Time complexity (How is this O(n)) - c++

I am having trouble understanding how this code is O(N). Is the inner while loop O(1). If so, why? When is a while/for loop considered O(N) and when is it O(1)?
int minSubArrayLen(int target, vector& nums)
{
int left=0;
int right=0;
int n=nums.size();
int sum=0;
int ans=INT_MAX;
int flag=0;
while(right<n)
{
sum+=nums[right];
if(sum>=target)
{
while(sum>=target)
{
flag=1;
sum=sum-nums[left];
left++;
}
ans=min(ans,right-left+2);
}
right++;
}
if(flag==0)
{
return 0;
}
return ans;
}
};

Both the inner and outer loop are O(n) on their own.
But consider the whole function and count the number of accesses to nums:
The outer loop does:
sum+=nums[right];
right++;
No element of nums is accessed more than once through right. So that is O(n) accesses and loop iterations.
Now the tricky one, the inner loop:
sum=sum-nums[left];
left++;
No element of nums is accessed more than once through left. So while the inner loop runs many times in their sum it's O(n).
So overall is O(2n) == O(n) accesses to nums and O(n) runtime for the whole function.

Outer while loop is going from 0 till the n so time complexity is O(n).
O(1):
int sum= 0;
for(int x=0 ; x<10 ; x++) sum+=x;
Every time you run this loop, it will run 10 times, so it will take constant time . So time complexity will be O(1).
O(n):
int sum=0;
For(int x=0; x<n; x++) sum+=x;
Time complexity of this loop would be O(n) because the number of iterations is varying with the value of n.

Consider the scenario
The array is filled with the same value x and target (required sum) is also x. So at every iteration of the outer while loop the condition sum >= target is satisfied, which invokes the inner while loop at every iterations. It is easy to see that in this case, both right and left pointers would move together towards the end of the array. Both the pointers therefore move n positions in all, the outer loop just checks for a condition which calls the inner loop. Both the pointes are moved independently.
You can consider any other case, and in every case you would find the same observation. 2 independent pointers controlling the loop, and both are having O(n) operations, so the overall complexity is O(n).

O(n) or O(1) is just a notation for time complexity of an algorithm.
O(n) is linear time, that means, that if we have n elements, it will take n operations to perform the task.
O(1) is constant time, that means, that amount of operations is indifferent to n.
It is also worth mentioning, that your code does not cover one edge case - when target is equal to zero.
Your code has linear complexity, because it scans all the element of the array, so at least n operations will be performed.
Here is a little refactored code:
int minSubArrayLen(int target, const std::vector<int>& nums) {
int left = 0, right = 0, size = nums.size();
int total = 0, answer = INT_MAX;
bool found = false;
while (right < size) {
total += nums[right];
if (total >= target) {
found = true;
while (total >= target) {
total -= nums[left];
++left;
}
answer = std::min(answer, right - left + 2);
}
++right;
}
return found ? answer : -1;
}

Related

Time complexity of using heaps to find Kth largest element

I have some different implementations of the code for finding the Kth largest element in an unsorted array. The three implementations I use all use either min/max heap, but I am having trouble figuring out the runtime complexity for one of them.
Implementation 1:
int findKthLargest(vector<int> vec, int k)
{
// build min-heap
make_heap(vec.begin(), vec.end(), greater<int>());
for (int i = 0; i < k - 1; i++) {
vec.pop_back();
}
return vec.back();
}
Implementation 2:
int findKthLargest(vector<int> vec, int k)
{
// build max-heap
make_heap(vec.begin(), vec.end());
for (int i = 0; i < k - 1; i++) {
// move max. elem to back (from front)
pop_heap(vec.begin(), vec.end());
vec.pop_back();
}
return vec.front();
}
Implementation 3:
int findKthLargest(vector<int> vec, int k)
{
// max-heap prio. q
priority_queue<int> pq(vec.begin(), vec.end());
for (int i = 0; i < k - 1; i++) {
pq.pop();
}
return pq.top();
}
From my reading, I am under the assumption that the runtime for the SECOND one is O(n) + O(klogn) = O(n + klogn). This is because building the max-heap is done in O(n) and popping it will take O(logn)*k if we do so 'k' times.
However, here is where I am getting confused. For the FIRST one, with a min-heap, I assume building the heap is O(n). Since it is a min-heap, larger elements are in the back. Then, popping the back element 'k' times will cost k*O(1) = O(k). Hence, the complexity is O(n + k).
And similarly, for the third one, I assume the complexity is also O(n + klogn) with the same reasoning I had for the max-heap.
But, some sources still say that this problem cannot be done faster than O(n + klogn) with heaps/pqs! In my FIRST example, I think this complexity is O(n + k), however. Correct me if I'm wrong. Need help thx.
Properly implemented, getting the kth largest element from a min-heap is O((n-k) * log(n)). Getting the kth largest element from a max-heap is O(k * log(n)).
Your first implementation is not at all correct. For example, if you wanted to get the largest element from the heap (k == 1), the loop body would never be executed. Your code assumes that the last element in the vector is the largest element on the heap. That is incorrect. For example, consider the heap:
1
3 2
That is a perfectly valid heap, which would be represented by the vector [1,3,2]. Your first implementation would not work to get the 1st or 2nd largest element from that heap.
The second solution looks like it would work.
Your first two solutions end up removing items from vec. Is that what you intended?
The third solution is correct. It takes O(n) to build the heap, and O((k - 1) log n) to remove the (k-1) largest items. And then O(1) to access the largest remaining item.
There is another way to do it, that is potentially faster in practice. The idea is:
build a min-heap of size k from the first k elements in vec
for each following element
if the element is larger than the smallest element on the heap
remove the smallest element from the heap
add the new element to the heap
return element at the top of the heap
This is O(k) to build the initial heap. Then it's O((n-k) log k) in the worst case for the remaining items. The worst case occurs when the initial vector is in ascending order. That doesn't happen very often. In practice, a small percentage of items are added to the heap, so you don't have to do all those removals and insertions.
Some heap implementations have a heap_replace method that combines the two steps of removing the top element and adding the new element. That reduces the complexity by a constant factor. (i.e. rather than an O(log k) removal followed by an O(log k) insertion, you get an constant time replacement of the top element, followed by an O(log k) sifting it down the heap).
This is heap solution for java. We remove all elements which are less than kth element from the min heap. After that we will have kth largest element at the top of the min heap.
class Solution {
int kLargest(int[] arr, int k) {
PriorityQueue<Integer> heap = new PriorityQueue<>((a, b)-> Integer.compare(a, b));
for(int a : arr) {
heap.add(a);
if(heap.size()>k) {
// remove smallest element in the heap
heap.poll();
}
}
// return kth largest element
return heap.poll();
}
}
The worst case time complexity will be O(NlogK) where N is total no of elements. You will be using 1 heapify operation when inserting initial k elements in heap. After that you'll be using 2 operations(1 insert and 1 remove). So this makes the worst case time complexity O(NlogK). You can improve it with some other methods and bring the average case time complexity of heap update to Θ(1). Read this for more info.
Quickselect: Θ(N)
If you're looking for a faster solution on average. Quickselect algorithm which is based on quick sort is a good option. It provides average case time complexity of O(N) and O(1) space complexity. Of course worst case time complexity is O(N^2) however randomized pivot(used in following code) yields very low probability for such scenario. Following is code for quickselect algo for finding kth largest element.
class Solution {
public int findKthLargest(int[] nums, int k) {
return quickselect(nums, k);
}
private int quickselect(int[] nums, int k) {
int n = nums.length;
int start = 0, end = n-1;
while(start<end) {
int ind = partition(nums, start, end);
if(ind == n-k) {
return nums[ind];
} else if(ind < n-k) {
start = ind+1;
} else {
end = ind-1;
}
}
return nums[start];
}
private int partition(int[] nums, int start, int end) {
int pivot = start + (int)(Math.random()*(end-start));
swap(nums, pivot, end);
int left=start;
for(int curr=start; curr<end; curr++) {
if(nums[curr]<nums[end]) {
swap(nums, left, curr);
left++;
}
}
swap(nums, left, end);
return left;
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}

finding runtime function involving a while loop

I'm trying to find runtime functions and corresponding big-O notations for two different algorithms that both find spans for each element on a stack. The X passed in is the list that the span is to be computed from and the S passed in is the list for the span. I think I know how to find most of what goes into the runtime functions and once I know what that is, I have a good understanding of how to get to big-O notation. What I need to understand is how to figure out the while loops involved. I think they usually involve logarithms, although I can't see why here because I've been going through with the worst cases being each element is larger than the previous one, so the spans are always getting bigger and I see no connection to logs. Here is what I have so far:
void span1(My_stack<int> X, My_stack<int> &S) { //Algorithm 1
int j = 0; //+1
for(int i = 0; i < X.size(); ++i) { //Find span for each index //n
j = 1; //+1
while((j <= i) && (X.at(i-j) <= X.at(i))) { //Check if span is larger //???
++j; //1
}
S.at(i) = j; //+1
}
}
void span2(My_stack<int> X, My_stack<int> &S) { //Algorithm 2
My_stack<int> A; //empty stack //+1
for(int i = 0; i < (X.size()); ++i) { //Find span for each index //n
while(!A.empty() && (X.at(A.top()) <= X.at(i))) { //???
A.pop(); //1
}
if(A.empty()) //+1
S.at(i) = i+1;
else
S.at(i) = i - A.top();
A.push(i); //+1
}
}
span1: f(n) = 1+n(1+???+1)
span2: f(n) = 1+n(???+1+1)
Assuming all stack operations are O(1):
span1: Outer loop executes n times. Inner loop upto i times for each value of i from 0 to n. Hence total time is proportional to sum of integers from 1 to n, i.e. O(n2)
span2: We need to think about this differently, since the scope of A is function-wide. A starts as empty, so can only be popped as many times as something is pushed onto it, i.e. the inner while loop can only be executed as many times as A.push is called, over the entirety of the function's execution time. However A.push is only called once every outer loop, i.e. n times - so the while loop can only execute n times. Hence the overall complexity is O(n).

Complexity and Big - O of an algorithm

So I am preparing for an exam and 25% of that exam is over Big-O and I'm kind of lost at how to get the complexity and Big-O from an algorithm. Below are examples with the answers, I just need an explanation of how to the answers came to be and reasoning as to why some things are done, this is the best explanation I can give because, as mentioned above, I don't know this very well:
int i =n; //this is 1 because it is an assignment (=)
while (i>0){ //this is log10(10)*(1 or 2) because while
i/=10; //2 bc / and = // loops are log base (whatever is being /='d
} //the answer to this one is 1+log10(n)*(1 or 2) or O(logn)
//so i know how to do this one, but im confused when while and for
//loops nested in each other
int i = n; int s = 0;
while (i>0){
for(j=1;j<=i;j++)s++;{
i/=2;
} //the answer to this one is 2n +log2(n) + 2 or O(n)
//also the i/=2 is outside for loop for this and the next one
int i = n; int s=0
while (i>0){
for(j=1;j<=n;++J) s++;
i/=2;
} //answer 1+nlogn or O(nlogn)
int i = n;
for(j=1;j<=n;j++)
while(i>o) i/=2;
//answer is 1+log2(n) or O(log(n))
for(j=1; <=n; ++j){
int i-n;
while(i>0) i/=2;
} //answer O(nlog(n))
Number 4: the for loop counts from 1 to N, so it is at least O(n). The while loop takes O(log n) the first time, but since i doesn't get reset, while loop has only has one iteration each successive time through the for loop. So basically O(n + log n), which simplifies to O(n).
Number 5: same as above, but now i does get reset each time, so you have O(log n) done N times: O(n log n).

Trying to understand the Binary Insertion Sort?

Could anyone please tell me how this code sorts the array? i don't get it! and how is this code reducing the complexity of a regular insertion sort?
// Function to sort an array a[] of size 'n'
void insertionSort(int a[], int n)
{
int i, loc, j, k, selected;
for (i = 1; i < n; ++i)
{
j = i - 1;
selected = a[i];
// find location where selected sould be inseretd
loc = binarySearch(a, selected, 0, j);
// Move all elements after location to create space
while (j >= loc)
{
a[j+1] = a[j];
j--;
}
a[j+1] = selected;
}
}
This code uses the fact that the portion of the array from zero, inclusive, to i, exclusive, is already sorted. That's why it can run binarySearch for the insertion location of a[i], rather than searching for it linearly.
This clever trick does not change the asymptotic complexity of the algorithm, because the part where elements from loc to i are moved remains linear. In the worst case (which happens when the array is sorted in reverse) each of the N insertion steps will make i moves, for a total of N(N-1)/2 moves.
The only improvement that this algorithm has over the classic insertion sort is the number of comparisons. If comparisons of objects being sorted are computationally expensive, this algorithm can significantly reduce the constant factor.

Time complexity of the given code

Can someone tell me complexity of the bellow code.
std::cin>>n1;
int ctr=0;
for(int i=2;i<=n1;i++)
{
if(i>=n/2&&ctr==0)
{
cout << " You entered a prime no";
break;
}
else if(n1%i==0)
{
ctr++;
cout<<i<<" ";
n1/=i;
}
}
Can someone suggest how to calculate the complexity of such loops which involve multiple if-else conditions?
The inner loop is O(1). The complexity of the outer loop depends on what the code does with n, and you didn't show the code, so it could be anything.
As to a general guideline: asymptotic complexity is always with respect to a quantity. Usually, this is taken to be input size (whatever that means for the problem being solved) and denoted n. In your case, it could very well be the variable n, seeing as it's used for the loop stop condition.
Once you know the quantity (the n) with respect to which you want complexity, it's simple. Operations which don't depend on n are O(1). Operations which do O(f) amount of work for each value of n are O(n * f), where f can indeed be a function of n. It gets more tricky with recursion, but this is the basic overview.
int n;
std::cin >> n;
// O(oo) e.g. O(infinite)
while( n > 0 ) {
// for loop is O(1)
for(int i = 1 ; i <= 9 ; i++) {
if( n % i == 0) {
//piece of code involving O(1)complexity.
}
}
// this makes the while loop O(1)
if ( n == 10000000000000 ) {
break;
}
}
this algorithm is O(1)
The Complexity of a for loop is O(n) where n is the number of iterations...
Here n=9 , but it is wrong to take as conclusion that for loop in general is stable (O(1)) and not relevant to the number of iterations