C++ Voronoi styled tile map - c++

I am trying to display map with Voronoi styled map tiles.
It is on 2d array, I set some steps to achieve it:
Divide 2d array map into equal sized squares (tile).
int map_width = 100, map_height = 100,
tile_size = 10;
vector<vector<int>> tile_map; // size 10x10
Uniformly distribute site(or central) points in tiles
vector<pair<int,int>> sites
for (int y = 0; y < tile_map.size(); y++)
for (int x = 0; x < tile_map[y].size(); x++)
sites.push_back({x*tile_size+(rand()%tile_size(),y*tile_size+(rand()%tile_size()});
Link site points to other sites in adjacent tiles.
Draw perpendicular line of lines formed in step 3.
Intersecting point of perpendicular lines is the vertex of voronoi styled polygon.
Here I am stuck with step 4 and 5.
Is there a way to find perpendicular line with 2 given points?
Or is there a better way to design voronoi diagram in c++?enter image description here

Given 2 points (x1, y1) and (x2, y2) gives you a dx = x2 - x1 and dy = y2 - y1 and a parametric equation for the line line(t) = (x1 + t * dx, y1 + t * dy).
Constructing a perpendicular line from that is easy. Find the midpoint and rotate the slope by 90°:
cx = (x1 + x2) / 2;
cy = (y1 + y2) / 2;
p(t) = (cx + t * dy, cy + t * dx)
Finding the intersection of 2 such lines is easy too:
p1(t1) = (cx1 + t1 * dy1, cy1 + t1 * dx1)
p2(t2) = (cx2 + t2 * dy2, cy2 + t2 * dx2)
The 2 lines intersect when p1(t1) = p2(t2). That gives you 2 equations and 2 unknowns:
cx1 + t1 * dy1 == cx2 + t2 * dy2
cy1 + t1 * dx1 == cy2 + t2 * dx2
Solve for either t1 or t2 and calculate p1(t1) or p2(t2) at that point.

Related

How to get vertices for a sphere? [duplicate]

Are there any tutorials out there that explain how I can draw a sphere in OpenGL without having to use gluSphere()?
Many of the 3D tutorials for OpenGL are just on cubes. I have searched but most of the solutions to drawing a sphere are to use gluSphere(). There is also a site that has the code to drawing a sphere at this site but it doesn't explain the math behind drawing the sphere. I have also other versions of how to draw the sphere in polygon instead of quads in that link. But again, I don't understand how the spheres are drawn with the code. I want to be able to visualize so that I could modify the sphere if I need to.
One way you can do it is to start with a platonic solid with triangular sides - an octahedron, for example. Then, take each triangle and recursively break it up into smaller triangles, like so:
Once you have a sufficient amount of points, you normalize their vectors so that they are all a constant distance from the center of the solid. This causes the sides to bulge out into a shape that resembles a sphere, with increasing smoothness as you increase the number of points.
Normalization here means moving a point so that its angle in relation to another point is the same, but the distance between them is different.
Here's a two dimensional example.
A and B are 6 units apart. But suppose we want to find a point on line AB that's 12 units away from A.
We can say that C is the normalized form of B with respect to A, with distance 12. We can obtain C with code like this:
#returns a point collinear to A and B, a given distance away from A.
function normalize(a, b, length):
#get the distance between a and b along the x and y axes
dx = b.x - a.x
dy = b.y - a.y
#right now, sqrt(dx^2 + dy^2) = distance(a,b).
#we want to modify them so that sqrt(dx^2 + dy^2) = the given length.
dx = dx * length / distance(a,b)
dy = dy * length / distance(a,b)
point c = new point
c.x = a.x + dx
c.y = a.y + dy
return c
If we do this normalization process on a lot of points, all with respect to the same point A and with the same distance R, then the normalized points will all lie on the arc of a circle with center A and radius R.
Here, the black points begin on a line and "bulge out" into an arc.
This process can be extended into three dimensions, in which case you get a sphere rather than a circle. Just add a dz component to the normalize function.
If you look at the sphere at Epcot, you can sort of see this technique at work. it's a dodecahedron with bulged-out faces to make it look rounder.
I'll further explain a popular way of generating a sphere using latitude and longitude (another
way, icospheres, was already explained in the most popular answer at the time of this writing.)
A sphere can be expressed by the following parametric equation:
F(u, v) = [ cos(u)*sin(v)*r, cos(v)*r, sin(u)*sin(v)*r ]
Where:
r is the radius;
u is the longitude, ranging from 0 to 2π; and
v is the latitude, ranging from 0 to π.
Generating the sphere then involves evaluating the parametric function at fixed intervals.
For example, to generate 16 lines of longitude, there will be 17 grid lines along the u axis, with a step of
π/8 (2π/16) (the 17th line wraps around).
The following pseudocode generates a triangle mesh by evaluating a parametric function
at regular intervals (this works for any parametric surface function, not just spheres).
In the pseudocode below, UResolution is the number of grid points along the U axis
(here, lines of longitude), and VResolution is the number of grid points along the V axis
(here, lines of latitude)
var startU=0
var startV=0
var endU=PI*2
var endV=PI
var stepU=(endU-startU)/UResolution // step size between U-points on the grid
var stepV=(endV-startV)/VResolution // step size between V-points on the grid
for(var i=0;i<UResolution;i++){ // U-points
for(var j=0;j<VResolution;j++){ // V-points
var u=i*stepU+startU
var v=j*stepV+startV
var un=(i+1==UResolution) ? endU : (i+1)*stepU+startU
var vn=(j+1==VResolution) ? endV : (j+1)*stepV+startV
// Find the four points of the grid
// square by evaluating the parametric
// surface function
var p0=F(u, v)
var p1=F(u, vn)
var p2=F(un, v)
var p3=F(un, vn)
// NOTE: For spheres, the normal is just the normalized
// version of each vertex point; this generally won't be the case for
// other parametric surfaces.
// Output the first triangle of this grid square
triangle(p0, p2, p1)
// Output the other triangle of this grid square
triangle(p3, p1, p2)
}
}
The code in the sample is quickly explained. You should look into the function void drawSphere(double r, int lats, int longs):
void drawSphere(double r, int lats, int longs) {
int i, j;
for(i = 0; i <= lats; i++) {
double lat0 = M_PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double lng = 2 * M_PI * (double) (j - 1) / longs;
double x = cos(lng);
double y = sin(lng);
glNormal3f(x * zr0, y * zr0, z0);
glVertex3f(r * x * zr0, r * y * zr0, r * z0);
glNormal3f(x * zr1, y * zr1, z1);
glVertex3f(r * x * zr1, r * y * zr1, r * z1);
}
glEnd();
}
}
The parameters lat defines how many horizontal lines you want to have in your sphere and lon how many vertical lines. r is the radius of your sphere.
Now there is a double iteration over lat/lon and the vertex coordinates are calculated, using simple trigonometry.
The calculated vertices are now sent to your GPU using glVertex...() as a GL_QUAD_STRIP, which means you are sending each two vertices that form a quad with the previously two sent.
All you have to understand now is how the trigonometry functions work, but I guess you can figure it out easily.
If you wanted to be sly like a fox you could half-inch the code from GLU. Check out the MesaGL source code (http://cgit.freedesktop.org/mesa/mesa/).
See the OpenGL red book: http://www.glprogramming.com/red/chapter02.html#name8
It solves the problem by polygon subdivision.
My example how to use 'triangle strip' to draw a "polar" sphere, it consists in drawing points in pairs:
const float PI = 3.141592f;
GLfloat x, y, z, alpha, beta; // Storage for coordinates and angles
GLfloat radius = 60.0f;
int gradation = 20;
for (alpha = 0.0; alpha < GL_PI; alpha += PI/gradation)
{
glBegin(GL_TRIANGLE_STRIP);
for (beta = 0.0; beta < 2.01*GL_PI; beta += PI/gradation)
{
x = radius*cos(beta)*sin(alpha);
y = radius*sin(beta)*sin(alpha);
z = radius*cos(alpha);
glVertex3f(x, y, z);
x = radius*cos(beta)*sin(alpha + PI/gradation);
y = radius*sin(beta)*sin(alpha + PI/gradation);
z = radius*cos(alpha + PI/gradation);
glVertex3f(x, y, z);
}
glEnd();
}
First point entered (glVertex3f) is as follows the parametric equation and the second one is shifted by a single step of alpha angle (from next parallel).
Although the accepted answer solves the question, there's a little misconception at the end. Dodecahedrons are (or could be) regular polyhedron where all faces have the same area. That seems to be the case of the Epcot (which, by the way, is not a dodecahedron at all). Since the solution proposed by #Kevin does not provide this characteristic I thought I could add an approach that does.
A good way to generate an N-faced polyhedron where all vertices lay in the same sphere and all its faces have similar area/surface is starting with an icosahedron and the iteratively sub-dividing and normalizing its triangular faces (as suggested in the accepted answer). Dodecahedrons, for instance, are actually truncated icosahedrons.
Regular icosahedrons have 20 faces (12 vertices) and can easily be constructed from 3 golden rectangles; it's just a matter of having this as a starting point instead of an octahedron. You may find an example here.
I know this is a bit off-topic but I believe it may help if someone gets here looking for this specific case.
Python adaptation of #Constantinius answer:
lats = 10
longs = 10
r = 10
for i in range(lats):
lat0 = pi * (-0.5 + i / lats)
z0 = sin(lat0)
zr0 = cos(lat0)
lat1 = pi * (-0.5 + (i+1) / lats)
z1 = sin(lat1)
zr1 = cos(lat1)
glBegin(GL_QUAD_STRIP)
for j in range(longs+1):
lng = 2 * pi * (j+1) / longs
x = cos(lng)
y = sin(lng)
glNormal(x * zr0, y * zr0, z0)
glVertex(r * x * zr0, r * y * zr0, r * z0)
glNormal(x * zr1, y * zr1, z1)
glVertex(r * x * zr1, r * y * zr1, r * z1)
glEnd()
void draw_sphere(float r)
{
float pi = 3.141592;
float di = 0.02;
float dj = 0.04;
float db = di * 2 * pi;
float da = dj * pi;
for (float i = 0; i < 1.0; i += di) //horizonal
for (float j = 0; j < 1.0; j += dj) //vertical
{
float b = i * 2 * pi; //0 to 2pi
float a = (j - 0.5) * pi; //-pi/2 to pi/2
//normal
glNormal3f(
cos(a + da / 2) * cos(b + db / 2),
cos(a + da / 2) * sin(b + db / 2),
sin(a + da / 2));
glBegin(GL_QUADS);
//P1
glTexCoord2f(i, j);
glVertex3f(
r * cos(a) * cos(b),
r * cos(a) * sin(b),
r * sin(a));
//P2
glTexCoord2f(i + di, j);//P2
glVertex3f(
r * cos(a) * cos(b + db),
r * cos(a) * sin(b + db),
r * sin(a));
//P3
glTexCoord2f(i + di, j + dj);
glVertex3f(
r * cos(a + da) * cos(b + db),
r * cos(a + da) * sin(b + db),
r * sin(a + da));
//P4
glTexCoord2f(i, j + dj);
glVertex3f(
r * cos(a + da) * cos(b),
r * cos(a + da) * sin(b),
r * sin(a + da));
glEnd();
}
}
One way is to make a quad that faces the camera and write a vertex and fragment shader that renders something that looks like a sphere. You could use equations for a circle/sphere that you can find on the internet.
One nice thing is that the silhouette of a sphere looks the same from any angle. However, if the sphere is not in the center of a perspective view, then it would appear perhaps more like an ellipse. You could work out the equations for this and put them in the fragment shading. Then the light shading needs to changed as the player moves, if you do indeed have a player moving in 3D space around the sphere.
Can anyone comment on if they have tried this or if it would be too expensive to be practical?

Distance between 2 hexagons on hexagon grid

I have a hexagon grid:
with template type coordinates T. How I can calculate distance between two hexagons?
For example:
dist((3,3), (5,5)) = 3
dist((1,2), (1,4)) = 2
First apply the transform (y, x) |-> (u, v) = (x, y + floor(x / 2)).
Now the facial adjacency looks like
0 1 2 3
0*-*-*-*
|\|\|\|
1*-*-*-*
|\|\|\|
2*-*-*-*
Let the points be (u1, v1) and (u2, v2). Let du = u2 - u1 and dv = v2 - v1. The distance is
if du and dv have the same sign: max(|du|, |dv|), by using the diagonals
if du and dv have different signs: |du| + |dv|, because the diagonals are unproductive
In Python:
def dist(p1, p2):
y1, x1 = p1
y2, x2 = p2
du = x2 - x1
dv = (y2 + x2 // 2) - (y1 + x1 // 2)
return max(abs(du), abs(dv)) if ((du >= 0 and dv >= 0) or (du < 0 and dv < 0)) else abs(du) + abs(dv)
Posting here after I saw a blog post of mine had gotten referral traffic from another answer here. It got voted down, rightly so, because it was incorrect; but it was a mischaracterization of the solution put forth in my post.
Your 'squiggly' axis - in terms of your x coordinate being displaced every other row - is going to cause you all sorts of headaches with trying to determine distances or doing pathfinding later on, if this is for a game of some sort. Hexagon grids lend themselves to three axes naturally, and a 'squared off' grid of hexagons will optimally have some negative coordinates, which allows for simpler math around distances.
Here's a grid with (x,y) mapped out, with x increasing to the lower right, and y increasing upwards.
By straightening things out, the third axis becomes obvious.
The neat thing about this, is that the three coordinates become interlinked - the sum of all three coordinates will always be 0.
With such a consistent coordinate system, the atomic distance between any two hexes is the largest change between the three coordinates, or:
d = max( abs(x1 - x2), abs(y1 -y2), abs( (-x1 + -y1) - (-x2 + -y2) )
Pretty straightforward. But you must fix your grid first!
The correct explicit formula for the distance, with your coordinate system, is given by:
d((x1,y1),(x2,y2)) = max( abs(x1 - x2),
abs((y1 + floor(x1/2)) - (y2 + floor(x2/2)))
)
Here is what a did:
Taking one cell as center (it is easy to see if you choose 0,0), cells at distance dY form a big hexagon (with “radius” dY). One vertices of this hexagon is (dY2,dY). If dX<=dY2 the path is a zig-zag to the ram of the big hexagon with a distance dY. If not, then the path is the “diagonal” to the vertices, plus an vertical path from the vertices to the second cell, with add dX-dY2 cells.
Maybe better to understand: led:
dX = abs(x1 - x2);
dY = abs(y1 - y2);
dY2= floor((abs(y1 - y2) + (y1+1)%2 ) / 2);
Then:
d = d((x1,y1),(x2,y2))
= dX < dY2 ? dY : dY + dX-dY2 + y1%2 * dY%2
First, you need to transform your coordinates to a "mathematical" coordinate system. Every two columns you shift your coordinates by 1 unit in the y-direction. The "mathamatical" coordinates (s, t) can be calculated from your coordinates (u,v) as follows:
s = u + floor(v/2)
t = v
If you call one side of your hexagons a, the basis vectors of your coordinate system are (0, -sqrt(3)a) and (3a/2, sqrt(3)a/2). To find the minimum distance between your points, you need to calculate the manhattan distance in your coordinate system, which is given by |s1-s2|+|t1-t2| where s and t are the coordinates in your system. The manhattan distance only covers walking in the direction of your basis vectors so it only covers walking like that: |/ but not walking like that: |\. You need to transform your vectors into another coordinate system with basis vectors (0, -sqrt(3)a) and (3a/2, -sqrt(3)a/2). The coordinates in this system are given by s'=s-t and t'=t so the manhattan distance in this coordinate system is given by |s1'-s2'|+|t1'-t2'|. The distance you are looking for is the minimum of the two calculated manhattan distances. Your code would look like this:
struct point
{
int u;
int v;
}
int dist(point const & p, point const & q)
{
int const ps = p.u + (p.v / 2); // integer division!
int const pt = p.v;
int const qs = q.u + (q.v / 2);
int const qt = q.v;
int const dist1 = abs(ps - qs) + abs(pt - qt);
int const dist2 = abs((ps - pt) - (qs - qt)) + abs(pt - qt);
return std::min(dist1, dist2);
}
(odd-r)(without z, only x,y)
I saw some problems with realizations above. Sorry, I didn't check it all but. But maybe my solution will be helpful for someone and maybe it's a bad and not optimized solution.
The main idea to go by diagonal and then by horizontal. But for that we need to note:
1) For example, we have 0;3 (x1=0;y1=3) and to go to the y2=6 we can handle within 6 steps to each point (0-6;6)
so: 0-left_border , 6-right_border
2)Calculate some offsets
#include <iostream>
#include <cmath>
int main()
{
//while(true){
int x1,y1,x2,y2;
std::cin>>x1>>y1;
std::cin>>x2>>y2;
int diff_y=y2-y1; //only up-> bottom no need abs
int left_x,right_x;
int path;
if( y1>y2 ) { // if Down->Up then swap
int temp_y=y1;
y1=y2;
y2=temp_y;
//
int temp_x=x1;
x1=x2;
x2=temp_x;
} // so now we have Up->Down
// Note that it's odd-r horizontal layout
//OF - Offset Line (y%2==1)
//NOF -Not Offset Line (y%2==0)
if( y1%2==1 && y2%2==0 ){ //OF ->NOF
left_x = x1 - ( (y2 - y1 + 1)/2 -1 ); //UP->DOWN no need abs
right_x = x1 + (y2 - y1 + 1)/2; //UP->DOWN no need abs
}
else if( y1%2==0 && y2%2==1 ){ // OF->NOF
left_x = x1 - (y2 - y1 + 1)/2; //UP->DOWN no need abs
right_x = x1 + ( (y2 - y1 + 1)/2 -1 ); //UP->DOWN no need abs
}
else{
left_x = x1 - (y2 - y1 + 1)/2; //UP->DOWN no need abs
right_x = x1 + (y2 - y1 + 1)/2; //UP->DOWN no need abs
}
/////////////////////////////////////////////////////////////
if( x2>=left_x && x2<=right_x ){
path = y2 - y1;
}
else {
int min_1 = std::abs( left_x - x2 );
int min_2 = std::abs( right_x - x2 );
path = y2 - y1 + std::min(min_1, min_2);
}
std::cout<<"Path: "<<path<<"\n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\n";
//}
return 0;
}
I believe the answer you seek is:
d((x1,y1),(x2,y2))=max(abs(x1-x2),abs(y1-y2));
You can find a good explanation on hexagonal grid coordinate-system/distances here:
http://keekerdc.com/2011/03/hexagon-grids-coordinate-systems-and-distance-calculations/

Given two points, find a third point on the line

I have two points A (x1,y1) and B (x2,y2) that are given as an input to the program. I have to find a third point C that lies on the line AB and is at a distance 10 away from the point A.
I can easily get the slope of the line but that doesn't give me the full equation for the line. Even if I get the full equation, I am not sure using this equation, how would I find out a point that is x distance away from A.
Any suggestions on how to approach this?
There are always two points on each line:
get the vector from A to B (subtract the coordinates)
normalize the vector (divide by its length; pythagorean theorem)
multiply the vector by 10 or -10
add the vector to A to get C
Note that if A==B, the line is not defined, and this algorithm causes a division by zero. You may want to add a test for equality at the beginning.
You can use the sine or the cosine (times 10) of the angle of the line to get the horizontal or vertical distance of the point that is a distance of 10 from a given point. A shortcut is to use the horizontal or vertical distance divided by the direct distance between the points to get the sine or cosine.
You can do it using vectors like this:
Let D = the difference between B and A (D = B - A)
Then any point on the line can be described by this formula:
point = A + Dt
where t is a real number.
So just plug in any value for t to get another point. For example if you let t == 1 then the equation above reduces to point = B. If you let t = 0 then it reduces to point = A. So you can see that you can use this to find a point between A and B simply by let t range from 0 to 1. Additionally if you let t > 1, you will find a point past B.
You can see from the image that your given points are x1,y1 and x2,y2. You need to find an intermediate point at a distance 'R' from point x1,y1.
All you need to do is to find θ using
Tan θ = (y2-y1)/(x2-x1)
Then you can get the intermediate point as (R * cos θ),(R * Sin θ)
I have drawn this assuming positive slope.
Going on similar lines you can seek a solution for other special cases lile:
i. Horizontal line
ii. Vertical line
iii. Negative slope
Hope it clarifies.
I have done the calculation in Andengine using a Sprite object. I have two Array List x coordinates and y coordinates. Here i am just calculating using the last two values from these two array list to calculate the third point 800 pixel distant from Your point B. you can modify it using different values other than 800. Hope it will work.The coordinate system here is a little different where (0,0) on the top left corner of the screen. Thanks
private void addExtraCoordinate(CarSprite s) {
int x0, y0, x1, y1;
float x = 0f, y = 0f;
x0 = Math.round(xCoordinates.get(xCoordinates.size() - 2));
x1 = Math.round(xCoordinates.get(xCoordinates.size() - 1));
y0 = Math.round(yCoordinates.get(yCoordinates.size() - 2)) * (-1);
y1 = Math.round(yCoordinates.get(yCoordinates.size() - 1)) * (-1);
if (x1 == x0 && y1 == y0) {
return;
} else if (y1 == y0 && x1 != x0) {
if (x1 > x0) {
x = (float) x1 + 800f;
} else
x = (float) x1 - 800f;
y = Math.round(yCoordinates.get(yCoordinates.size() - 1));
} else if (y1 != y0 && x1 == x0) {
if (y1 > y0) {
y = (float) Math.abs(y1) - 800f;
} else
y = (float) Math.abs(y1) + 800f;
x = Math.round(xCoordinates.get(xCoordinates.size() - 1));
} else {
float m = (float) (yCoordinates.get(yCoordinates.size() - 1) * (-1) - yCoordinates
.get(yCoordinates.size() - 2) * (-1))
/ (float) (xCoordinates.get(xCoordinates.size() - 1) - xCoordinates
.get(xCoordinates.size() - 2));
if (x1 > x0) {
x = (float) ((float) x1 + 800f / (float) Math
.sqrt((double) ((double) 1f + (double) (m * m))));
} else
x = (float) ((float) x1 - 800f / (float) Math
.sqrt((double) ((double) 1f + (double) (m * m))));
if (y0 > y1) {
y = (float) ((float) Math.abs(y1) + 800f / (float) Math
.sqrt((double) (((double) 1f / (double) (m * m)) + (double) 1f)));
} else
y = (float) ((float) Math.abs(y1) - 800f / (float) Math
.sqrt((double) (((double) 1f / (double) (m * m)) + (double) 1f)));
}
xCoordinates.add(x);
yCoordinates.add(y);
}

Efficient way to get the angle between two vectors in a single plane?

If I know for a fact that the x and z values of the vectors will be identical,
therefore im only concerned in measuring the 'vertical' angle of from the differences in the y plane, is there a more efficient method to do this compared to computing the dot product?
My current code using the dot product method is as follows:
float a_mag = a.magnitude();
float b_mag = b.magnitude();
float ab_dot = a.dot(b);
float c = ab_dot / (a_mag * b_mag);
// clamp d to from going beyond +/- 1 as acos(+1/-1) results in infinity
if (c > 1.0f) {
c = 1.0;
} else if (c < -1.0) {
c = -1.0;
}
return acos(c);
I would love to be able to get rid of these square roots
Suppose that your two vectors live at u = (x, y1, z) and v = (x, y2, z), and you're interested in the planar angle between the two along the plane spanned by the two vectors. You'd have to compute the dot product and the magnitude, but you can save a few operations:
u.v = x.x + y1.y2 + z.z
u^2 = x.x + y1.y1 + z.z
v^2 = x.x + y2.y2 + z.z
So we should precompute:
float xz = x*x + z*z, y11 = y1*y1, y12 = y1*y2, y22 = y2*y2;
float cosangle = (xz + y12) / sqrt((xz + y11) * (xz + y22));
float angle = acos(cosangle);
If the values of x and z are unchanged, then the calculation is very easy: just use basic trigonometry.
Let the points be (x, y1, z) and (x, y2, z). You can find out the angle a vector makes with the ZX-plane. Let the angles be t1 and t2 respectively. Then:
w = sqrt(x^2 + z^2)
tan(t1) = y1 / w
So t1 = atan(y1 / w)
Similarly t2 = atan(y2 / w)
The angle is (t2 - t1)
There's one pitfall: When both x and z are zero, the tans are undefined... but such a trivial case can easily be handled separately.
Unfortunately, there seems to be no way to avoid the square root.

Drawing Sphere in OpenGL without using gluSphere()?

Are there any tutorials out there that explain how I can draw a sphere in OpenGL without having to use gluSphere()?
Many of the 3D tutorials for OpenGL are just on cubes. I have searched but most of the solutions to drawing a sphere are to use gluSphere(). There is also a site that has the code to drawing a sphere at this site but it doesn't explain the math behind drawing the sphere. I have also other versions of how to draw the sphere in polygon instead of quads in that link. But again, I don't understand how the spheres are drawn with the code. I want to be able to visualize so that I could modify the sphere if I need to.
One way you can do it is to start with a platonic solid with triangular sides - an octahedron, for example. Then, take each triangle and recursively break it up into smaller triangles, like so:
Once you have a sufficient amount of points, you normalize their vectors so that they are all a constant distance from the center of the solid. This causes the sides to bulge out into a shape that resembles a sphere, with increasing smoothness as you increase the number of points.
Normalization here means moving a point so that its angle in relation to another point is the same, but the distance between them is different.
Here's a two dimensional example.
A and B are 6 units apart. But suppose we want to find a point on line AB that's 12 units away from A.
We can say that C is the normalized form of B with respect to A, with distance 12. We can obtain C with code like this:
#returns a point collinear to A and B, a given distance away from A.
function normalize(a, b, length):
#get the distance between a and b along the x and y axes
dx = b.x - a.x
dy = b.y - a.y
#right now, sqrt(dx^2 + dy^2) = distance(a,b).
#we want to modify them so that sqrt(dx^2 + dy^2) = the given length.
dx = dx * length / distance(a,b)
dy = dy * length / distance(a,b)
point c = new point
c.x = a.x + dx
c.y = a.y + dy
return c
If we do this normalization process on a lot of points, all with respect to the same point A and with the same distance R, then the normalized points will all lie on the arc of a circle with center A and radius R.
Here, the black points begin on a line and "bulge out" into an arc.
This process can be extended into three dimensions, in which case you get a sphere rather than a circle. Just add a dz component to the normalize function.
If you look at the sphere at Epcot, you can sort of see this technique at work. it's a dodecahedron with bulged-out faces to make it look rounder.
I'll further explain a popular way of generating a sphere using latitude and longitude (another
way, icospheres, was already explained in the most popular answer at the time of this writing.)
A sphere can be expressed by the following parametric equation:
F(u, v) = [ cos(u)*sin(v)*r, cos(v)*r, sin(u)*sin(v)*r ]
Where:
r is the radius;
u is the longitude, ranging from 0 to 2π; and
v is the latitude, ranging from 0 to π.
Generating the sphere then involves evaluating the parametric function at fixed intervals.
For example, to generate 16 lines of longitude, there will be 17 grid lines along the u axis, with a step of
π/8 (2π/16) (the 17th line wraps around).
The following pseudocode generates a triangle mesh by evaluating a parametric function
at regular intervals (this works for any parametric surface function, not just spheres).
In the pseudocode below, UResolution is the number of grid points along the U axis
(here, lines of longitude), and VResolution is the number of grid points along the V axis
(here, lines of latitude)
var startU=0
var startV=0
var endU=PI*2
var endV=PI
var stepU=(endU-startU)/UResolution // step size between U-points on the grid
var stepV=(endV-startV)/VResolution // step size between V-points on the grid
for(var i=0;i<UResolution;i++){ // U-points
for(var j=0;j<VResolution;j++){ // V-points
var u=i*stepU+startU
var v=j*stepV+startV
var un=(i+1==UResolution) ? endU : (i+1)*stepU+startU
var vn=(j+1==VResolution) ? endV : (j+1)*stepV+startV
// Find the four points of the grid
// square by evaluating the parametric
// surface function
var p0=F(u, v)
var p1=F(u, vn)
var p2=F(un, v)
var p3=F(un, vn)
// NOTE: For spheres, the normal is just the normalized
// version of each vertex point; this generally won't be the case for
// other parametric surfaces.
// Output the first triangle of this grid square
triangle(p0, p2, p1)
// Output the other triangle of this grid square
triangle(p3, p1, p2)
}
}
The code in the sample is quickly explained. You should look into the function void drawSphere(double r, int lats, int longs):
void drawSphere(double r, int lats, int longs) {
int i, j;
for(i = 0; i <= lats; i++) {
double lat0 = M_PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double lng = 2 * M_PI * (double) (j - 1) / longs;
double x = cos(lng);
double y = sin(lng);
glNormal3f(x * zr0, y * zr0, z0);
glVertex3f(r * x * zr0, r * y * zr0, r * z0);
glNormal3f(x * zr1, y * zr1, z1);
glVertex3f(r * x * zr1, r * y * zr1, r * z1);
}
glEnd();
}
}
The parameters lat defines how many horizontal lines you want to have in your sphere and lon how many vertical lines. r is the radius of your sphere.
Now there is a double iteration over lat/lon and the vertex coordinates are calculated, using simple trigonometry.
The calculated vertices are now sent to your GPU using glVertex...() as a GL_QUAD_STRIP, which means you are sending each two vertices that form a quad with the previously two sent.
All you have to understand now is how the trigonometry functions work, but I guess you can figure it out easily.
If you wanted to be sly like a fox you could half-inch the code from GLU. Check out the MesaGL source code (http://cgit.freedesktop.org/mesa/mesa/).
See the OpenGL red book: http://www.glprogramming.com/red/chapter02.html#name8
It solves the problem by polygon subdivision.
My example how to use 'triangle strip' to draw a "polar" sphere, it consists in drawing points in pairs:
const float PI = 3.141592f;
GLfloat x, y, z, alpha, beta; // Storage for coordinates and angles
GLfloat radius = 60.0f;
int gradation = 20;
for (alpha = 0.0; alpha < GL_PI; alpha += PI/gradation)
{
glBegin(GL_TRIANGLE_STRIP);
for (beta = 0.0; beta < 2.01*GL_PI; beta += PI/gradation)
{
x = radius*cos(beta)*sin(alpha);
y = radius*sin(beta)*sin(alpha);
z = radius*cos(alpha);
glVertex3f(x, y, z);
x = radius*cos(beta)*sin(alpha + PI/gradation);
y = radius*sin(beta)*sin(alpha + PI/gradation);
z = radius*cos(alpha + PI/gradation);
glVertex3f(x, y, z);
}
glEnd();
}
First point entered (glVertex3f) is as follows the parametric equation and the second one is shifted by a single step of alpha angle (from next parallel).
Although the accepted answer solves the question, there's a little misconception at the end. Dodecahedrons are (or could be) regular polyhedron where all faces have the same area. That seems to be the case of the Epcot (which, by the way, is not a dodecahedron at all). Since the solution proposed by #Kevin does not provide this characteristic I thought I could add an approach that does.
A good way to generate an N-faced polyhedron where all vertices lay in the same sphere and all its faces have similar area/surface is starting with an icosahedron and the iteratively sub-dividing and normalizing its triangular faces (as suggested in the accepted answer). Dodecahedrons, for instance, are actually truncated icosahedrons.
Regular icosahedrons have 20 faces (12 vertices) and can easily be constructed from 3 golden rectangles; it's just a matter of having this as a starting point instead of an octahedron. You may find an example here.
I know this is a bit off-topic but I believe it may help if someone gets here looking for this specific case.
Python adaptation of #Constantinius answer:
lats = 10
longs = 10
r = 10
for i in range(lats):
lat0 = pi * (-0.5 + i / lats)
z0 = sin(lat0)
zr0 = cos(lat0)
lat1 = pi * (-0.5 + (i+1) / lats)
z1 = sin(lat1)
zr1 = cos(lat1)
glBegin(GL_QUAD_STRIP)
for j in range(longs+1):
lng = 2 * pi * (j+1) / longs
x = cos(lng)
y = sin(lng)
glNormal(x * zr0, y * zr0, z0)
glVertex(r * x * zr0, r * y * zr0, r * z0)
glNormal(x * zr1, y * zr1, z1)
glVertex(r * x * zr1, r * y * zr1, r * z1)
glEnd()
void draw_sphere(float r)
{
float pi = 3.141592;
float di = 0.02;
float dj = 0.04;
float db = di * 2 * pi;
float da = dj * pi;
for (float i = 0; i < 1.0; i += di) //horizonal
for (float j = 0; j < 1.0; j += dj) //vertical
{
float b = i * 2 * pi; //0 to 2pi
float a = (j - 0.5) * pi; //-pi/2 to pi/2
//normal
glNormal3f(
cos(a + da / 2) * cos(b + db / 2),
cos(a + da / 2) * sin(b + db / 2),
sin(a + da / 2));
glBegin(GL_QUADS);
//P1
glTexCoord2f(i, j);
glVertex3f(
r * cos(a) * cos(b),
r * cos(a) * sin(b),
r * sin(a));
//P2
glTexCoord2f(i + di, j);//P2
glVertex3f(
r * cos(a) * cos(b + db),
r * cos(a) * sin(b + db),
r * sin(a));
//P3
glTexCoord2f(i + di, j + dj);
glVertex3f(
r * cos(a + da) * cos(b + db),
r * cos(a + da) * sin(b + db),
r * sin(a + da));
//P4
glTexCoord2f(i, j + dj);
glVertex3f(
r * cos(a + da) * cos(b),
r * cos(a + da) * sin(b),
r * sin(a + da));
glEnd();
}
}
One way is to make a quad that faces the camera and write a vertex and fragment shader that renders something that looks like a sphere. You could use equations for a circle/sphere that you can find on the internet.
One nice thing is that the silhouette of a sphere looks the same from any angle. However, if the sphere is not in the center of a perspective view, then it would appear perhaps more like an ellipse. You could work out the equations for this and put them in the fragment shading. Then the light shading needs to changed as the player moves, if you do indeed have a player moving in 3D space around the sphere.
Can anyone comment on if they have tried this or if it would be too expensive to be practical?