Related
I'm a student in the 10th grade and our teacher assigned some exercises. I'm pretty advanced in my class but one exercise is just isn't coming together as I want. The exercise is as follows:
Given the numbers between 100,000 and 200,000, find the number with the most divisors (as in which number can be divided with the most numbers, any number).
I wrote something but it executes in 32 seconds(!) and I just can't figure out the logic behind it (I can't even check if the answer is correct).
This is the code that I wrote:
void f3() {
int mostcount = 0, most, divisors = 0;
for (int i = 100000; i <= 200000; i++) {
for (int j = 1; j<=i/2; j++) {
if (i % j == 0) {
divisors++;
}
}
if (divisors > mostcount) {
mostcount = divisors;
most = i;
}
divisors = 0;
}
cout << most << endl;
return;
}
The output:
166320
Edit: My question is how can I reduce the runtime?
I'd be really thankful if you could explain your answer if you do decide to help, instead of just saying that I could do this with an XYZ type binary tree.
Since you tagged this with performance...
You can find all the prime factors of your input value (and the number of times they occur), and calculate the number of ALL divisors by multiplying those counts+1. This example cut the time by almost 5 times!
void f() {
int mostcount = 0, most = 0;
for (int i = 100000; i <= 200000; i++) {
int divisors = 1;
int x = i;
int limit = sqrt(i);
int count = 0;
for (int j = 2; j <= limit; j++) {
int count = 0;
while (x % j == 0) {
count++;
x /= j;
limit = sqrt(x);
}
divisors *= count + 1;
if (j > 2)
++j;
}
if (x > 1)
divisors *= 2;
if (divisors > mostcount) {
mostcount = divisors;
most = i;
}
}
cout << most << ", " << mostcount << endl;
return;
}
If you find a list of prime numbers, you can cut that time in half:
static vector<int> primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449 };
void f() {
int mostcount = 0, most;
for (int i = 100000; i <= 200000; i++) {
int divisors = 1;
int x = i;
int limit = sqrt(i);
for (int j: primes) {
if (j > limit) break;
int count = 0;
while (x % j == 0) {
count++;
x /= j;
}
limit = sqrt(x);
divisors *= count + 1;
}
if(x > 1)
divisors *= 2;
if (divisors > mostcount) {
mostcount = divisors;
most = i;
}
}
cout << most << ", " << mostcount << endl;
return;
}
Explanation: let's take 166320. It's prime factors are:
2 (4 times)
3 (3 times)
5 (once)
7 (once)
11 (once)
Here, 2 produces 5 combination (it may go into the divisor 0 to 4 times), 3 - 3 combinations, and so on.
So you get 5 * 4 * 2 * 2 * 2 = 160 divisors. Strictly speaking, you should add one more - the input number itself.
Using #AhmedAEK 's response:
replace j<=i/2 with j<=sqrt(i), you only need to loop up to that, also #include <math.h> at the top, you also need to multiply the total divisors by 2, since there is a number above the sqrt that reflects the number below the sqrt. ie: 1000 is 10 x 100.
void f3() {
int mostcount = 0, most, divisors = 0;
for (int i = 100000; i <= 200000; i++) {
for (int j = 2; j<=sqrt(i); j++) {
if (i % j == 0) {
divisors++;
}
}
if (divisors > mostcount) {
mostcount = divisors;
most = i;
}
divisors = 0;
}
cout << most << endl;
return;
}
I try to use Jacobian matrix to solve the logistic parameter y=k/(1+exp(-rt+b)) for the non linear regression using GSL c++ library without success possibly the respective derivatives to three variable k,r, and b are wrong , below are my C++ code snippet .
If I set the fdf.df=NULL;
I can obtains the non-optimised parameter of which I have compared with known Fortran solver , the k value seemed not optimised . Could someone suggest how to code properly the Jacobian matrix under
int expb_df please?
#include<gsl/gsl_vector.h>
#include<gsl/gsl_matrix.h>
#include <gsl/gsl_randist.h>
#include<gsl/gsl_rng.h>
#include<gsl/gsl_blas.h>
#include<gsl/gsl_multifit_nlinear.h>
vector<int> vec_indata = {3, 1, 0, 0, 3, 1, 0, 0, 0, 0, 2, 2, 0, 0, 4, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
2, 4, 3, 4, 14, 5, 28, 10, 6, 18, 12, 20, 9, 39, 41, 190, 125, 120, 117, 110, 130, 153, 123, 212, 106,
172, 235, 130, 159, 150, 156, 140, 142, 208, 217, 150, 179, 131, 170, 156, 109, 118, 184, 153, 134, 170,
85, 110, 69, 54, 84, 36, 57, 50, 71, 88, 51, 38, 40, 31, 94, 57, 69, 105, 122, 55, 30, 45, 39, 68, 54,
67, 70, 16, 37, 40, 36, 17, 22, 47, 37, 31, 50, 78, 48, 60, 172, 187, 15, 10, 103, 30, 57, 38, 20, 93,
277, 19, 37, 19, 7, 7, 2, 31, 33, 43, 8, 41, 11, 10, 14, 6, 21, 16, 15, 3, 6, 4, 6, 10, 18, 3, 2, 1, 3,
5, 10, 5, 5, 6,3,6,13,8,14,7,4,5,3,18,9,15,21,15,16,9,21,23,13,7,39,13,8,12,9,14,2,1,21,15,25,7,13,
11,9,11,15,20,26,25,12,7,16,5,9,8,10,7,11,6,5,10,11,17,6,14,6,14,11,6,6,62,100,24};
int expb_f(const gsl_vector *x, void *indata, gsl_vector *f) {
size_t n = ((struct idata*)indata)->n;
double *t = ((struct idata*)indata)->t;
double *y = ((struct idata*)indata)->y;
double k = gsl_vector_get(x, 0);
double r = gsl_vector_get(x, 1);
double b = gsl_vector_get(x, 2);
size_t i;
for (int i = 0; i < n; i++) {
/* logistic Model y=k/(1+exp(-r*t+b)) */
double y_hat = k / (1 + std::exp(-r * t[i] + b));
gsl_vector_set(f, i, y_hat - y[i]);
}
return GSL_SUCCESS;
}
int expb_df(const gsl_vector * x, void *data, gsl_matrix * J) {
size_t n = ((struct idata*)data)->n;
double *t = ((struct idata*)data)->t;
double *y = ((struct idata*)data)->y;
double k = gsl_vector_get(x, 0);
double r = gsl_vector_get(x, 1);
double b = gsl_vector_get(x, 2);
size_t i;
for (int i = 0; i < n; i++) {
double dv = -1 * std::pow((1 + std::exp(-r * t[i])), -2);
double e = std::exp(-r * t[i] + b);
gsl_matrix_set(J, i, 0, 1);
gsl_matrix_set(J, i, 1, -t[i]*e);
gsl_matrix_set(J, i, 2, -e);
}
return GSL_SUCCESS;
}
void callback(const size_t iter, void *params,
const gsl_multifit_nlinear_workspace *w) {
String out_txt;
gsl_vector *f = gsl_multifit_nlinear_residual(w);
gsl_vector *x = gsl_multifit_nlinear_position(w);
double rcond;
/* compute reciprocal condition number of J(x) */
// gsl_multifit_nlinear_rcond(&rcond, w);
out_txt = "Iter " + String(iter) + " k=" + String(gsl_vector_get(x, 0)) +
" r=" + String(gsl_vector_get(x, 1)) + " b=" +
String(gsl_vector_get(x, 2)) + " ," + String(gsl_blas_dnrm2(f)) +
"\r\n" + out_txt;
}
void FitLogistic() {
const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;
gsl_multifit_nlinear_workspace *w;
gsl_multifit_nlinear_fdf fdf;
gsl_multifit_nlinear_parameters fdf_params =
gsl_multifit_nlinear_default_parameters();
size_t N = size(vec_indata);
const size_t n = N;
const size_t p = 3;
gsl_vector *f;
gsl_matrix *J;
gsl_matrix *covar = gsl_matrix_alloc(p, p);
double t[N], y[N], weights[N];
struct idata d = {
n, t, y
};
double x_init[3] = {20000, 0.01, 1};
gsl_vector_view x = gsl_vector_view_array(x_init, p);
gsl_vector_view wts = gsl_vector_view_array(weights, n);
double chisq, chisq0;
int status, info;
size_t i;
const double xtol = 1e-8;
const double gtol = 1e-8;
const double ftol = 0.0;
/* define the function to be minimized */
fdf.f = expb_f;
// jacobian matrix
fdf.df=NULL;
//fdf.df = expb_df;
fdf.fvv = NULL;
fdf.n = n;
fdf.p = p;
fdf.params = &d;
int cum_actual_cnt = 0;
// ShowMessage(String(N));
for (i = 0; i < N; i++) {
// t[i] = i*N/(n-1);
t[i] = i;
y[i] = vec_indata.at(i) + cum_actual_cnt;
cum_actual_cnt += vec_indata.at(i);
weights[i] = 1 / ((0.1 * y[i]) * (0.1 * y[i]));
}
// ShowMessage(String(y[N-1]));
/* allocate workspace with default parameters */
w = gsl_multifit_nlinear_alloc(T, &fdf_params, n, p);
/* initialize solver with starting point and weights */
gsl_multifit_nlinear_init(&x.vector, &fdf, w);
// gsl_multifit_nlinear_winit(&x.vector, &wts.vector, &fdf, w);
/* solve the system with a maximum of 1000 iterations */
status = gsl_multifit_nlinear_driver(1000, xtol, gtol, ftol, callback, NULL,
&info, w);
ShowMessage("Fit Status " + String(gsl_strerror(status)) + " " +
gsl_multifit_nlinear_name(w) + "/" + gsl_multifit_nlinear_trs_name(w));
/* compute covariance of best fit parameters */
J = gsl_multifit_nlinear_jac(w);
gsl_multifit_nlinear_covar(J, 0.0, covar);
gsl_multifit_nlinear_free(w);
}
After adjusting for the error in the partial derivative with respect to k,r,and b , I manage to obtain the output result exactly similar to above code which was coded without assigning the Jacobian matrix or putting fdf.df=NULL; I am not able to ascertain if the solution is optimum or not , may be someone is able to comment , thanks
fdf.df = expb_df;
for (int i = 0; i < n; i++) {
double dv = std::pow((1 + std::exp(-r * t[i] + b)), 2);
double e = std::exp(-r * t[i] + b);
double u =1+ std::exp(-r * t[i] + b);
sigma = i - 1;
gsl_matrix_set(J, i, 0, 1/u);
gsl_matrix_set(J, i, 1, (k*t[i]*e)/(u*u));
gsl_matrix_set(J, i, 2, (-k*e)/(u*u));
}
I am trying to make a shell algorithm to arrange a [5][5][5] array, so far I can print the whole array but when I run shell() it prints the same array. It doesn't print the numbers arranged. Any help please?
#include <iostream>
#include <stdlib.h>
using namespace std;
void ordShell(int numbers[5][5][5], int n);
void exchange(int& x, int& y);
int main()
{
int numbers[5][5][5] = {
{ {1,2,3,4,5}, {41,42,43,44,45}, {11,12,13,14,15}, {16, 17, 18, 19, 20}, {21, 22, 23, 24, 25} },
{ {26,27,28,29,30}, {31,32,33,34,35 }, {36,37,38,39,40}, {6,7,8,9,10}, {46, 47, 48, 49, 50}, },
{ {51, 52, 53, 54, 55}, {56,57,58,59,60}, {61,62,63,64,65}, {66, 67, 68, 69, 70}, {71, 72, 73, 74, 75}, },
{ {76, 77, 78, 79, 80}, {81,82,83,84,85}, {86,87,88,89,90}, {91, 92, 93, 94, 95}, {96, 97, 98, 99, 100}, },
{ {101, 102, 103, 104, 105}, {106,107,108,109,110}, {111, 112, 113, 114, 115}, {116, 117, 118, 119, 120}, {121, 122, 123, 124, 125} }
};
for(int i=0;i<5;i++)
{
for(int j=0;j<5;j++)
{
for(int l=0;l<5;l++)
{
cout<<numbers[i][j][l]<<",";
}
}}
cout<<"whatever"<<"";
cout<<"\n"<<"";
cout<<"NOW COMES SHELL"<<"";
ordShell(numbers,5);
cout<<"NUMBERS ARRANGED AFTER SHELL"<<"";
for(int i=0;i<5;i++)
{
for(int j=0;j<5;j++)
{
for(int l=0;l<5;l++)
{
cout<<numbers[i][j][l]<<",";
}
}}
return 0;
}
void ordShell(int numbers[5][5][5], int n)
{
int jump, i, j, k,j1,j2,k1,k2;
jump = n / 2;
while (jump > 0)
{
for (i = jump; i < n; i++)
{
j = i - jump;
j1= i - jump;
j2= i - jump;
while (j >= 0 )
{
k = j + jump;
k1 = j + jump;
k2 = j + jump;
if (numbers[j][j1][j2] <= numbers[k][k1][k2])
{j = -1; // arranged pair
j1 = -1;
j2 = -1;}
else
{
cout<<"exchange: "<<"";
cout<<numbers[j][j1][j2]<<" ";
cout<<numbers[k][k1][k2]<<"\n";
exchange(numbers[j][j1][j2], numbers[k][k1][k2]);
j -= jump;
j1 -= jump;
j2 -= jump;
}
}
}
jump = jump / 2;
cout<<"Jump: "<<jump<<"\n";
}
}
void exchange(int& x, int& y)
{
int aux = x;
x = y;
y = aux;
}
The problem is quite simple in your function: you aren't modifying the array but only a copy of it:
void ordShell(int numbers[5][5][5], int n)//makes a copy of numbers
If you want to avoid the issue, you need to give a pointer to your function instead.
However, the C++ way is to use the STL instead so you should make your array that way: std::vector<std::vector<std::vector<int> > > (you can use the same initialization after)
That way in your function you would only need to pass a reference to this:
void ordShell(std::vector<std::vector<std::vector<int> > >& numbers, int n)
You can also use typedef to make the variable name easier to read:
typedef std::vector<std::vector<std::vector<int> > > vector3D
And one last thing, you don't need your exchange function, std::swap does the same thing.
I am currently trying to allow the user to input values into a Sudoku solver however I keep getting an error. Here is the code:
#include <iostream> //
#include <fstream>
using namespace std;
class SudokuBoard;
void printB(SudokuBoard sb);
typedef unsigned int uint;
const uint MAXVAL = 9;
const uint L = 9;
const uint C = 9;
const uint S = L * C;
const uint ZONEL = 3;
const uint ZONEC = 3;
const uint ZONES = ZONEL * ZONEC;
const uint lineElements[L][C] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8},
{ 9, 10, 11, 12, 13, 14, 15, 16, 17},
{18, 19, 20, 21, 22, 23, 24, 25, 26},
{27, 28, 29, 30, 31, 32, 33, 34, 35},
{36, 37, 38, 39, 40, 41, 42, 43, 44},
{45, 46, 47, 48, 49, 50, 51, 52, 53},
{54, 55, 56, 57, 58, 59, 60, 61, 62},
{63, 64, 65, 66, 67, 68, 69, 70, 71},
{72, 73, 74, 75, 76, 77, 78, 79, 80}
};
const uint columnElements[C][L] = {
{ 0, 9, 18, 27, 36, 45, 54, 63, 72},
{ 1, 10, 19, 28, 37, 46, 55, 64, 73},
{ 2, 11, 20, 29, 38, 47, 56, 65, 74},
{ 3, 12, 21, 30, 39, 48, 57, 66, 75},
{ 4, 13, 22, 31, 40, 49, 58, 67, 76},
{ 5, 14, 23, 32, 41, 50, 59, 68, 77},
{ 6, 15, 24, 33, 42, 51, 60, 69, 78},
{ 7, 16, 25, 34, 43, 52, 61, 70, 79},
{ 8, 17, 26, 35, 44, 53, 62, 71, 80}
};
const uint zoneElements[S / ZONES][ZONES] = {
{ 0, 1, 2, 9, 10, 11, 18, 19, 20},
{ 3, 4, 5, 12, 13, 14, 21, 22, 23},
{ 6, 7, 8, 15, 16, 17, 24, 25, 26},
{27, 28, 29, 36, 37, 38, 45, 46, 47},
{30, 31, 32, 39, 40, 41, 48, 49, 50},
{33, 34, 35, 42, 43, 44, 51, 52, 53},
{54, 55, 56, 63, 64, 65, 72, 73, 74},
{57, 58, 59, 66, 67, 68, 75, 76, 77},
{60, 61, 62, 69, 70, 71, 78, 79, 80}
};
class SudokuBoard {
public:
SudokuBoard() :
filledIn(0)
{
for (uint i(0); i < S; ++i)
table[i] = usedDigits[i] = 0;
}
virtual ~SudokuBoard() {
}
int const at(uint l, uint c) { // Returns the value at line l and row c
if (isValidPos(l, c))
return table[l * L + c];
else
return -1;
}
void set(uint l, uint c, uint val) { // Sets the cell at line l and row c to hold the value val
if (isValidPos(l, c) && ((0 < val) && (val <= MAXVAL))) {
if (table[l * C + c] == 0)
++filledIn;
table[l * C + c] = val;
for (uint i = 0; i < C; ++i) // Update lines
usedDigits[lineElements[l][i]] |= 1<<val;
for (uint i = 0; i < L; ++i) // Update columns
usedDigits[columnElements[c][i]] |= 1<<val;
int z = findZone(l * C + c);
for (uint i = 0; i < ZONES; ++i) // Update columns
usedDigits[zoneElements[z][i]] |= 1<<val;
}
}
void solve() {
try { // This is just a speed boost
scanAndSet(); // Logic approach
goBruteForce(); // Brute force approach
} catch (int e) { // This is just a speed boost
}
}
void scanAndSet() {
int b;
bool changed(true);
while (changed) {
changed = false;
for (uint i(0); i < S; ++i)
if (0 == table[i]) // Is there a digit already written?
if ((b = bitcount(usedDigits[i])) == MAXVAL - 1) { // If there's only one digit I can place in this cell, do
int d(1); // Find the digit
while ((usedDigits[i] & 1<<d) > 0)
++d;
set(i / C, i % C, d); // Fill it in
changed = true; // The board has been changed so this step must be rerun
} else if (bitcount(usedDigits[i]) == MAXVAL)
throw 666; // Speed boost
}
}
void goBruteForce() {
int max(-1); // Find the cell with the _minimum_ number of posibilities (i.e. the one with the largest number of /used/ digits)
for (uint i(0); i < S; ++i)
if (table[i] == 0) // Is there a digit already written?
if ((max == -1) || (bitcount(usedDigits[i]) > bitcount(usedDigits[max])))
max = i;
if (max != -1) {
for (uint i(1); i <= MAXVAL; ++i) // Go through each possible digit
if ((usedDigits[max] & 1<<i) == 0) { // If it can be placed in this cell, do
SudokuBoard temp(*this); // Create a new board
temp.set(max / C, max % C, i); // Complete the attempt
temp.solve(); // Solve it
if (temp.getFilledIn() == S) { // If the board was completely solved (i.e. the number of filled in cells is S)
for (uint j(0); j < S; ++j) // Copy the board into this one
set(j / C, j % C, temp.at(j / C, j % C));
return; // Break the recursive cascade
}
}
}
}
uint getFilledIn() {
return filledIn;
}
private:
uint table[S];
uint usedDigits[S];
uint filledIn;
bool const inline isValidPos(int l, int c) {
return ((0 <= l) && (l < (int)L) && (0 <= c) && (c < (int)C));
}
uint const inline findZone(uint off) {
return ((off / C / ZONEL) * (C / ZONEC) + (off % C / ZONEC));
}
uint const inline bitcount(uint x) {
uint count(0);
for (; x; ++count, x &= (x - 1));
return count;
}
};
void printB(SudokuBoard sb) {
cout << " ***** Sudoku Solver By Diego Freitas ***** " << endl;
cout << " | ------------------------------- |" << endl;
for (uint i(0); i < S; ++i) {
if (i % 3 == 0)
cout << " |";
cout << " " << sb.at(i / L, i % L);
if (i % C == C - 1) {
if (i / C % 3 == 2)
cout << " |" << endl << " | -------------------------------";
cout << " |" << endl;
}
}
cout << endl;
}
int main(int argc, char *argv[]) {
SudokuBoard sb;
ifstream fin("Sudoku.in");
int aux;
for (uint i(0); i < S; ++i) {
fin >> aux;
sb.set(i / L, i % L, aux);
}
fin.close();
printB(sb);
sb.solve();
printB(sb);
system ("PAUSE");
return 0;
}
If anyone has any alterations to the code then it will be appreciated. I am currently making this during my own time and I roughly want an idea how this works.
I've been learning to program for quite a bit and it seems that one of the greatest competitions between programmers is how few lines one can do a procedure in. Noticing this trend, I'd like to learn to make my programs a bit tighter, cleaner, and preferring functionality without excess. Here's the code I used to solve ProjectEuler problem 11. It's quite large which kinda worries me when I see code a fourth of its size doing the same thing, hehe.
#include <iostream>
using namespace std;
int array[20][20] = {{8,2,22,97,38,15,0,40,0,75,4,5,7,78,52,12,50,77,91,8},
{49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,4,56,62,0},
{81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,3,49,13,36,65},
{52,70,95,23,4,60,11,42,69,24,68,56,1,32,56,71,37,2,36,91},
{22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80},
{24,47,32,60,99,3,45,2,44,75,33,53,78,36,84,20,35,17,12,50},
{32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70},
{67,26,20,68,2,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21},
{24,55,58,5,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72},
{21,36,23,9,75,0,76,44,20,45,35,14,0,61,33,97,34,31,33,95},
{78,17,53,28,22,75,31,67,15,94,3,80,4,62,16,14,9,53,56,92},
{16,39,5,42,96,35,31,47,55,58,88,24,0,17,54,24,36,29,85,57},
{86,56,0,48,35,71,89,7,5,44,44,37,44,60,21,58,51,54,17,58},
{19,80,81,68,5,94,47,69,28,73,92,13,86,52,17,77,4,89,55,40},
{4,52,8,83,97,35,99,16,7,97,57,32,16,26,26,79,33,27,98,66},
{88,36,68,87,57,62,20,72,3,46,33,67,46,55,12,32,63,93,53,69},
{4,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36},
{20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,4,36,16},
{20,73,35,29,78,31,90,1,74,31,49,71,48,86,81,16,23,57,5,54},
{1,70,54,71,83,51,54,69,16,92,33,48,61,43,52,1,89,19,67,48},
};
int s = 0;
int right()
{
int a = 1;
int i = 0;
int n = 0;
int r = 0;
int c = 0;
for(n = 0;n <= 359;n++)
{
if(c <= 16)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[r][(c + i)] << " ";
a *= array[r][(c + i)];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0; r++;};
};
return s;
};
int left()
{
int a = 1;
int i = 0;
int n = 0;
int r = 0;
int c = 19;
for(n = 0;n <= 359;n++)
{
if(c >= 3)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[r][(c - i)] << " ";
a *= array[r][(c - i)];
};
//cout << a << " ";
i = 0; c--;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 19; r++;};
};
return s;
};
int down()
{
int n = 0;
int i = 0;
int r = 0;
int c = 0;
int a = 1;
for(n = 0;n <= 356;n++)
{
if(c <= 19)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r + i)][c] << " ";
a *= array[(r + i)][c];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0;
if(r <= 16){
r++;
}else{break;};
};
};
return s;
};
int up()
{
int n = 0;
int i = 0;
int r = 19;
int c = 0;
int a = 1;
for(n = 0;n <= 356;n++)
{
if(c <= 19)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r - i)][c] << " ";
a *= array[(r - i)][c];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0;
if(r >= 3){
r--;
}else{break;};
};
};
return s;
};
int diag_left_up()
{
int n = 0;
int i = 0;
int r = 19;
int c = 19;
int a = 1;
for(n = 0;n <= 304;n++)
{
if(c >= 3 && r >= 3)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r - i)][(c - i)] << " ";
a *= array[(r - i)][(c - i)];
};
//cout << a << " ";
i = 0; c--;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 19;
if(r >= 3){
r--;
}else{break;};
};
};
return s;
};
int diag_left_down()
{
int n = 0;
int i = 0;
int r = 0;
int c = 19;
int a = 1;
for(n = 0;n <= 304;n++)
{
if(c >= 3 && r <= 16)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r + i)][(c - i)] << " ";
a *= array[(r + i)][(c - i)];
};
//cout << a << " ";
i = 0; c--;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 19;
if(r <= 16){
r++;
}else{break;};
};
};
return s;
};
int diag_right_up()
{
int n = 0;
int i = 0;
int r = 19;
int c = 0;
int a = 1;
for(n = 0;n <= 304;n++)
{
if(c <= 16 && r >= 3)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r - i)][(c + i)] << " ";
a *= array[(r - i)][(c + i)];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0;
if(r >= 3){
r--;
}else{break;};
};
};
return s;
};
int diag_right_down()
{
int n = 0;
int i = 0;
int r = 0;
int c = 0;
int a = 1;
for(n = 0;n <= 304;n++)
{
if(c <= 16 && r <= 16)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r + i)][(c + i)] << " ";
a *= array[(r + i)][(c + i)];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0;
if(r <= 16){
r++;
}else{break;};
};
};
return s;
};
int main()
{
cout << "Result from right():" << '\t' << right();
cout << endl;
cout << "Result from left():" << '\t' << left();
cout << endl;
cout << "Result from down():" << '\t' << down();
cout << endl;
cout << "Result from up():" << '\t' << up();
cout << endl;
cout << "Result from diag_right_up(): " << '\t' << diag_right_up();
cout << endl;
cout << "Result from diag_right_down(): " << '\t' << diag_right_down();
cout << endl;
cout << "Result from diag_left_up(): " << '\t' << diag_left_up();
cout << endl;
cout << "Result from diag_left_down(): " << '\t' << diag_left_down();
cout << endl << endl << "Greatest result: " << s;
return 0;
}
The first thing I notice is that you've got a lot of functions that do basically the same thing (with some numbers different). I would investigate adding a couple of parameters to that function, so that you can describe the direction you're going. So for example, instead of calling right() you might call traverse(1, 0) and traverse(0, -1) instead of up().
Your traverse() function declaration might look like:
int traverse(int dx, int dy)
with the appropriate changes inside to adapt its behaviour for different values of dx and dy.
Well, for starters, you only need four of those directions: right/left, up/down, right-up/down-left and right-down/up-left. Multiplication is commutative, so it doesn't matter which direction you go from a given pair (if you find "a b c d" in one direction, you'll find "d c b a" in the opposite direction, and you get the same result when multiplying those numbers together).
Secondly, use more descriptive variable names. A variable name like s is meaningless; something like maximum is better, because that tells you what that variable is for. That doesn't mean you should never ever use a single-character variable name - e.g., using i as a for-loop counter is perfectly fine, and if you're dealing with coordinates, x and y can also be just fine, but when at all possible, you should use a descriptive name to make the code more self-documenting.
Thirdly, you can look into what Greg suggests and refactor your methods to take a direction instead. This would allow you to ditch all of the similar methods (and just call that one method 4 times with different parameters to cover all of the necessary directions).
And finally, you may want to be more consistent about your formatting - I know that can be hard to start doing, but it helps you in the long run. To understand what I mean here, take a good look at this snippet, taken from your down() method:
if(c <= 19)
{
for(i = 0;i <= 3;i++)
{
//cout << " " << array[(r + i)][c] << " ";
a *= array[(r + i)][c];
};
//cout << a << " ";
i = 0; c++;
if(a > s)
{
s = a;
a = 1;
};
//cout << s << " " << endl;
a = 1;
}else{c = 0;
if(r <= 16){
r++;
}else{break;};
};
Notice how you place a line break before the opening curly bracket of your ifs, but write }else{ on a single line. Additionally, inside the first else, you have another if-block where you don't place a line break before the curly bracket, and the closing bracket has the same indent level as the block content (r++;). This is quite inconsistent, and makes it harder to read.
static void largestProduct11() {
int[][] arr = {
{8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8},
{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56,
62, 0},
{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13,
36, 65},
{52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36,
91},
{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33,
13, 80},
{24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17,
12, 50},
{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38,
64, 70},
{67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94,
21},
{24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89,
63, 72},
{21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33,
95},
{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56,
92},
{16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85,
57},
{86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17,
58},
{19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55,
40},
{4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98,
66},
{88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93,
53, 69},
{4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76,
36},
{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4,
36, 16},
{20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5,
54},
{1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67,
48}
};
/*
* |A11 A12 A13 * * A1N|
* |A21 A22 A23 * * A2N|
* |A31 A32 A33 A3N|
* * *
* * *
* |An1 A2N A3N * * ANN|
*
* */
String line;
int[] temp = new int[4];
int compre = 1;
int result = 1;
for (int i = 0; i < arr.length - 3; i++) { // optimize:- the condition is true
// if the remaining index are at least four therefore the length should be reduced by
// three that means only the first 16 members can can satisfy the condition
for (int j = 0; j < arr[0].length - 3; j++) {
result = arr[i][j] * arr[i + 1][j + 1] * arr[i + 2][j + 2] * arr[i + 3][j + 3];
if (compre < result) {
compre = result;
}
}
}
//
System.out.println(compre + " Right sie test ");
for (int i = 0; i < arr.length - 3; i++) {
line = "{";
for (int j = arr[0].length - 1; j > 3; j--) {
result = arr[i][j] * arr[i + 1][j - 1] * arr[i + 2][j - 2] * arr[i + 3][j
- 3];
if (compre < result) {
compre = result;
}
}
}
System.out.println(compre + " final result"); // solution= 70600674
}