please help me in finding all the counts of beautiful permutation - c++

With an array consisting of integers where each integer occurs at most 2 times in the array, I have to count the number of beautiful permutations.
A permutation is beautiful if there is no index i such that Pi = Pi+1 where i belongs to [0, n-1).
struct hashFunction
{
size_t operator()(const vector<int>& myVector) const
{
std::hash<int> hasher;
size_t answer = 0;
for (int i : myVector)
{
answer ^= hasher(i) + 0x9e3779b9 +
(answer << 6) + (answer >> 2);
}
return answer;
}
};
bool beautiful(vector<int>& ds)
{
for (int i = 0; i < ds.size(); i++)
{
if (ds[i] == ds[i + 1])
{
return false;
}
}
return true;
}
void permutation(vector<int>& arr, int index,
unordered_set<vector<int>, hashFunction>& unorderedsetOfVectors)
{
if (unorderedsetOfVectors.find(arr) != unorderedsetOfVectors.end()) return;
if (index == arr.size())
{
if (beautiful(arr) == true)
{
unorderedsetOfVectors.insert(arr);
return;
}
}
for (int i = index; i < arr.size(); i++)
{
swap(arr[index], arr[i]);
permutation(arr, index + 1, unorderedsetOfVectors);
swap(arr[index], arr[i]);
}
}
int permutations(vector<int> arr)
{
unordered_set<vector<int>, hashFunction> unorderedsetOfVectors;
permutation(arr, 0, unorderedsetOfVectors);
return unorderedsetOfVectors.size() % 1000000007;
}
How can I optimize this code?

Related

Longest Palindrome in integer array

I want to find the largest palindrome in an integer array. I tried making my own algorithm and not looking at the online ones. But this is not working. I tried doing debugging but couldn't get it to work.
Sample input:
"1367611342142412431113424823782"
Output: 113421424124311
void palindrome()
{
int max = 0;
int len;
int start;
int end;
int st=0,en=0;
bool palin = false;
for(int i=0;i<size;i++)
{
for(int j=size-1; j>=0;j--)
{
if(array[i] == array[j])
{
start = i;
end = j;
while(j==i+1 || j+1 == i || j == i )
{
if(array[i] == array[j])
{
i++;
j--;
palin = true;
}
else
{
palin = false;
break;
}
}
i= start;
j= end;
}
if(palin == true)
{
len = end - start;
if(len>max)
{
cout<<" "<<st<<" "<<en<<endl;
st=i;
en =j;
max = len;
}
}
}
}
cout<<endl;
cout<<st<<" "<<en<<endl;
ofstream file("output.txt");
for(int i=st;i<=en;i++)
{
file<<array[i];
}
}
There is solution
#include <iostream>
#include <string>
struct Result
{
int fromIndex, toIndex;
Result(int fromIndex, int toIndex){
this->fromIndex = fromIndex;
this->toIndex = toIndex;
}
int length(){
return toIndex - fromIndex;
}
};
bool isPalindrome(std::string &s, int left, int right){
while(left <= right){
if(s[left] != s[right]){
return false;
}
left ++;
right --;
}
return true;
}
std::string solve(std::string &s){
int startIndex = 0;
int toIndex = s.size() - 1;
Result result(0,0);
while(true){
if(isPalindrome(s, startIndex, toIndex)){
if(result.length() < (toIndex - startIndex)){
result.fromIndex = startIndex;
result.toIndex = toIndex;
}
}
toIndex --;
if(toIndex <= startIndex){
toIndex = s.size() - 1;
startIndex++;
}
if(startIndex == s.size() - 1){
break;
}
}
std::string str = "";
for (int i = result.fromIndex; i <= result.toIndex; ++i)
{
str += s[i];
}
return str;
}
int main()
{
std::string s = "1367611342142412431113424823782";
std::string result = solve(s);
std::cout << "Longest palindrome is: "<< result;
return 0;
}
You need to think in more structural way. Split your task in to sub-tasks first. In this case there are to sub-tasks:
1. go over all possible combinations
2. check if this combination is a palindrome.
Each task is another function - this way it is easier to think, read code and debug.
(In case you want to write it to file - it is a third task!)
Here is the code for the "go over all possible combinations". I guess you will find yourself how to check a single array if it is a palindrome.
#include <iostream>
using namespace std;
bool isPalindrome(int* arr, int size);
bool findLargestPalindrome(int* arr, int size);
int main()
{
int arr[] = { 1,3,6,7,6,1,1,3,4,2,1,4,2,4,1,2,4,3,1,1,1,3,4,2,4,8,2,3,7,8,2 };
int arrSize = 31;
findLargestPalindrome(arr, arrSize);
}
bool findLargestPalindrome(int* arr, int size)
{
for (int testSize = size; testSize > 0; testSize--)
{
int startIndex = 0;
while (testSize + startIndex <= size)
{
int* arrayToTest = &(arr[startIndex]);
if (isPalindrome(arr, testSize))
{
//TODO: you found it - do with it whatever you want
return true;
}
startIndex++;
}
}
return false;
}
bool isPalindrome(int* arr, int size)
{
//TODO: your code for single palindrome
return false;
}

c++ Karatsuba Multiplication using Vectors

So i've been trying to write out an algorithm for the Karatsuba Multiplication algorithm, and i've been attempting to use vectors as my data structure to handle the really long numbers which will be input...
My program can do smaller numbers fine, however it really struggles with larger numbers, and i get a core dump (Seg Fault). It also outputs strange results when the left hand side number is smaller than the right hand side.
Got any ideas? Heres the code.
#include <iostream>
#include <string>
#include <vector>
#define max(a,b) ((a) > (b) ? (a) : (b))
using namespace std;
vector<int> add(vector<int> lhs, vector<int> rhs) {
int length = max(lhs.size(), rhs.size());
int carry = 0;
int sum_col;
vector<int> result;
while(lhs.size() < length) {
lhs.insert(lhs.begin(), 0);
}
while(rhs.size() < length) {
rhs.insert(rhs.begin(), 0);
}
for(int i = length-1; i >= 0; i--) {
sum_col = lhs[i] + rhs[i] + carry;
carry = sum_col/10;
result.insert(result.begin(), (sum_col%10));
}
if(carry) {
result.insert(result.begin(), carry);
}
int x = 0;
while(result[x] == 0) {
x++;
}
result.erase(result.begin(), result.begin()+x);
return result;
}
vector<int> subtract(vector<int> lhs, vector<int> rhs) {
int length = max(lhs.size(), rhs.size());
int diff;
vector<int> result;
while(lhs.size() < length) {
lhs.insert(lhs.begin(), 0);
}
while(rhs.size() < length) {
rhs.insert(rhs.begin(), 0);
}
for(int i = length-1; i >= 0; i--) {
diff = lhs[i] - rhs[i];
if(diff >= 0) {
result.insert(result.begin(), diff);
} else {
int j = i - 1;
while(j >= 0) {
lhs[j] = (lhs[j] - 1) % 10;
if(lhs[j] != 9) {
break;
} else {
j--;
}
}
result.insert(result.begin(), diff+10);
}
}
int x = 0;
while(result[x] == 0) {
x++;
}
result.erase(result.begin(), result.begin()+x);
return result;
}
vector<int> multiply(vector<int> lhs, vector<int> rhs) {
int length = max(lhs.size(), rhs.size());
vector<int> result;
while(lhs.size() < length) {
lhs.insert(lhs.begin(), 0);
}
while(rhs.size() < length) {
rhs.insert(rhs.begin(), 0);
}
if(length == 1) {
int res = lhs[0]*rhs[0];
if(res >= 10) {
result.push_back(res/10);
result.push_back(res%10);
return result;
} else {
result.push_back(res);
return result;
}
}
vector<int>::const_iterator first0 = lhs.begin();
vector<int>::const_iterator last0 = lhs.begin() + (length/2);
vector<int> lhs0(first0, last0);
vector<int>::const_iterator first1 = lhs.begin() + (length/2);
vector<int>::const_iterator last1 = lhs.begin() + ((length/2) + (length-length/2));
vector<int> lhs1(first1, last1);
vector<int>::const_iterator first2 = rhs.begin();
vector<int>::const_iterator last2 = rhs.begin() + (length/2);
vector<int> rhs0(first2, last2);
vector<int>::const_iterator first3 = rhs.begin() + (length/2);
vector<int>::const_iterator last3 = rhs.begin() + ((length/2) + (length-length/2));
vector<int> rhs1(first3, last3);
vector<int> p0 = multiply(lhs0, rhs0);
vector<int> p1 = multiply(lhs1,rhs1);
vector<int> p2 = multiply(add(lhs0,lhs1),add(rhs0,rhs1));
vector<int> p3 = subtract(p2,add(p0,p1));
for(int i = 0; i < 2*(length-length/2); i++) {
p0.push_back(0);
}
for(int i = 0; i < (length-length/2); i++) {
p3.push_back(0);
}
result = add(add(p0,p1), p3);
int x = 0;
while(result[x] == 0) {
x++;
}
result.erase(result.begin(), result.begin()+x);
return result;
}
int main() {
vector<int> lhs;
vector<int> rhs;
vector<int> v;
lhs.push_back(2);
lhs.push_back(5);
lhs.push_back(2);
lhs.push_back(5);
lhs.push_back(2);
lhs.push_back(5);
lhs.push_back(2);
lhs.push_back(5);
rhs.push_back(1);
rhs.push_back(5);
rhs.push_back(1);
rhs.push_back(5);
rhs.push_back(1);
rhs.push_back(5);
rhs.push_back(1);
v = multiply(lhs, rhs);
for(size_t i = 0; i < v.size(); i++) {
cout << v[i];
}
cout << endl;
return 0;
}
There are several issues with subtract. Since you don't have any way to represent a negative number, if rhs is greater than lhs your borrow logic will access before the beginning of of the data for lhs.
You can also march past the end of result when removing leading zeros if the result is 0.
Your borrow calculation is wrong, since -1 % 10 will return -1, and not 9, if lhs[j] is 0. A better way to calculate that is add 9 (one less than the value you're dividing by), lhs[j] = (lhs[j] + 9) % 10;.
In an unrelated note, you can simplify your range iteration calculations. Since last0 and first1 have the same value, you can use last0 for both, and last1 is lhs.end(). This simpifies lhs1 to
vector<int> lhs1(last0, lhs.end());
and you can get rid of first1 and last1. Same goes for the rhs iterators.

Combination of a Collection with Repetitions

There are a lot of links on http://stackoverflow.com for how to do combinations: Generating combinations in c++ But these links presume to draw from an infinite set without repetition. When given a finite collection which does have repetition, these algorithms construct duplicates. For example you can see the accepted solution to the linked question failing on a test case I constructed here: http://ideone.com/M7CyFc
Given the input set: vector<int> row {40, 40, 40, 50, 50, 60, 100};
I expect to see:
40 40 40
40 40 50
40 40 60
40 40 100
40 50 50
40 50 60
40 50 100
40 60 100
50 50 60
50 50 100
50 60 100
Obviously I can use the old method store the output and check for duplicates as I generate, but this requires a lot of extra memory and processing power. Is there an alternative that C++ provides me?
Combinations by definition do not respect order. This frees us to arrange the numbers in any order we see fit. Most notably we can rely on to provide a combination rank. Certainly the most logical way to rank combinations is in sorted order, so we'll be depending upon our inputs being sorted.
There is already precedent for this in the standard library. For example lower_bound which we will actually use in this solution. When used generally this may however require the user to sort before passing.
The function we will write to do this will take in iterators to the sorted collection which the next combination is to be drawn from, and iterators to the current combination. We'd also need the size but that can be derived from the distance between the combination's iterators.
template <typename InputIt, typename OutputIt>
bool next_combination(InputIt inFirst, InputIt inLast, OutputIt outFirst, OutputIt outLast) {
assert(distance(inFirst, inLast) >= distance(outFirst, outLast));
const auto front = make_reverse_iterator(outFirst);
const auto back = make_reverse_iterator(outLast);
auto it = mismatch(back, front, make_reverse_iterator(inLast)).first;
const auto result = it != front;
if (result) {
auto ub = upper_bound(inFirst, inLast, *it);
copy(ub, next(ub, distance(back, it) + 1), next(it).base());
}
return result;
}
This function is written in the format of the other algorithm functions, so any container that supports bidirectional iterators can be used with it. For our example though we'll use: const vector<unsigned int> row{ 40U, 40U, 40U, 50U, 50U, 60U, 100U }; which is, necessarily, sorted:
vector<unsigned int> it{ row.cbegin(), next(row.cbegin(), 3) };
do {
copy(it.cbegin(), it.cend(), ostream_iterator<unsigned int>(cout, " "));
cout << endl;
} while(next_combination(row.cbegin(), row.cend(), it.begin(), it.end()));
Live Example
After writing this answer I've done a bit more research and found N2639 which proposes a standardized next_combination, which was:
Actively under consideration for a future TR, when work on TR2 was deferred pending
Viewed positively at the time
Due at least one more revision before any adoption
Needed some reworking to reflect the addition of C++11 language facilities
[Source]
Using N2639's reference implementation requires mutability, so we'll use: vector<unsigned int> row{ 40U, 40U, 40U, 50U, 50U, 60U, 100U };. And our example code becomes:
vector<unsigned int>::iterator it = next(row.begin(), 3);
do {
copy(row.begin(), it, ostream_iterator<unsigned int>(cout, " "));
cout << endl;
} while(next_combination(row.begin(), it, row.end()));
Live Example
You can do something like this (maybe avoiding the recursion):
#include <iostream>
#include <vector>
#include <algorithm>
using std::cout;
using std::vector;
void perm( const vector<int> &v, vector<vector<int>> &p, vector<int> &t, int k, int d) {
for ( int i = k; i < v.size(); ++i ) {
// skip the repeted value
if ( i != k && v[i] == v[i-1]) continue;
t.push_back(v[i]);
if ( d > 0 ) perm(v,p,t,i+1,d-1);
else p.push_back(t);
t.pop_back();
}
}
int main() {
int r = 3;
vector<int> row {40, 40, 40, 50, 50, 60, 100};
vector<vector<int>> pp;
vector<int> pe;
std::sort(row.begin(),row.end()); // that's necessary
perm(row,pp,pe,0,r-1);
cout << pp.size() << '\n';
for ( auto & v : pp ) {
for ( int i : v ) {
cout << ' ' << i;
}
cout << '\n';
}
return 0;
}
Which outputs:
11
40 40 40
40 40 50
40 40 60
40 40 100
40 50 50
40 50 60
40 50 100
40 60 100
50 50 60
50 50 100
50 60 100
I know, it's far from efficient, but if you get the idea you may come out with a better implementation.
Here is a class I once wrote in my university times to handle bosons. It's quite long, but it's generally usable and seems to work well. Additionally, it also gives ranking and unranking functionality. Hope that helps -- but don't ever ask me what I was doing back then ... ;-)
struct SymmetricIndex
{
using StateType = std::vector<int>;
using IntegerType = int;
int M;
int N;
StateType Nmax;
StateType Nmin;
IntegerType _size;
std::vector<IntegerType> store;
StateType state;
IntegerType _index;
SymmetricIndex() = default;
SymmetricIndex(int _M, int _N, int _Nmax = std::numeric_limits<int>::max(), int _Nmin = 0)
: SymmetricIndex(_M, _N, std::vector<int>(_M + 1, std::min(_Nmax, _N)), StateType(_M + 1, std::max(_Nmin, 0)))
{}
SymmetricIndex(int _M, int _N, StateType const& _Nmax, StateType const& _Nmin)
: N(_N)
, M(_M)
, Nmax(_Nmax)
, Nmin(_Nmin)
, store(addressArray())
, state(M)
, _index(0)
{
reset();
_size = W(M, N);
}
friend std::ostream& operator<<(std::ostream& os, SymmetricIndex const& sym);
SymmetricIndex& reset()
{
return setBegin();
}
bool setBegin(StateType& state, StateType const& Nmax, StateType const& Nmin) const
{
int n = N;
for (int i = 0; i<M; ++i)
{
state[i] = Nmin[i];
n -= Nmin[i];
}
for (int i = 0; i<M; ++i)
{
state[i] = std::min(n + Nmin[i], Nmax[i]);
n -= Nmax[i] - Nmin[i];
if (n <= 0)
break;
}
return true;
}
SymmetricIndex& setBegin()
{
setBegin(state, Nmax, Nmin);
_index = 0;
return *this;
}
bool isBegin() const
{
return _index==0;
}
bool setEnd(StateType& state, StateType const& Nmax, StateType const& Nmin) const
{
int n = N;
for (int i = 0; i < M; ++i)
{
state[i] = Nmin[i];
n -= Nmin[i];
}
for (int i = M - 1; i >= 0; --i)
{
state[i] = std::min(n + Nmin[i], Nmax[i]);
n -= Nmax[i] - Nmin[i];
if (n <= 0)
break;
}
return true;
}
SymmetricIndex& setEnd()
{
setEnd(state, Nmax, Nmin);
_index = _size - 1;
return *this;
}
bool isEnd() const
{
return _index == _size-1;
}
IntegerType index() const
{
return _index;
}
IntegerType rank(StateType const& state) const
{
IntegerType ret = 0;
int n = 0;
for (int i = 0; i < M; ++i)
{
n += state[i];
for (int k = Nmin[i]; k < state[i]; ++k)
ret += store[(n - k) * M + i];
}
return ret;
}
IntegerType rank() const
{
return rank(state);
}
StateType unrank(IntegerType rank) const
{
StateType ret(M);
int n = N;
for (int i = M-1; i >= 0; --i)
{
int ad = 0;
int k = std::min(Nmax[i] - 1, n);
for (int j = Nmin[i]; j <= k; ++j)
ad+=store[(n - j) * M + i];
while (ad > rank && k >= Nmin[i])
{
ad -= store[(n - k) * M + i];
--k;
}
rank -= ad;
ret[i] = k+1;
n -= ret[i];
if (n <= 0)
{
return ret;
}
}
return ret;
}
IntegerType size() const
{
return _size;
}
operator StateType& ()
{
return state;
}
auto operator[](int i) -> StateType::value_type& { return state[i]; }
operator StateType const& () const
{
return state;
}
auto operator[](int i) const -> StateType::value_type const& { return state[i]; }
bool nextState(StateType& state, StateType const& Nmax, StateType const& Nmin) const
{
//co-lexicographical ordering with Nmin and Nmax:
// (1) find first position which can be decreased
// then we have state[k] = Nmin[k] for k in [0,pos]
int pos = M - 1;
for (int k = 0; k < M - 1; ++k)
{
if (state[k] > Nmin[k])
{
pos = k;
break;
}
}
// if nothing found to decrease, return
if (pos == M - 1)
{
return false;
}
// (2) find first position after pos which can be increased
// then we have state[k] = Nmin[k] for k in [0,pos]
int next = 0;
for (int k = pos + 1; k < M; ++k)
{
if (state[k] < Nmax[k])
{
next = k;
break;
}
}
if (next == 0)
{
return false;
}
--state[pos];
++state[next];
// (3) get occupation in [pos,next-1] and set to Nmin[k]
int n = 0;
for (int k = pos; k < next; ++k)
{
n += state[k] - Nmin[k];
state[k] = Nmin[k];
}
// (4) fill up from the start
for (int i = 0; i<M; ++i)
{
if (n <= 0)
break;
int add = std::min(n, Nmax[i] - state[i]);
state[i] += add;
n -= add;
}
return true;
}
SymmetricIndex& operator++()
{
bool inc = nextState(state, Nmax, Nmin);
if (inc) ++_index;
return *this;
}
SymmetricIndex operator++(int)
{
auto ret = *this;
this->operator++();
return ret;
}
bool previousState(StateType& state, StateType const& Nmax, StateType const& Nmin) const
{
////co-lexicographical ordering with Nmin and Nmax:
// (1) find first position which can be increased
// then we have state[k] = Nmax[k] for k in [0,pos-1]
int pos = M - 1;
for (int k = 0; k < M - 1; ++k)
{
if (state[k] < Nmax[k])
{
pos = k;
break;
}
}
// if nothing found to increase, return
if (pos == M - 1)
{
return false;
}
// (2) find first position after pos which can be decreased
// then we have state[k] = Nmin[k] for k in [pos+1,next]
int next = 0;
for (int k = pos + 1; k < M; ++k)
{
if (state[k] > Nmin[k])
{
next = k;
break;
}
}
if (next == 0)
{
return false;
}
++state[pos];
--state[next];
int n = 0;
for (int k = 0; k <= pos; ++k)
{
n += state[k] - Nmin[k];
state[k] = Nmin[k];
}
if (n == 0)
{
return true;
}
for (int i = next-1; i>=0; --i)
{
int add = std::min(n, Nmax[i] - state[i]);
state[i] += add;
n -= add;
if (n <= 0)
break;
}
return true;
}
SymmetricIndex operator--()
{
bool dec = previousState(state, Nmax, Nmin);
if (dec) --_index;
return *this;
}
SymmetricIndex operator--(int)
{
auto ret = *this;
this->operator--();
return ret;
}
int multinomial() const
{
auto v = const_cast<std::remove_reference<decltype(state)>::type&>(state);
return multinomial(v);
}
int multinomial(StateType& state) const
{
int ret = 1;
int n = state[0];
for (int i = 1; i < M; ++i)
{
n += state[i];
ret *= binomial(n, state[i]);
}
return ret;
}
SymmetricIndex& random(StateType const& _Nmin)
{
static std::mt19937 rng;
state = _Nmin;
int n = std::accumulate(std::begin(state), std::end(state), 0);
auto weight = [&](int i) { return state[i] < Nmax[i] ? 1 : 0; };
for (int i = n; i < N; ++i)
{
std::discrete_distribution<int> d(N, 0, N, weight);
++state[d(rng)];
}
_index = rank();
return *this;
}
SymmetricIndex& random()
{
return random(Nmin);
}
private:
IntegerType W(int m, int n) const
{
if (m < 0 || n < 0) return 0;
else if (m == 0 && n == 0) return 1;
else if (m == 0 && n > 0) return 0;
//else if (m > 0 && n < Nmin[m-1]) return 0;
else
{
//static std::map<std::tuple<int, int>, IntegerType> memo;
//auto it = memo.find(std::make_tuple(k, m));
//if (it != std::end(memo))
//{
// return it->second;
//}
IntegerType ret = 0;
for (int i = Nmin[m-1]; i <= std::min(Nmax[m-1], n); ++i)
ret += W(m - 1, n - i);
//memo[std::make_tuple(k, m)] = ret;
return ret;
}
}
IntegerType binomial(int m, int n) const
{
static std::vector<int> store;
if (store.empty())
{
std::function<IntegerType(int, int)> bin = [](int n, int k)
{
int res = 1;
if (k > n - k)
k = n - k;
for (int i = 0; i < k; ++i)
{
res *= (n - i);
res /= (i + 1);
}
return res;
};
store.resize(M*M);
for (int i = 0; i < M; ++i)
{
for (int j = 0; j < M; ++j)
{
store[i*M + j] = bin(i, j);
}
}
}
return store[m*M + n];
}
auto addressArray() const -> std::vector<int>
{
std::vector<int> ret((N + 1) * M);
for (int n = 0; n <= N; ++n)
{
for (int m = 0; m < M; ++m)
{
ret[n*M + m] = W(m, n);
}
}
return ret;
}
};
std::ostream& operator<<(std::ostream& os, SymmetricIndex const& sym)
{
for (auto const& i : sym.state)
{
os << i << " ";
}
return os;
}
Use it like
int main()
{
int M=4;
int N=3;
std::vector<int> Nmax(M, N);
std::vector<int> Nmin(M, 0);
Nmax[0]=3;
Nmax[1]=2;
Nmax[2]=1;
Nmax[3]=1;
SymmetricIndex sym(M, N, Nmax, Nmin);
while(!sym.isEnd())
{
std::cout<<sym<<" "<<sym.rank()<<std::endl;
++sym;
}
std::cout<<sym<<" "<<sym.rank()<<std::endl;
}
This will output
3 0 0 0 0 (corresponds to {40,40,40})
2 1 0 0 1 (-> {40,40,50})
1 2 0 0 2 (-> {40,50,50})
2 0 1 0 3 ...
1 1 1 0 4
0 2 1 0 5
2 0 0 1 6
1 1 0 1 7
0 2 0 1 8
1 0 1 1 9
0 1 1 1 10 (-> {50,60,100})
DEMO
Note that I assumed here an ascending mapping of your set elements (i.e. the number 40's is given by index 0, the number of 50's by index 1, and so on).
More precisely: Turn your list into a map<std::vector<int>, int> like
std::vector<int> v{40,40,40,50,50,60,100};
std::map<int, int> m;
for(auto i : v)
{
++m[i];
}
Then use
int N = 3;
int M = m.size();
std::vector<int> Nmin(M,0);
std::vector<int> Nmax;
std::vector<int> val;
for(auto i : m)
{
Nmax.push_back(m.second);
val.push_back(m.first);
}
SymmetricIndex sym(M, N, Nmax, Nmin);
as input to the SymmetricIndex class.
To print the output, use
while(!sym.isEnd())
{
for(int i=0; i<M; ++i)
{
for(int j = 0; j<sym[i]; ++j)
{
std::cout<<val[i]<<" ";
}
}
std::cout<<std::endl;
}
for(int i=0; i<M; ++i)
{
for(int j = 0; j<sym[i]; ++j)
{
std::cout<<val[i]<<" ";
}
}
std::cout<<std::endl;
All untested, but it should give the idea.

Algorithm that builds heap

I am trying to implement build_max_heap function that creates the heap( as it is written in Cormen's "introduction do algorithms" ). But I am getting strange error and i could not localize it. My program successfully give random numbers to table, show them but after build_max_heap() I am getting strange numbers, that are probably because somewhere my program reached something out of the table, but I can not find this error. I will be glad for any help.
For example I get the table:
0 13 18 0 22 15 24 19 5 23
And my output is:
24 7 5844920 5 22 15 18 19 0 23
My code:
#include <iostream>
#include <ctime>
#include <stdlib.h>
const int n = 12; // the length of my table, i will onyl use indexes 1...n-1
struct heap
{
int *tab;
int heap_size;
};
void complete_with_random(heap &heap2)
{
srand(time(NULL));
for (int i = 1; i <= heap2.heap_size; i++)
{
heap2.tab[i] = rand() % 25;
}
heap2.tab[0] = 0;
}
void show(heap &heap2)
{
for (int i = 1; i < heap2.heap_size; i++)
{
std::cout << heap2.tab[i] << " ";
}
}
int parent(int i)
{
return i / 2;
}
int left(int i)
{
return 2 * i;
}
int right(int i)
{
return 2 * i + 1;
}
void max_heapify(heap &heap2, int i)
{
if (i >= heap2.heap_size || i == 0)
{
return;
}
int l = left(i);
int r = right(i);
int largest;
if (l <= heap2.heap_size || heap2.tab[l] > heap2.tab[i])
{
largest = l;
}
else
{
largest = i;
}
if (r <= heap2.heap_size || heap2.tab[r] > heap2.tab[i])
{
largest = r;
}
if (largest != i)
{
std::swap(heap2.tab[i], heap2.tab[largest]);
max_heapify(heap2, largest);
}
}
void build_max_heap(heap &heap2)
{
for (int i = heap2.heap_size / 2; i >= 1; i--)
{
max_heapify(heap2, i);
}
}
int main()
{
heap heap1;
heap1.tab = new int[n];
heap1.heap_size = n - 1;
complete_with_random(heap1);
show(heap1);
std::cout << std::endl;
build_max_heap(heap1);
show(heap1);
}
Indeed, the table is accessed with out-of-bounds indexes.
if (l <= heap2.heap_size || heap2.tab[l] > heap2.tab[i])
^^
I think you meant && in this condition.
The same for the next branch with r.
In case you're still having problems, below is my own implementation that you might use for reference. It was also based on Cormen et al. book, so it's using more or less the same terminology. It may have arbitrary types for the actual container, the comparison and the swap functions. It provides a public queue-like interface, including key incrementing.
Because it's part of a larger software collection, it's using a few entities that are not defined here, but I hope the algorithms are still clear. CHECK is only an assertion mechanism, you can ignore it. You may also ignore the swap member and just use std::swap.
Some parts of the code are using 1-based offsets, others 0-based, and conversion is necessary. The comments above each method indicate this.
template <
typename T,
typename ARRAY = array <T>,
typename COMP = fun::lt,
typename SWAP = fun::swap
>
class binary_heap_base
{
protected:
ARRAY a;
size_t heap_size;
SWAP swap_def;
SWAP* swap;
// 1-based
size_t parent(const size_t n) { return n / 2; }
size_t left (const size_t n) { return n * 2; }
size_t right (const size_t n) { return n * 2 + 1; }
// 1-based
void heapify(const size_t n = 1)
{
T& x = a[n - 1];
size_t l = left(n);
size_t r = right(n);
size_t select =
(l <= heap_size && COMP()(x, a[l - 1])) ?
l : n;
if (r <= heap_size && COMP()(a[select - 1], a[r - 1]))
select = r;
if (select != n)
{
(*swap)(x, a[select - 1]);
heapify(select);
}
}
// 1-based
void build()
{
heap_size = a.length();
for (size_t n = heap_size / 2; n > 0; n--)
heapify(n);
}
// 1-based
size_t advance(const size_t k)
{
size_t n = k;
while (n > 1)
{
size_t pn = parent(n);
T& p = a[pn - 1];
T& x = a[n - 1];
if (!COMP()(p, x)) break;
(*swap)(p, x);
n = pn;
}
return n;
}
public:
binary_heap_base() { init(); set_swap(); }
binary_heap_base(SWAP& s) { init(); set_swap(s); }
binary_heap_base(const ARRAY& a) { init(a); set_swap(); }
binary_heap_base(const ARRAY& a, SWAP& s) { init(a); set_swap(s); }
void init() { a.init(); build(); }
void init(const ARRAY& a) { this->a = a; build(); }
void set_swap() { swap = &swap_def; }
void set_swap(SWAP& s) { swap = &s; }
bool empty() { return heap_size == 0; }
size_t size() { return heap_size; }
size_t length() { return heap_size; }
void reserve(const size_t len) { a.reserve(len); }
const T& top()
{
CHECK (heap_size != 0, eshape());
return a[0];
}
T pop()
{
CHECK (heap_size != 0, eshape());
T x = a[0];
(*swap)(a[0], a[heap_size - 1]);
heap_size--;
heapify();
return x;
}
// 0-based
size_t up(size_t n, const T& x)
{
CHECK (n < heap_size, erange());
CHECK (!COMP()(x, a[n]), ecomp());
a[n] = x;
return advance(n + 1) - 1;
}
// 0-based
size_t push(const T& x)
{
if (heap_size == a.length())
a.push_back(x);
else
a[heap_size] = x;
return advance(++heap_size) - 1;
}
};

Unique sort order of array c++

How would I sort an array of integers (0,1,2,3,4,5) in a monge shuffle type order (greatest odd to least odd, then least even to greatest even) like (5,3,1,0,2,4). Im having trouble trying to solve this problem.
Ive tried so far:
void mongeShuffle(int A[], int B[], int size)
{
int i = 0; // i is the index of the arr
while(i < size)
{
if(A[i] % 2 == 1)
{
B[i] = A[i];
i++;
}
else
{
B[i] = A[i -1];
i++;
}
}
}
In c++ you can use algorithm header to use sort function and supply your custom comparator. Something like this:
#include <algorithm>
#include <iostream>
bool my_comp (int a, int b)
{
if( a%2 == 1 && b%2 == 1)
{
// Both odd
return a > b;
}
else if( a%2 == 0 && b%2 == 0)
{
// Both even
return a < b;
}
else return a%2 == 1;
}
int main()
{
int A[] = {0,1,2,3,4,5};
std::sort(A, A + 6, my_comp);
for(int i: A)
{
std::cout << i << std::endl;
}
}
You need to shuffle based on the indices being even or odd, not the values.
#include <iostream>
void mongeShuffle(int A[], int B[], int size)
{
for(int i = 0; i < size; ++i)
{
if(i % 2 == 0)
{
B[(size+i)/2] = A[i];
}
else
{
B[size/2 - i/2 - 1] = A[i];
}
}
}