Convert array of bits to an array of bytes - c++

I want to convert an array of bits (bool* bitArray) where the values are 1s and 0s into an array of bytes (unsigned char* byteArray) where the values at each index would be one byte.
For ex, index 0~7 in bitArray would go into byteArray[1].
How would I go about doing this? Assuming that I already have an array of bits (but the amount would be subject to change based on the incoming data).
I am not worried about having it divisible by 8 because I will just add padding at the end of the bitArray to make it divisible by 8.

Just just use bit shifts or a lookup array and and combine numbers with 1 bit set each with bitwise or for 8 bits at a time:
int main() {
bool input[] = {
false, false, false, true, true, true, false, false, false,
false, false, false, true, true, true, false, false, false,
false, false, false, true, true, true, false, false, false,
false, false, false, true, true, true, false, false, false,
};
constexpr auto len = sizeof(input) / sizeof(*input);
constexpr size_t outLen = ((len % 8 == 0) ? 0 : 1) + len / 8;
uint8_t out[outLen];
bool* inPos = input;
uint8_t* outPos = out;
size_t remaining = len;
// output bytes where there are all 8 bits available
for (; remaining >= 8; remaining -= 8, ++outPos)
{
uint8_t value = 0;
for (size_t i = 0; i != 8; ++i, ++inPos)
{
if (*inPos)
{
value |= (1 << (7 - i));
}
}
*outPos = value;
}
if (remaining != 0)
{
// output byte that requires padding
uint8_t value = 0;
for (size_t i = 0; i != remaining; ++i, ++inPos)
{
if (*inPos)
{
value |= (1 << (7 - i));
}
}
*outPos = value;
}
for (auto v : out)
{
std::cout << static_cast<int>(v) << '\n';
}
return 0;
}
The rhs of the |= operator could also be replaced with a lookup in the following array, if you consider this simpler to understand:
constexpr uint8_t Bits[8]
{
0b1000'0000,
0b0100'0000,
0b0010'0000,
0b0001'0000,
0b0000'1000,
0b0000'0100,
0b0000'0010,
0b0000'0001,
};
...
value |= Bits[i];
...

You should be using std::bitset for an array of bools, or std::vector<bool> if it's dynamically sized. And std::array for the array or again std::vector for dynamic size. I've only done static size below and conversion to and from.
Converting involves a lot of bit shifts and loops for something that should be a memcpy (on little endian or unsigned char types). The compiler output for -O2 is bad. -O3 removes the loop and to_array2 gets interesting. gcc nearly manages to optimize it, clang actually gets it down to movzx eax, word ptr [rdi]: https://godbolt.org/z/4chb8o81e
#include <array>
#include <bitset>
#include <climits>
template <typename T, std::size_t len>
constexpr std::bitset<sizeof(T) * CHAR_BIT * len> from_array(const std::array<T, len> &arr) {
std::bitset<sizeof(T) * CHAR_BIT * len> res;
std::size_t pos = 0;
for (auto x : arr) {
for(std::size_t i = 0; i < sizeof(T) * CHAR_BIT; ++i) {
res[pos++] = x & 1;
x >>= 1;
}
}
return res;
}
template <typename T, std::size_t len>
constexpr std::array<T, (len + sizeof(T) * CHAR_BIT - 1) / (sizeof(T) * CHAR_BIT)> to_array(const std::bitset<len> &bit) {
std::array<T, (len + sizeof(T) * CHAR_BIT - 1) / (sizeof(T) * CHAR_BIT)> res;
T mask = 1;
T t = 0;
std::size_t pos = 0;
for (std::size_t i = 0; i < len; ++i) {
if (bit[i]) t |= mask;
mask <<= 1;
if (mask == 0) {
mask = 1;
res[pos++] = t;
t = 0;
}
}
if constexpr (len % (sizeof(T) * CHAR_BIT) != 0) {
res[pos] = t;
}
return res;
}
std::bitset<16> from_array2(const std::array<unsigned char, 2> &arr) {
return from_array(arr);
}
std::array<unsigned short, 1> to_array2(const std::bitset<16> &bits) {
return to_array<unsigned short>(bits);
}
#include <iostream>
int main() {
std::array<unsigned char, 2> arr{0, 255};
std::bitset bits = from_array(arr);
std::cout << bits << std::endl;
std::bitset<16> bits2{0x1234};
std::array<unsigned short, 1> arr2 = to_array<unsigned short>(bits2);
std::cout << std::hex << arr2[0] << std::endl;
}

Related

Building a char array with hex bytes from string values [duplicate]

What is the best way to convert a variable length hex string e.g. "01A1" to a byte array containing that data.
i.e converting this:
std::string = "01A1";
into this
char* hexArray;
int hexLength;
or this
std::vector<char> hexArray;
so that when I write this to a file and hexdump -C it I get the binary data containing 01A1.
This implementation uses the built-in strtol function to handle the actual conversion from text to bytes, but will work for any even-length hex string.
std::vector<char> HexToBytes(const std::string& hex) {
std::vector<char> bytes;
for (unsigned int i = 0; i < hex.length(); i += 2) {
std::string byteString = hex.substr(i, 2);
char byte = (char) strtol(byteString.c_str(), NULL, 16);
bytes.push_back(byte);
}
return bytes;
}
This ought to work:
int char2int(char input)
{
if(input >= '0' && input <= '9')
return input - '0';
if(input >= 'A' && input <= 'F')
return input - 'A' + 10;
if(input >= 'a' && input <= 'f')
return input - 'a' + 10;
throw std::invalid_argument("Invalid input string");
}
// This function assumes src to be a zero terminated sanitized string with
// an even number of [0-9a-f] characters, and target to be sufficiently large
void hex2bin(const char* src, char* target)
{
while(*src && src[1])
{
*(target++) = char2int(*src)*16 + char2int(src[1]);
src += 2;
}
}
Depending on your specific platform there's probably also a standard implementation though.
So for fun, I was curious if I could do this kind of conversion at compile-time. It doesn't have a lot of error checking and was done in VS2015, which doesn't support C++14 constexpr functions yet (thus how HexCharToInt looks). It takes a c-string array, converts pairs of characters into a single byte and expands those bytes into a uniform initialization list used to initialize the T type provided as a template parameter. T could be replaced with something like std::array to automatically return an array.
#include <cstdint>
#include <initializer_list>
#include <stdexcept>
#include <utility>
/* Quick and dirty conversion from a single character to its hex equivelent */
constexpr std::uint8_t HexCharToInt(char Input)
{
return
((Input >= 'a') && (Input <= 'f'))
? (Input - 87)
: ((Input >= 'A') && (Input <= 'F'))
? (Input - 55)
: ((Input >= '0') && (Input <= '9'))
? (Input - 48)
: throw std::exception{};
}
/* Position the characters into the appropriate nibble */
constexpr std::uint8_t HexChar(char High, char Low)
{
return (HexCharToInt(High) << 4) | (HexCharToInt(Low));
}
/* Adapter that performs sets of 2 characters into a single byte and combine the results into a uniform initialization list used to initialize T */
template <typename T, std::size_t Length, std::size_t ... Index>
constexpr T HexString(const char (&Input)[Length], const std::index_sequence<Index...>&)
{
return T{HexChar(Input[(Index * 2)], Input[((Index * 2) + 1)])...};
}
/* Entry function */
template <typename T, std::size_t Length>
constexpr T HexString(const char (&Input)[Length])
{
return HexString<T>(Input, std::make_index_sequence<(Length / 2)>{});
}
constexpr auto Y = KS::Utility::HexString<std::array<std::uint8_t, 3>>("ABCDEF");
You can use boost:
#include <boost/algorithm/hex.hpp>
char bytes[60] = {0};
std::string hash = boost::algorithm::unhex(std::string("313233343536373839"));
std::copy(hash.begin(), hash.end(), bytes);
You said "variable length." Just how variable do you mean?
For hex strings that fit into an unsigned long I have always liked the C function strtoul. To make it convert hex pass 16 as the radix value.
Code might look like:
#include <cstdlib>
std::string str = "01a1";
unsigned long val = strtoul(str.c_str(), 0, 16);
If you want to use OpenSSL to do it, there is a nifty trick I found:
BIGNUM *input = BN_new();
int input_length = BN_hex2bn(&input, argv[2]);
input_length = (input_length + 1) / 2; // BN_hex2bn() returns number of hex digits
unsigned char *input_buffer = (unsigned char*)malloc(input_length);
retval = BN_bn2bin(input, input_buffer);
Just be sure to strip off any leading '0x' to the string.
This can be done with a stringstream, you just need to store the value in an intermediate numeric type such as an int:
std::string test = "01A1"; // assuming this is an even length string
char bytes[test.length()/2];
stringstream converter;
for(int i = 0; i < test.length(); i+=2)
{
converter << std::hex << test.substr(i,2);
int byte;
converter >> byte;
bytes[i/2] = byte & 0xFF;
converter.str(std::string());
converter.clear();
}
Somebody mentioned using sscanf to do this, but didn't say how. This is how. It's useful because it also works in ancient versions of C and C++ and even most versions of embedded C or C++ for microcontrollers.
When converted to bytes, the hex-string in this example resolves to the ASCII text "Hello there!" which is then printed.
#include <stdio.h>
int main ()
{
char hexdata[] = "48656c6c6f20746865726521";
char bytedata[20]{};
for(int j = 0; j < sizeof(hexdata) / 2; j++) {
sscanf(hexdata + j * 2, "%02hhX", bytedata + j);
}
printf ("%s -> %s\n", hexdata, bytedata);
return 0;
}
I would use a standard function like sscanf to read the string into an unsigned integer, and then you already have the bytes you need in memory. If you were on a big endian machine you could just write out (memcpy) the memory of the integer from the first non-zero byte. However you can't safely assume this in general, so you can use some bit masking and shifting to get the bytes out.
const char* src = "01A1";
char hexArray[256] = {0};
int hexLength = 0;
// read in the string
unsigned int hex = 0;
sscanf(src, "%x", &hex);
// write it out
for (unsigned int mask = 0xff000000, bitPos=24; mask; mask>>=8, bitPos-=8) {
unsigned int currByte = hex & mask;
if (currByte || hexLength) {
hexArray[hexLength++] = currByte>>bitPos;
}
}
C++11 variant (with gcc 4.7 - little endian format):
#include <string>
#include <vector>
std::vector<uint8_t> decodeHex(const std::string & source)
{
if ( std::string::npos != source.find_first_not_of("0123456789ABCDEFabcdef") )
{
// you can throw exception here
return {};
}
union
{
uint64_t binary;
char byte[8];
} value{};
auto size = source.size(), offset = (size % 16);
std::vector<uint8_t> binary{};
binary.reserve((size + 1) / 2);
if ( offset )
{
value.binary = std::stoull(source.substr(0, offset), nullptr, 16);
for ( auto index = (offset + 1) / 2; index--; )
{
binary.emplace_back(value.byte[index]);
}
}
for ( ; offset < size; offset += 16 )
{
value.binary = std::stoull(source.substr(offset, 16), nullptr, 16);
for ( auto index = 8; index--; )
{
binary.emplace_back(value.byte[index]);
}
}
return binary;
}
Crypto++ variant (with gcc 4.7):
#include <string>
#include <vector>
#include <crypto++/filters.h>
#include <crypto++/hex.h>
std::vector<unsigned char> decodeHex(const std::string & source)
{
std::string hexCode;
CryptoPP::StringSource(
source, true,
new CryptoPP::HexDecoder(new CryptoPP::StringSink(hexCode)));
return std::vector<unsigned char>(hexCode.begin(), hexCode.end());
}
Note that the first variant is about two times faster than the second one and at the same time works with odd and even number of nibbles (the result of "a56ac" is {0x0a, 0x56, 0xac}). Crypto++ discards the last one if there are odd number of nibbels (the result of "a56ac" is {0xa5, 0x6a}) and silently skips invalid hex characters (the result of "a5sac" is {0xa5, 0xac}).
#include <iostream>
#include <sstream>
#include <vector>
int main() {
std::string s("313233");
char delim = ',';
int len = s.size();
for(int i = 2; i < len; i += 3, ++len) s.insert(i, 1, delim);
std::istringstream is(s);
std::ostringstream os;
is >> std::hex;
int n;
while (is >> n) {
char c = (char)n;
os << std::string(&c, 1);
if(is.peek() == delim) is.ignore();
}
// std::string form
std::string byte_string = os.str();
std::cout << byte_string << std::endl;
printf("%s\n", byte_string.c_str());
// std::vector form
std::vector<char> byte_vector(byte_string.begin(), byte_string.end());
byte_vector.push_back('\0'); // needed for a c-string
printf("%s\n", byte_vector.data());
}
The output is
123
123
123
'1' == 0x31, etc.
If your goal is speed, I have an AVX2 SIMD implementation of an encoder and decoder here: https://github.com/zbjornson/fast-hex. These benchmark ~12x faster than the fastest scalar implementations.
#include <iostream>
using byte = unsigned char;
static int charToInt(char c) {
if (c >= '0' && c <= '9') {
return c - '0';
}
if (c >= 'A' && c <= 'F') {
return c - 'A' + 10;
}
if (c >= 'a' && c <= 'f') {
return c - 'a' + 10;
}
return -1;
}
// Decodes specified HEX string to bytes array. Specified nBytes is length of bytes
// array. Returns -1 if fails to decode any of bytes. Returns number of bytes decoded
// on success. Maximum number of bytes decoded will be equal to nBytes. It is assumed
// that specified string is '\0' terminated.
int hexStringToBytes(const char* str, byte* bytes, int nBytes) {
int nDecoded {0};
for (int i {0}; str[i] != '\0' && nDecoded < nBytes; i += 2, nDecoded += 1) {
if (str[i + 1] != '\0') {
int m {charToInt(str[i])};
int n {charToInt(str[i + 1])};
if (m != -1 && n != -1) {
bytes[nDecoded] = (m << 4) | n;
} else {
return -1;
}
} else {
return -1;
}
}
return nDecoded;
}
int main(int argc, char* argv[]) {
if (argc < 2) {
return 1;
}
byte bytes[0x100];
int ret {hexStringToBytes(argv[1], bytes, 0x100)};
if (ret < 0) {
return 1;
}
std::cout << "number of bytes: " << ret << "\n" << std::hex;
for (int i {0}; i < ret; ++i) {
if (bytes[i] < 0x10) {
std::cout << "0";
}
std::cout << (bytes[i] & 0xff);
}
std::cout << "\n";
return 0;
}
i've modified TheoretiCAL's code
uint8_t buf[32] = {};
std::string hex = "0123";
while (hex.length() % 2)
hex = "0" + hex;
std::stringstream stream;
stream << std::hex << hex;
for (size_t i= 0; i <sizeof(buf); i++)
stream >> buf[i];
How I do this at compiletime
#pragma once
#include <memory>
#include <iostream>
#include <string>
#include <array>
#define DELIMITING_WILDCARD ' '
// #sean :)
constexpr int _char_to_int( char ch )
{
if( ch >= '0' && ch <= '9' )
return ch - '0';
if( ch >= 'A' && ch <= 'F' )
return ch - 'A' + 10;
return ch - 'a' + 10;
};
template <char wildcard, typename T, size_t N = sizeof( T )>
constexpr size_t _count_wildcard( T &&str )
{
size_t count = 1u;
for( const auto &character : str )
{
if( character == wildcard )
{
++count;
}
}
return count;
}
// construct a base16 hex and emplace it at make_count
// change 16 to 256 if u want the result to be when:
// sig[0] == 0xA && sig[1] == 0xB = 0xA0B
// or leave as is for the scenario to return 0xAB
#define CONCATE_HEX_FACTOR 16
#define CONCATE_HEX(a, b) ( CONCATE_HEX_FACTOR * ( a ) + ( b ) )
template
< char skip_wildcard,
// How many occurances of a delimiting wildcard do we find in sig
size_t delimiter_count,
typename T, size_t N = sizeof( T )>
constexpr auto _make_array( T &&sig )
{
static_assert( delimiter_count > 0, "this is a logical error, delimiter count can't be of size 0" );
static_assert( N > 1, "sig length must be bigger than 1" );
// Resulting byte array, for delimiter_count skips we should have delimiter_count integers
std::array<int, delimiter_count> ret{};
// List of skips that point to the position of the delimiter wildcard in skip
std::array<size_t, delimiter_count> skips{};
// Current skip
size_t skip_count = 0u;
// Character count, traversed for skip
size_t skip_traversed_character_count = 0u;
for( size_t i = 0u; i < N; ++i )
{
if( sig[i] == DELIMITING_WILDCARD )
{
skips[skip_count] = skip_traversed_character_count;
++skip_count;
}
++skip_traversed_character_count;
}
// Finally traversed character count
size_t traversed_character_count = 0u;
// Make count (we will supposedly have at least an instance in our return array)
size_t make_count = 1u;
// Traverse signature
for( size_t i = 0u; i < N; ++i )
{
// Read before
if( i == 0u )
{
// We don't care about this, and we don't want to use 0
if( sig[0u] == skip_wildcard )
{
ret[0u] = -1;
continue;
}
ret[0u] = CONCATE_HEX( _char_to_int( sig[0u] ), _char_to_int( sig[1u] ) );
continue;
}
// Make result by skip data
for( const auto &skip : skips )
{
if( ( skip == i ) && skip < N - 1u )
{
// We don't care about this, and we don't want to use 0
if( sig[i + 1u] == skip_wildcard )
{
ret[make_count] = -1;
++make_count;
continue;
}
ret[make_count] = CONCATE_HEX( _char_to_int( sig[i + 1u] ), _char_to_int( sig[i + 2u] ) );
++make_count;
}
}
}
return ret;
}
#define SKIP_WILDCARD '?'
#define BUILD_ARRAY(a) _make_array<SKIP_WILDCARD, _count_wildcard<DELIMITING_WILDCARD>( a )>( a )
#define BUILD_ARRAY_MV(a) _make_array<SKIP_WILDCARD, _count_wildcard<DELIMITING_WILDCARD>( std::move( a ) )>( std::move( a ) )
// -----
// usage
// -----
template <int n>
constexpr int combine_two()
{
constexpr auto numbers = BUILD_ARRAY( "55 8B EC 83 E4 F8 8B 4D 08 BA ? ? ? ? E8 ? ? ? ? 85 C0 75 12 ?" );
constexpr int number = numbers[0];
constexpr int number_now = n + number;
return number_now;
}
int main()
{
constexpr auto shit = BUILD_ARRAY( "?? AA BB CC DD ? ? ? 02 31 32" );
for( const auto &hex : shit )
{
printf( "%x ", hex );
}
combine_two<3>();
constexpr auto saaahhah = combine_two<3>();
static_assert( combine_two<3>() == 88 );
static_assert( combine_two<3>() == saaahhah );
printf( "\n%d", saaahhah );
}
Method can be used for runtime too, but for that you'd probably prefer something else, faster.
It may be useful to someone. The logic of translating a set of bytes into a string and back. Solves the zero character problem.
#include <sstream>
#include <iomanip>
std::string BytesToHex(const std::vector<char>& data, size_t len)
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
for(size_t index(0); index < len; ++index)
{
ss << std::setw(2) << static_cast<unsigned short>(data[index]);
}
return ss.str();
}
std::vector<char> HexToBytes(const std::string& data)
{
std::stringstream ss;
ss << data;
std::vector<char> resBytes;
size_t count = 0;
const auto len = data.size();
while(ss.good() && count < len)
{
unsigned short num;
char hexNum[2];
ss.read(hexNum, 2);
sscanf(hexNum, "%2hX", &num);
resBytes.push_back(static_cast<char>(num));
count += 2;
}
return resBytes;
}
If you can make your data to look like this e.g array of "0x01", "0xA1"
Then you can iterate your array and use sscanf to create the array of values
unsigned int result;
sscanf(data, "%x", &result);
The difficulty in an hex to char conversion is that the hex digits work pairwise, f.ex: 3132 or A0FF. So an even number of hex digits is assumed. However it could be perfectly valid to have an odd number of digits, like: 332 and AFF, which should be understood as 0332 and 0AFF.
I propose an improvement to Niels Keurentjes hex2bin() function.
First we count the number of valid hex digits. As we have to count, let's control also the buffer size:
void hex2bin(const char* src, char* target, size_t size_target)
{
int countdgts=0; // count hex digits
for (const char *p=src; *p && isxdigit(*p); p++)
countdgts++;
if ((countdgts+1)/2+1>size_target)
throw exception("Risk of buffer overflow");
By the way, to use isxdigit() you'll have to #include <cctype>.
Once we know how many digits, we can determine if the first one is the higher digit (only pairs) or not (first digit not a pair).
bool ishi = !(countdgts%2);
Then we can loop digit by digit, combining each pair using bin shift << and bin or, and
toggling the 'high' indicator at each iteration:
for (*target=0; *src; ishi = !ishi) {
char tmp = char2int(*src++); // hex digit on 4 lower bits
if (ishi)
*target = (tmp << 4); // high: shift by 4
else *target++ |= tmp; // low: complete previous
}
*target=0; // null terminated target (if desired)
}
I found this question, but the accepted answer didn't look like a C++ way of solving the task to me (this doesn't mean it's a bad answer or anything, just explaining motivation behind adding this one). I recollected this nice answer and decided to implement something similar. Here is complete code of what I ended up with (it also works for std::wstring):
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <ostream>
#include <stdexcept>
#include <string>
#include <vector>
template <typename OutputIt>
class hex_ostream_iterator :
public std::iterator<std::output_iterator_tag, void, void, void, void>
{
OutputIt out;
int digitCount;
int number;
public:
hex_ostream_iterator(OutputIt out) : out(out), digitCount(0), number(0)
{
}
hex_ostream_iterator<OutputIt> &
operator=(char c)
{
number = (number << 4) | char2int(c);
digitCount++;
if (digitCount == 2) {
digitCount = 0;
*out++ = number;
number = 0;
}
return *this;
}
hex_ostream_iterator<OutputIt> &
operator*()
{
return *this;
}
hex_ostream_iterator<OutputIt> &
operator++()
{
return *this;
}
hex_ostream_iterator<OutputIt> &
operator++(int)
{
return *this;
}
private:
int
char2int(char c)
{
static const std::string HEX_CHARS = "0123456789abcdef";
const char lowerC = std::tolower(c);
const std::string::size_type pos = HEX_CHARS.find_first_of(lowerC);
if (pos == std::string::npos) {
throw std::runtime_error(std::string("Not a hex digit: ") + c);
}
return pos;
}
};
template <typename OutputIt>
hex_ostream_iterator<OutputIt>
hex_iterator(OutputIt out)
{
return hex_ostream_iterator<OutputIt>(out);
}
template <typename InputIt, typename OutputIt>
hex_ostream_iterator<OutputIt>
from_hex_string(InputIt first, InputIt last, OutputIt out)
{
if (std::distance(first, last) % 2 == 1) {
*out = '0';
++out;
}
return std::copy(first, last, out);
}
int
main(int argc, char *argv[])
{
if (argc != 2) {
std::cout << "Usage: " << argv[0] << " hexstring" << std::endl;
return EXIT_FAILURE;
}
const std::string input = argv[1];
std::vector<unsigned char> bytes;
from_hex_string(input.begin(), input.end(),
hex_iterator(std::back_inserter(bytes)));
typedef std::ostream_iterator<unsigned char> osit;
std::copy(bytes.begin(), bytes.end(), osit(std::cout));
return EXIT_SUCCESS;
}
And the output of ./hex2bytes 61a062a063 | hexdump -C:
00000000 61 a0 62 a0 63 |a.b.c|
00000005
And of ./hex2bytes 6a062a063 | hexdump -C (note odd number of characters):
00000000 06 a0 62 a0 63 |..b.c|
00000005
In: "303132", Out: "012". Input string can be odd or even length.
char char2int(char input)
{
if (input >= '0' && input <= '9')
return input - '0';
if (input >= 'A' && input <= 'F')
return input - 'A' + 10;
if (input >= 'a' && input <= 'f')
return input - 'a' + 10;
throw std::runtime_error("Incorrect symbol in hex string");
};
string hex2str(string &hex)
{
string out;
out.resize(hex.size() / 2 + hex.size() % 2);
string::iterator it = hex.begin();
string::iterator out_it = out.begin();
if (hex.size() % 2 != 0) {
*out_it++ = char(char2int(*it++));
}
for (; it < hex.end() - 1; it++) {
*out_it++ = char2int(*it++) << 4 | char2int(*it);
};
return out;
}
Very similar to some of the other answers here, this is what I went with:
typedef uint8_t BYTE;
BYTE* ByteUtils::HexStringToBytes(BYTE* HexString, int ArrayLength)
{
BYTE* returnBytes;
returnBytes = (BYTE*) malloc(ArrayLength/2);
int j=0;
for(int i = 0; i < ArrayLength; i++)
{
if(i % 2 == 0)
{
int valueHigh = (int)(*(HexString+i));
int valueLow = (int)(*(HexString+i+1));
valueHigh = ByteUtils::HexAsciiToDec(valueHigh);
valueLow = ByteUtils::HexAsciiToDec(valueLow);
valueHigh *= 16;
int total = valueHigh + valueLow;
*(returnBytes+j++) = (BYTE)total;
}
}
return returnBytes;
}
int ByteUtils::HexAsciiToDec(int value)
{
if(value > 47 && value < 59)
{
value -= 48;
}
else if(value > 96 && value < 103)
{
value -= 97;
value += 10;
}
else if(value > 64 && value < 71)
{
value -= 65;
value += 10;
}
else
{
value = 0;
}
return value;
}
static bool Hexadec2xdigit(const std::string& data, std::string& buffer, std::size_t offset = sizeof(uint16_t))
{
if (data.empty())
{
return false;
}
try
{
constexpr auto s_function_lambda = [] (const char* string) noexcept { return *static_cast<const uint16_t*>(reinterpret_cast<const uint16_t*>(string)); };
{
for (std::size_t i = 0, tmp = s_function_lambda(data.c_str() + i); i < data.size(); i += offset, tmp = s_function_lambda(data.c_str() + i))
{
if (std::isxdigit(data[i]))
{
buffer += static_cast<char>(/*std::stoul*/std::strtoul(reinterpret_cast<const char*>(std::addressof(tmp)), NULL, 16));
}
}
}
return true;
}
catch (const std::invalid_argument& ex)
{
}
catch (const std::out_of_range& ex)
{
}
return false;
}
This code doesn't have much of a copy process

fast compare array of unsigned numbers

Consider this code:
constexpr size_t size = 32;
constexpr size_t count = 8;
using WordCode = unsigned;
template<typename T>
int CmpHashArray(const T *l,const T *r)
{
auto * l1 = reinterpret_cast<const __int32*>(l);
auto * r1 = reinterpret_cast<const __int32*>(r);
if(*l1 == *r1)
return 0;
if(*l1 < *r1)
return -1;
return 1;
}
int CmpHashArray2(const WordCode *l,const WordCode *r)
{
return memcmp(l, r, size);
}
int main(...)
{
WordCode a1[count], a2[count];
CmpHashArray(a1, a2);
CmpHashArray2(a1, a2);
}
is CmpHashArray have Undefined Behavior? Because with -O2 it takes 2 asm instructions instead of memcmp.
UPD:
Thanks for answer. As i see now, CmpHashArray can boil down to 1 compare if sizeof(array) <= 64bit
if this code can run faster memcmp?(on 64 and 32bit systems, crossplatform)
template<typename T,
size_t count,
typename std::enable_if<count*sizeof(T) % 64 == 0>::type
>
int CmpHashArray(const T *l,const T *r)
{
auto * l1 = reinterpret_cast<const __int64*>(l);
auto * r1 = reinterpret_cast<const __int64*>(r);
size_t iterCount = count*sizeof(T) / 64;
while(iterCount--) {
if(*l1 == *r1)
return 0;
if(*l1 < *r1)
return -1;
else
return 1;
++l1;
++r1;
}
}

Comparing two vector<bool> with SSE

I have two vector<bool> A and B.
I want to compare them and count the number of elements that are equal:
For example:
A = {0,1,0,1}
B = {0,0,1,1}
Result will be equal to 2.
I can use _mm_cmpeq_epi8 but it is only compare 16 elements (i.e. I should convert 0 and 1 to char and then do the comparison).
Is it possible to compare 128 elements each time with SSE (or SIMD instructions)?
If you can either assume that vector<bool> is using contiguous byte-sized elements for storage, or if you can consider using something like vector<uint8_t> instead, then this example should give you a good starting point:
static size_t count_equal(const vector<uint8_t> &vec1, const vector<uint8_t> &vec2)
{
assert(vec1.size() == vec2.size()); // vectors must be same size
const size_t n = vec1.size();
const size_t max_block_size = 255 * 16; // max block size before possible overflow
__m128i vcount = _mm_setzero_si128();
size_t i, count = 0;
for (i = 0; i + 16 <= n; ) // for each block
{
size_t m = std::min(n, i + max_block_size);
for ( ; i + 16 <= m; i += 16) // for each vector in block
{
__m128i v1 = _mm_loadu_si128((__m128i *)&vec1[i]);
__m128i v2 = _mm_loadu_si128((__m128i *)&vec2[i]);
__m128i vcmp = _mm_cmpeq_epi8(v1, v2);
vcount = _mm_sub_epi8(vcount, vcmp);
}
vcount = _mm_sad_epu8(vcount, _mm_setzero_si128());
count += _mm_extract_epi16(vcount, 0) + _mm_extract_epi16(vcount, 4);
vcount = _mm_setzero_si128(); // update count from current block
}
vcount = _mm_sad_epu8(vcount, _mm_setzero_si128());
count += _mm_extract_epi16(vcount, 0) + _mm_extract_epi16(vcount, 4);
for ( ; i < n; ++i) // deal with any remaining partial vector
{
count += (vec1[i] == vec2[i]);
}
return count;
}
Note that this is using vector<uint8_t>. If you really have to use vector<bool> and can guarantee that the elements will always be contiguous and byte-sized then you'll just need to coerce the vector<bool> into a const uint8_t * or similar somehow.
Test harness:
#include <cassert>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <vector>
#include <emmintrin.h> // SSE2
using std::vector;
static size_t count_equal_ref(const vector<uint8_t> &vec1, const vector<uint8_t> &vec2)
{
assert(vec1.size() == vec2.size());
const size_t n = vec1.size();
size_t i, count = 0;
for (i = 0 ; i < n; ++i)
{
count += (vec1[i] == vec2[i]);
}
return count;
}
static size_t count_equal(const vector<uint8_t> &vec1, const vector<uint8_t> &vec2)
{
assert(vec1.size() == vec2.size()); // vectors must be same size
const size_t n = vec1.size();
const size_t max_block_size = 255 * 16; // max block size before possible overflow
__m128i vcount = _mm_setzero_si128();
size_t i, count = 0;
for (i = 0; i + 16 <= n; ) // for each block
{
size_t m = std::min(n, i + max_block_size);
for ( ; i + 16 <= m; i += 16) // for each vector in block
{
__m128i v1 = _mm_loadu_si128((__m128i *)&vec1[i]);
__m128i v2 = _mm_loadu_si128((__m128i *)&vec2[i]);
__m128i vcmp = _mm_cmpeq_epi8(v1, v2);
vcount = _mm_sub_epi8(vcount, vcmp);
}
vcount = _mm_sad_epu8(vcount, _mm_setzero_si128());
count += _mm_extract_epi16(vcount, 0) + _mm_extract_epi16(vcount, 4);
vcount = _mm_setzero_si128(); // update count from current block
}
vcount = _mm_sad_epu8(vcount, _mm_setzero_si128());
count += _mm_extract_epi16(vcount, 0) + _mm_extract_epi16(vcount, 4);
for ( ; i < n; ++i) // deal with any remaining partial vector
{
count += (vec1[i] == vec2[i]);
}
return count;
}
int main(int argc, char * argv[])
{
size_t n = 100;
if (argc > 1)
{
n = atoi(argv[1]);
}
vector<uint8_t> vec1(n);
vector<uint8_t> vec2(n);
srand((unsigned int)time(NULL));
for (size_t i = 0; i < n; ++i)
{
vec1[i] = rand() & 1;
vec2[i] = rand() & 1;
}
size_t n_ref = count_equal_ref(vec1, vec2);
size_t n_test = count_equal(vec1, vec2);
if (n_ref == n_test)
{
std::cout << "PASS" << std::endl;
}
else
{
std::cout << "FAIL: n_ref = " << n_ref << ", n_test = " << n_test << std::endl;
}
return 0;
}
Compile and run:
$ g++ -Wall -msse3 -O3 test.cpp && ./a.out
PASS
std::vector<bool> is a specialization of std::vector for the type bool. Although not specified by the C++ standard, in most implementations std::vector<bool> is made space efficient such that each of its element is a single bit instead of a bool.
The behaviour of std::vector<bool> is similar to its primarily template counterpart, except that:
std::vector<bool> does not necessarily store its element contiguously .
In order to expose its elements (i.e., the individual bits) std::vector<bool> uses a proxy class (i.e., std::vector<bool>::reference). Objects of class std::vector<bool>::reference are returned by std::vector<bool> subscript operator (i.e., operator[]) by value.
Accordingly, I don't think it's portable to use _mm_cmpeq_epi8 like functions since storage of a std::vector<bool> is implementation defined (i.e., not guaranteed contiguous).
An alternative but portable way is to use regular STL facilities like the example below:
std::vector<bool> A = {0,1,0,1};
std::vector<bool> B = {0,0,1,1};
std::vector<bool> C(A.size());
std::transform(A.begin(), A.end(), B.begin(), C.begin(), [](bool const &a, bool const &b) { return a == b;});
std::cout << std::count(C.begin(), C.end(), true) << std::endl;
Live Demo

Converting a struct of integers into a bitmask

Is it possible (if so, how) to convert a struct of integers into a bitmask. One bit for each integer (0 if the int is 0, otherwise 1). For example
struct Int_List_t
{
uint64_t int1;
uint64_t int2;
uint64_t int3;
uint64_t int4;
} int_list={10,0,5,0};
char int_mask = somefunction(int_list);
//Would contain 1010
||||
|||+-- int4 is 0
||+--- int3 is not 0
|+---- int2 is 0
+----- int1 is not 0
You could just do it explicitly:
char mask(const Int_List_t& vals)
{
return (vals.int1 ? 0x8 : 0x0) |
(vals.int2 ? 0x4 : 0x0) |
(vals.int3 ? 0x2 : 0x0) |
(vals.int4 ? 0x1 : 0x0);
}
If you passed in an array instead of a struct, you could write a loop:
template <size_t N>
uint64_t mask(uint64_t (&vals)[N])
{
uint64_t result = 0;
uint64_t mask = 1 << (N - 1);
for (size_t i = 0; i < N; ++i, mask >>= 1) {
result |= (vals[i] ? mask : 0);
}
return result;
}
If you're open to completely bypassing any type safety whatsoever, you could even implement the above by just reinterpreting your object to be a pointer, although I wouldn't necessarily recommend it:
template <typename T>
uint64_t mask(const T& obj)
{
const uint64_t* p = reinterpret_cast<const uint64_t*>(&obj);
const uint64_t N = sizeof(T)/8;
uint64_t result = 0;
uint64_t mask = 1 << (N - 1);
for (size_t i = 0; i < N; ++i, ++p, mask >>= 1) {
result |= (*p ? mask : 0);
}
return result;
}

Implementing a lookup array for an array of N integers of limited range

I have an arr[N], and need to implement a lookup array for all possible value sets arr can take, e.g. 2^N possible values for the simplest case where the array is bool arr[N].
This can be done by defining an N-dimensional boolean lookup array. For instance, for N=4 and arr being boolean, it would be bool lookup[2][2][2][2]. lookup can then store and retrieve any possible values of arr by lookup[arr[0]][arr[1]][arr[2]][arr[3]].
This is awkward to write and perhaps performance inefficient as well, because N varies, so the actual implementation will have to use a for loop for storage and retrieval. This is a problem since lookups are a very common operation, and making them as fast as possible is the whole point of this exercise.
Are there any other ways to implement this idea? I would be interested in a solution for a boolean arr, perhaps using some kind of bit representation, as well as a more general solution where the range of values in arr is wider than just 2.
For the case of boolean values, you should indeed use bits: Any N that is tractable must fit N^2 entries into memory, which is in the order of 2^32 through 2^38 on modern machines, so you cannot reach N = 64 anyway.
That said, you can use the least significant bits for each array entry, and simply allocate a store of 2^N value. The bit representations of your array can then simply serve as indices into this store.
Something like this:
uint64_t compressArray(long length, bool* array) {
uint64_t result = 0;
for(long i = length; i--; ) result = (result << 1) | (array[i] ? 1 : 0);
return result;
}
...
int* store = malloc(sizeof(*store) * (1 << N));
bool* array = ...;
// Now you can access the ints in store like this:
store[compressArray(N, array)] = 3;
If I understood you correctly...
For boolean type it is enough if you use index of element in one-dimensional array to represent your bits.
For example for arr[4]
ar[0] = 0, ar[1] = 0, ar[2] = 0, ar[3] = 0 0000
ar[0] = 1, ar[1] = 0, ar[2] = 0, ar[3] = 0 0001
ar[0] = 0, ar[1] = 1, ar[2] = 0, ar[3] = 0 0010
ar[0] = 1, ar[1] = 1, ar[2] = 0, ar[3] = 0 0011
etc...
For arr containing values from 1 to 3, for instance, you can utilize two bits per one value.
Following may help:
So, from your example ValueRange = 2 as bool can take 2 values;
Size = N
#include <cassert>
#include <cstddef>
#include <vector>
template<typename T, int ValueRange, int Size>
class MultiArray
{
static_assert(ValueRange > 1, "Need at least 2 or more values");
static_assert(Size > 0, "Size should be strictly positive");
public:
MultiArray() : values(computeTotalSize())
{
assert(!values.empty());
}
const T& get(const std::vector<size_t>& indexes) const
{
return values[computeIndex(indexes)];
}
T& get(const std::vector<size_t>& indexes)
{
return values[computeIndex(indexes)];
}
size_t computeIndex(const std::vector<size_t>& indexes) const
{
assert(indexes.size() == Size);
size_t index = 0;
size_t mul = 1;
for (size_t i = 0; i != Size; ++i) {
assert(indexes[i] < ValueRange);
index += indexes[i] * mul;
mul *= ValueRange;
}
assert(index < values.size());
return index;
}
std::vector<size_t> computeIndexes(size_t index) const
{
assert(index < values.size());
std::vector<size_t> res(Size);
size_t mul = values.size();
for (size_t i = Size; i != 0; --i) {
mul /= ValueRange;
res[i - 1] = index / mul;
assert(res[i - 1] < ValueRange);
index -= res[i - 1] * mul;
}
return res;
}
private:
size_t computeTotalSize() const
{
size_t totalSize = 1;
for (int i = 0; i != Size; ++i) {
totalSize *= ValueRange;
}
return totalSize;
}
private:
std::vector<T> values;
};
So use it like this:
int main()
{
MultiArray<int, 2, 4> m;
m.get({0, 0, 1, 0}) = 42;
m.get({1, 1, 0, 0}) = 42;
// Just for test purpose:
for (size_t i = 0; i != 16; ++i) {
assert(m.computeIndex(m.computeIndexes(i)) == i);
}
return 0;
}