shader, writing out a triangle identifier, but GLSL doesn't allow outputting a list of integers.
For each rendered pixel, I need to build a list of triangles that rendered to that pixel, even those that are occluded.
You will not be able to do it for entire scene. There's no structure that allow you to associate "list" with every pixel.
You can get list of primitives that affected certain area using select buffer (see glRenderMode(GL_SELECT)).
You can get scene depth complexity using stencil buffer techniques.
If there are 8 triangles total, then you can get list of triangles that effected every pixel using stencil buffer (basically, assign unique (1 << n) stencil value to each triangle, and OR it with existing stencil buffer value for every stencil OP).
But to solve it in generic case, you'll need your own rasterizer and LOTS of memory to store per-pixel triangle lists. The problem is quite similar to multi-layered depth buffer, after all.
Is there a more efficient way to do this?
Actually, yes, but it is not hardware accelerated and OpenGL has nothing to do it. Store all rasterized triangles in OCT-tree. Launch a "ray" through that OCT-tree for every pixel you want to test, and count triangles this ray hits. That's collision detection problem.

Rendering 3D Models With Textures That Have Alpha In OpenGL

So Im trying to figure out the best way to render a 3D model in OpenGL when some of the textures applied to it have alpha channels.
When I have the depth buffer enabled, and start drawing all the triangles in a 3D model, if it draws a triangle that is in front of another triangle in the model, it will simply not render the back triangle when it gets to it. The problem is when the front triangle has alpha transparency, and should be able to be seen through to the triangle behind it, but the triangle behind is still not rendered.
Disabling the depth buffer eliminates that problem, but creates the obvious issue that if the triangle IS opaque, then it will still render triangles behind it on top if rendered after.
For example, I am trying to render a pine tree that is basically some cones stacked on top of each other that have a transparent base. The following picture shows the problem that arises when the depth buffer is enabled:
You can see how you can still see the outline of the transparent triangles.
The next picture shows what it looks like when the depth buffer is disabled.
Here you can see how some of the triangles on the back of the tree are being rendered in front of the rest of the tree.
Any ideas how to address this issue, and render the pine tree properly?
P.S. I am using shaders to render everything.
If you're not using any partial transparency (everything is either 0 or 255), you can glEnable(GL_ALPHA_TEST) and that should help you. The problem is that if you render the top cone first, it deposits the whole quad into the z-buffer (even the transparent parts), so the lower branches underneath get z-rejected when its their time to be drawn. Enabling alpha testing doesn't write pixels to the z buffer if they fail the alpha test (set with glAlphaFunc).
If you want to use partial transparency, you'll need to sort the order of rendering objects from back to front, or bottom to top in your case.
You'll need to leave z-buffer enabled as well.
[edit] Whoops I realized that those functions I don't believe work when you're using shaders. In the shader case you want to use the discard function in the fragment shader if the alpha value is close to zero.
if(color.a < 0.01) {
discard;
} else {
outcolor = color;
}
You needs to implement a two-pass algorithm.
The first pass render only the back faces, while the second pass render only the front faces.
In this way you don't need to order the triangles, but some artifacts may occour depending whether your geometry is convex or not.
I may be wrong, but this is because when you render in 3d you do no render the backside of triangles using Directx's default settings, when the Z is removed - it draws them in order, with the Z on it doesnt draw the back side of the triangles anymore.
It is possible to show both sides of the triangle, even with Z enabled, however I'm thinking there might be a reason its normally enabled.. such as speed..
Device->SetRenderState(D3DRS_CULLMODE, Value);
value can equal
D3DCULL_NONE - Shows both sides of triangle
D3DCULL_CW - Culls Front side of triangle
D3DCULL_CCW - Default state