Collect data, but skip non-zero referenced-data - list

i have the following
fnf([],[],[]).
fnf([RH|RT],[CH|CT],[[RH,CH]|Res]) :- get(RH,CH,V), V == 0, fnf(RT,CT,Res).
i'm trying to collect only elements of Cs and Rs for which the V is zero.
The code above does that but fails when it hits non-zero value.
I want to just skip them, instead of failing the whole goal.
this sort of works
fnf([RH|RT],[CH|CT],[[RH,CH]|Res]) :- get(RH,CH,V), ( V == 0 -> fnf(RT,CT,Res);true).
still _2044 !! should not be there
F = [[1, 1], [2, 2]|_2044].

If you want to test only once (get/3 + condition) and then keep the item or skip it and continue recursion you can use an if-then-else construct like so:
fnf([], [], []).
fnf([RH|RT], [CH|CT], Res) :-
get(RH, CH, V),
( V==0 % test
-> Res=[[RH, CH]|Res1] % condition met, keep item
; Res=Res1 % condition not met, skip item
),
fnf(RT, CT, Res1).
Also note the call to get/3 may backtrack if it leaves choicepoints.

How about adding a case for 0 and a case for non-zero:
fnf([],[],[]).
fnf([RH|RT],[CH|CT],[[RH,CH]|Res]) :-
get(RH,CH,0),
fnf(RT,CT,Res).
fnf([_|RT],[_|CT],Res) :-
get(RH,CH,V),
dif(V, 0),
fnf(RT,CT,Res).
or
pairs_keys_values(Pairs, Rs, Cs),
findall([RH,CH], (member(RH-CH, Pairs), get(RH, CH, 0)), F).

Related

Prolog prefix sum of a list

I want to implement the prolog predicate prefixSum(L, R) that calculates the prefix sum of a list i.e:
?- prefixSum([1,2,3,4],R).
R=[1,3,6,10].
Here is my solution so far:
prefixSum([],[]).
prefixSum([X], [X])
prefixSum([X|Xs], [R, Rs|T]):-
Rs is X + R, prefixSum(Xs, T).
What can I try next?
Your original code,
prefixSum( [] , [] ) .
prefixSum( [X] , [X] )
prefixSum( [X|Xs] , [R,Rs|T] ) :- Rs is X+R, prefixSum(Xs,T) .
Has these problems:
The code is syntactically incorrect, as the 2nd clause is not terminated by ..
In the 3rd clause, the variable R will always be unbound unless you've provided a bound list as the 2nd argument to prefixSum/3, meaning Rs is X+R will fail.
The key to what you are trying to accomplish is that as you traverse the list, you need to track the sum previously computed as you go.
That leads to an implementation like this:
prefix_sum( [] , [] ) . % the empty list is a special case
prefix_sum( [X|Xs] , [X|Ys] ) :- % for a non-empty list, we add the first item to the result , and
prefix_sum(Xs,X,Ys) . % invoke our helper, seeding the previous sum with the first element.
prefix_sum( [] , _ , [] ) . % once the source list is exhausted, we're done.
prefix_sum( [X|Xs] , P , [Y|Ys] ) :- % otherwise...
Y is P+X, % compute the sum of the current element and the previous sum
prefix_sum(Xs,Y,Ys) . % and recurse down on the tails.
prefix_sum(L, Ps) :-
prefix_sum_(L, 0, Ps).
prefix_sum_([], _, []).
prefix_sum_([H|T], S, [P|Ps]) :-
P is H + S,
prefix_sum_(T, P, Ps).
Result in swi-prolog:
?- prefix_sum([1,2,3,4], Ps).
Ps = [1, 3, 6, 10].
This is an operation on lists knows as a "scan" which, unlike a "fold", keeps a list of intermediate results. For your particular case you could use the built-in plus/3 but you might also need to define a helper predicate like add/3:
add(X, Y, Z) :- Z is X + Y.
Now you can do:
?- foldl(add, [1,2,3,4], 0, Sum).
Sum = 10.
?- scanl(add, [1,2,3,4], 0, [0|Sums]).
Sums = [1, 3, 6, 10].
If you don't like the useless addition of the zero you can split off the first element in advance, so:
?- [1,2,3,4] = [V0|Vs], scanl(add, Vs, V0, Result).
V0 = 1,
Vs = [2, 3, 4],
Result = [1, 3, 6, 10].
"Scan left" and "fold left" are available in library(apply) in SWI-Prolog and your exact question is solved in the examples on the docs for scanl. You can also look at the implementation of scanl.
Yes, this answer is perfectly good. When I look at the solution and compare it to the library definition of scanl/4 I just see a generic algorithm that has been specialized to solve one particular instance by binding the Goal.

Prolog Finding middle element in List

I am trying to make use of prolog predicates and find middle element of a given list. My idea was to cut first and last element of list using recursion.Unfortunately I dont know how to handle recursion call properly.
delete_last(L, L1) :-
append(L1, [_], L).
delete_first(L,L1) :-
append([_],L1,L).
check_len(L) :-
length(L,LEN), \+ 1 is LEN.
delete_both([],_):-
false.
delete_both([_,_],_) :-
false.
delete_both([X],X):-
true, write('MidElement').
delete_both(L,L2) :-
delete_first(LT,L2), delete_last(L,LT),check_len(LT)
->write('here should be recursive call only when length is more than one').
I would be grateful for any help.
It would save a lot of typing if you checked the length of the list, calculated the position of the middle element, and only then traversed the list to get the element at that position. With SWI-Prolog, this would be:
?- length(List, Len),
divmod(Len, 2, N, 1),
nth0(N, List, a).
List = [a], Len = 1, N = 0 ;
List = [_G2371, a, _G2377], Len = 3, N = 1 ;
List = [_G2371, _G2374, a, _G2380, _G2383], Len = 5, N = 2 . % and so on
This solution makes sure the list has an odd length. You can see the documentation of divmod/4 if you need to define it yourself. Or, if the list does not have to have and odd, length, just use N is Len div 2. If for some reason you are not allowed to use nth0/3, it is still an easier predicate to implement than what you are trying to do.
You can tighten up what you have quite a bit as follows:
delete_last(L, L1) :-
append(L1, [_], L).
delete_first([_|L], L).
% No need to check length of 1, since we only need to check
% if L = [X] in the caller, so we'll eliminate this predicate
%check_len(L) :-
% length(L, 1). % No need for an extra variable to check length is 1
% Clauses that yield false are not needed since clauses already fail if not true
% So you can just remove those
%
delete_both([X], X) :-
write('MidElement').
% Here you need to fix the logic in your main clause
% You are deleting the first element of the list, then the last element
% from that result and checking if the length is 1.
delete_both(L, X) :-
delete_first(L, L1), % Remove first and last elements from L
delete_last(L1, LT),
( LT = [X] % Check for length of 1
-> true
; delete_both(LT, X) % otherwise, X is result of delete_both(LT, X)
).
With results:
| ?- delete_both([a,b,c,d,e], X).
X = c
yes
| ?- delete_both([a,b,c,d,e,f], X).
no
A DCG solution also works well here:
% X is the middle if it is flanked by two sequences of the same length
%
middle(X) --> seq(N), [X], seq(N).
seq(0) --> [].
seq(N) --> [_], { N #= N1 + 1 }, seq(N1).
middle(List, X) :- phrase(middle(X), List).
With results:
| ?- middle([a,b,c,d,e], X).
X = c ? ;
(1 ms) no
| ?- middle(L, a).
L = [a] ? ;
L = [_,a,_] ? ;
L = [_,_,a,_,_] ?
...
Another possible solution is to use SWI Prolog's append/2 predicate, which appends a list of lists (assuming you're using SWI):
middle(L, X) :-
same_length(Left, Right),
append([Left, [X], Right], L).
same_length([], []).
same_length([_|T1], [_|T2]) :- same_length(T1, T2).
In all of the above solutions, the predicate fails if the list has an even number of elements. Since that's what your original solution does, I assumed that's what is required. If there is a specific requirement for even lists, that needs to be stated clearly.

Excluding all occurrences of the minimum number in a list

As a Prolog newbie, I try to define a predicate filter_min/2 which takes two lists to determine if the second list is the same as the first, but with all occurrences of the minimum number removed.
Sample queries with expected results:
?- filter_min([3,2,7,8], N).
N = [3,7,8].
?- filter_min([3,2,7,8], [3,7,8]).
true.
I tried but I always get the same result: false. I don't know what the problem is. I need help!
Here is my code:
filter_min(X,Y) :-
X == [],
write("ERROR: List parameter is empty!"),
!;
min_list(X,Z),
filter(X,Y,Z).
filter([],[],0).
filter([H1|T1],[H2|T2],Z) :-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> H2 is H1, filter(T1,T2,Z);
filter(T1,T2,Z).
There are a couple of problems with your code:
filter([],[],0). will not unify when working with any list that does not have 0 as its minimum value, which is not what you want. You want it to unify regardless of the minimum value to end your recursion.
The way you wrote filter([H1|T1],[H2|T2],Z) and its body will make it so that the two lists always have the same number of elements, when in fact the second one should have at least one less.
A correct implementation of filter/3 would be the following:
filter([],[],_).
filter([H1|T1],L2,Z):-
\+ number(H1),
write("ERROR: List parameter contains a non-number element"),
!;
H1 \= Z -> filter(T1,T2,Z), L2 = [H1|T2];
filter(T1,L2,Z).
A bounty was offered...
... for a pure solution that terminates for (certain) cases where neither the length of the first nor of the second argument is known.
Here's a candidate implementation handling integer values, built on clpfd:
:- use_module(library(clpfd)).
filter_min(Xs,Ys) :-
filter_min_picked_gt(Xs,_,false,Ys).
filter_min_picked_gt([] ,_,true ,[]).
filter_min_picked_gt([Z|Xs],M,Picked,[Z|Zs]) :-
Z #> M,
filter_min_picked_gt(Xs,M,Picked,Zs).
filter_min_picked_gt([M|Xs],M,_,Zs) :-
filter_min_picked_gt(Xs,M,true,Zs).
Some sample queries:
?- filter_min([3,2,7,8],[3,7,8]).
true ; false. % correct, but leaves choicepoint
?- filter_min([3,2,7,8],Zs).
Zs = [3,7,8] ; false. % correct, but leaves choicepoint
Now, some queries terminate even though both list lengths are unknown:
?- filter_min([2,1|_],[1|_]).
false. % terminates
?- filter_min([1,2|_],[3,2|_]).
false. % terminates
Note that the implementation doesn't always finitely fail (terminate) in cases that are logically false:
?- filter_min([1,2|_],[2,1|_]). % does _not_ terminate
For a Prolog newbie, better start with the basics. The following works when first argument is fully instantiated, and the second is an uninstantiated variable, computing the result in one pass over the input list.
% remmin( +From, -Result).
% remmin([],[]). % no min elem to remove from empty list
remmin([A|B], R):-
remmin(B, A, [A], [], R). % remove A from B to get R, keeping [A]
% in case a smaller elem will be found
remmin([C|B], A, Rev, Rem, R):-
C > A -> remmin(B, A, [C|Rev], [C|Rem], R) ;
C==A -> remmin(B, A, [C|Rev], Rem, R) ;
C < A -> remmin(B, C, [C|Rev], Rev, R).
remmin([], _, _, Rem, R) :- reverse(Rem, R).
First, we can get the minimum number using the predicate list_minnum/2:
?- list_minnum([3,2,7,8],M).
M = 2.
We can define list_minnum/2 like this:
list_minnum([E|Es],M) :-
V is E,
list_minnum0_minnum(Es,V,M).
list_minnum0_minnum([],M,M).
list_minnum0_minnum([E|Es],M0,M) :-
M1 is min(E,M0),
list_minnum0_minnum(Es,M1,M).
For the sake of completeness, here's the super-similar list_maxnum/2:
list_maxnum([E|Es],M) :-
V is E,
list_maxnum0_maxnum(Es,V,M).
list_maxnum0_maxnum([],M,M).
list_maxnum0_maxnum([E|Es],M0,M) :-
M1 is max(E,M0),
list_maxnum0_maxnum(Es,M1,M).
Next, we use meta-predicate tfilter/3 in tandem with dif/3 to exclude all occurrences of M:
?- M=2, tfilter(dif(M),[2,3,2,7,2,8,2],Xs).
Xs = [3,7,8].
Put the two steps together and define min_excluded/2:
min_excluded(Xs,Ys) :-
list_minnum(Xs,M),
tfilter(dif(M),Xs,Ys).
Let's run some queries!
?- min_excluded([3,2,7,8],Xs).
Xs = [3,7,8].
?- min_excluded([3,2,7,8,2],Xs).
Xs = [3,7,8].

Prolog program that deletes every n-th element from a list

Could you help me solve the following?
Write a ternary predicate delete_nth that deletes every n-th element from a list.
Sample runs:
?‐ delete_nth([a,b,c,d,e,f],2,L).
L = [a, c, e] ;
false
?‐ delete_nth([a,b,c,d,e,f],1,L).
L = [] ;
false
?‐ delete_nth([a,b,c,d,e,f],0,L).
false
I tried this:
listnum([],0).
listnum([_|L],N) :-
listnum(L,N1),
N is N1+1.
delete_nth([],_,_).
delete_nth([X|L],C,L1) :-
listnum(L,S),
Num is S+1,
( C>0
-> Y is round(Num/C),Y=0
-> delete_nth(L,C,L1)
; delete_nth(L,C,[X|L1])
).
My slightly extravagant variant:
delete_nth(L, N, R) :-
N > 0, % Added to conform "?‐ delete_nth([a,b,c,d,e,f],0,L). false"
( N1 is N - 1, length(Begin, N1), append(Begin, [_|Rest], L) ->
delete_nth(Rest, N, RestNew), append(Begin, RestNew, R)
;
R = L
).
Let's use clpfd! For the sake of versatility and tons of other good reasons:
:- use_module(library(clpfd)).
We define delete_nth/3 based on if_/3 and (#>=)/3:
delete_nth(Xs,N,Ys) :-
N #> 0,
every_tmp_nth_deleted(Xs,0,N,Ys).
every_tmp_nth_deleted([] ,_ ,_,[] ). % internal auxiliary predicate
every_tmp_nth_deleted([X|Xs],N0,N,Ys0) :-
N1 is N0+1,
if_(N1 #>= N,
(N2 = 0, Ys0 = Ys ),
(N2 = N1, Ys0 = [X|Ys])),
every_tmp_nth_deleted(Xs,N2,N,Ys).
Sample query:
?- delete_nth([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],2,Ys).
Ys = [1,3,5,7,9,11,13,15] % succeeds deterministically
Ok, how about something a little more general?
?- delete_nth([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],N,Ys).
N = 1 , Ys = []
; N = 2 , Ys = [1, 3, 5, 7, 9, 11, 13, 15]
; N = 3 , Ys = [1,2, 4,5, 7,8, 10,11, 13,14 ]
; N = 4 , Ys = [1,2,3, 5,6,7, 9,10,11, 13,14,15]
; N = 5 , Ys = [1,2,3,4, 6,7,8,9, 11,12,13,14 ]
; N = 6 , Ys = [1,2,3,4,5, 7,8,9,10,11, 13,14,15]
; N = 7 , Ys = [1,2,3,4,5,6, 8,9,10,11,12,13, 15]
; N = 8 , Ys = [1,2,3,4,5,6,7, 9,10,11,12,13,14,15]
; N = 9 , Ys = [1,2,3,4,5,6,7,8, 10,11,12,13,14,15]
; N = 10 , Ys = [1,2,3,4,5,6,7,8,9, 11,12,13,14,15]
; N = 11 , Ys = [1,2,3,4,5,6,7,8,9,10, 12,13,14,15]
; N = 12 , Ys = [1,2,3,4,5,6,7,8,9,10,11, 13,14,15]
; N = 13 , Ys = [1,2,3,4,5,6,7,8,9,10,11,12, 14,15]
; N = 14 , Ys = [1,2,3,4,5,6,7,8,9,10,11,12,13, 15]
; N = 15 , Ys = [1,2,3,4,5,6,7,8,9,10,11,12,13,14 ]
; N in 16..sup, Ys = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].
Please follow aBathologist instructive answer and explanation (+1). I just post my own bet at solution since there is a problem in ditto solution for ?‐ delete_nth([a,b,c,d,e,f],0,L)..
delete_nth(L,C,R) :-
delete_nth(L,C,1,R).
delete_nth([],_,_,[]).
delete_nth([_|T],C,C,T1) :- !, delete_nth(T,C,1,T1).
delete_nth([H|T],N,C,[H|T1]) :- C<N, C1 is C+1, delete_nth(T,N,C1,T1).
yields
1 ?- delete_nth([a,b,c,d,e,f],2,L).
L = [a, c, e].
2 ?- delete_nth([a,b,c,d,e,f],1,L).
L = [].
3 ?- delete_nth([a,b,c,d,e,f],0,L).
false.
A minor (?) problem: this code is deterministic, while the samples posted apparently are not (you have to input ';' to get a false at end). Removing the cut will yield the same behaviour.
An interesting - imho - one liner variant:
delete_nth(L,C,R) :- findall(E, (nth1(I,L,E),I mod C =\= 0), R).
but the C==0 must be ruled out, to avoid
ERROR: mod/2: Arithmetic: evaluation error: `zero_divisor'
Edited, correcting the mistake pointed out by #CapelliC, where predicate would succeed on N = 0.
I can see where you're headed with your solution, but you needn't bother with so much arithmetic in this case. We can delete the Nth element by counting down from N repeatedly until the list is empty. First, a quick note about style:
If you use spaces, line breaks, and proper placement of parenthesis you can help your readers parse your code. Your last clause is much more readable in this form:
delete_nth([X|L], C, L1):-
listnum(L, S),
Num is S+1,
C>0 -> Y is round(Num/C),
Y=0 -> delete_nth(L, C, L1)
; delete_nth(L, C, [X|L1]).
Viewing your code now, I'm not sure whether you meant to write
( C>0 -> ( Y is round(Num/C),
Y=0 -> delete_nth(L, C, L1) )
; delete_nth(L, C, [X|L1])
).
or if you meant
C>0 -> Y is round(Num/C),
( Y=0 -> delete_nth(L, C, L1)
; delete_nth(L, C, [X|L1])
).
or perhaps you're missing a ; before the second conditional? In any case, I suggest another approach...
This looks like a job for auxiliary predicates!
Often, we only need a simple relationship in order to pose a query, but the computational process necessary to resolve the query and arrive at an answer calls for a more complex relation. These are cases where it is "easier said than done".
My solution to this problem works as follows: In order to delete every nth element, we start at N and count down to 1. Each time we decrement the value from N, we move an element from the original list to the list of elements we're keeping. When we arrive at 1, we discard the element from our original list, and start counting down from N again. As you can see, in order to ask the question "What is the list Kept resulting from dropping every Nth element of List?" we only need three variables. But my answer the question, also requires another variable to track the count-down from N to 1, because each time we take the head off of List, we need to ask "What is the Count?" and once we've reached 1, we need to be able to remember the original value of N.
Thus, the solution I offer relies on an auxiliary, 4-place predicate to do the computation, with a 3-place predicate as the "front end", i.e., as the predicate used for posing the question.
delete_nth(List, N, Kept) :-
N > 0, %% Will fail if N < 0.
delete_nth(List, N, N, Kept), !. %% The first N will be our our counter, the second our target value. I cut because there's only one way to generate `Kept` and we don't need alternate solutions.
delete_nth([], _, _, []). %% An empty list has nothing to delete.
delete_nth([_|Xs], 1, N, Kept) :- %% When counter reaches 1, the head is discarded.
delete_nth(Xs, N, N, Kept). %% Reset the counter to N.
delete_nth([X|Xs], Counter, N, [X|Kept]) :- %% Keep X if counter is still counting down.
NextCount is Counter - 1, %% Decrement the counter.
delete_nth(Xs, NextCount, N, Kept). %% Keep deleting elements from Xs...
Yet another approach, following up on #user3598120 initial impulse to calculate the undesirable Nth elements away and inspired by #Sergey Dymchenko playfulness. It uses exclude/3 to remove all elements at a 1-based index that is multiple of N
delete_nth(List, N, Kept) :-
N > 0,
exclude(index_multiple_of(N, List), List, Kept).
index_multiple_of(N, List, Element) :-
nth1(Index, List, Element),
0 is Index mod N.

Count only numbers in list of numbers and letters

I'm new to Prolog and I can't seem to get the answer to this on my own.
What I want is, that Prolog counts ever Number in a list, NOT every element. So for example:
getnumbers([1, 2, c, h, 4], X).
Should give me:
X=3
getnumbers([], 0).
getnumbers([_ | T], N) :- getnumbers(T, N1), N is N1+1.
Is what I've got, but it obviously gives me every element in a list. I don't know how and where to put a "only count numbers".
As usual, when you work with lists (and SWI-Prolog), you can use module lambda.pl found there : http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl
:- use_module(library(lambda)).
getnumbers(L, N) :-
foldl(\X^Y^Z^(number(X)
-> Z is Y+1
; Z = Y),
L, 0, N).
Consider using the built-in predicates (for example in SWI-Prolog), and checking their implementations if you are interested in how to do it yourself:
include(number, List, Ns), length(Ns, N)
Stay logically pure, it's easy: Use the meta-predicate
tcount/3 in tandem with the reified type test predicate number_t/2 (short for number_truth/2):
number_t(X,Truth) :- number(X), !, Truth = true.
number_t(X,Truth) :- nonvar(X), !, Truth = false.
number_t(X,true) :- freeze(X, number(X)).
number_t(X,false) :- freeze(X,\+number(X)).
Let's run the query the OP suggested:
?- tcount(number_t,[1,2,c,h,4],N).
N = 3. % succeeds deterministically
Note that this is monotone: delaying variable binding is always logically sound. Consider:
?- tcount(number_t,[A,B,C,D,E],N), A=1, B=2, C=c, D=h, E=4.
N = 3, A = 1, B = 2, C = c, D = h, E = 4 ; % succeeds, but leaves choice point
false.
At last, let us peek at some of the answers of the following quite general query:
?- tcount(number_t,[A,B,C],N).
N = 3, freeze(A, number(A)), freeze(B, number(B)), freeze(C, number(C)) ;
N = 2, freeze(A, number(A)), freeze(B, number(B)), freeze(C,\+number(C)) ;
N = 2, freeze(A, number(A)), freeze(B,\+number(B)), freeze(C, number(C)) ;
N = 1, freeze(A, number(A)), freeze(B,\+number(B)), freeze(C,\+number(C)) ;
N = 2, freeze(A,\+number(A)), freeze(B, number(B)), freeze(C, number(C)) ;
N = 1, freeze(A,\+number(A)), freeze(B, number(B)), freeze(C,\+number(C)) ;
N = 1, freeze(A,\+number(A)), freeze(B,\+number(B)), freeze(C, number(C)) ;
N = 0, freeze(A,\+number(A)), freeze(B,\+number(B)), freeze(C,\+number(C)).
of course, you must check the type of an element to see if it satisfies the condition.
number/1 it's the predicate you're looking for.
See also if/then/else construct, to use in the recursive clause.
This uses Prolog's natural pattern matching with number/1, and an additional clause (3 below) to handle cases that are not numbers.
% 1 - base recursion
getnumbers([], 0).
% 2 - will pass ONLY if H is a number
getnumbers([H | T], N) :-
number(H),
getnumbers(T, N1),
N is N1+1.
% 3 - if got here, H CANNOT be a number, ignore head, N is unchanged, recurse tail
getnumbers([_ | T], N) :-
getnumbers(T, N).
A common prolog idiom with this sort of problem is to first define your predicate for public consumption, and have it invoke a 'worker' predicate. Often it will use some sort of accumulator. For your problem, the public consumption predicate is something like:
count_numbers( Xs , N ) :-
count_numbers_in_list( Xs , 0 , N ) .
count_numbers_in_list( [] , N , N ) .
count_numbers_in_list( [X|Xs] , T , N ) :-
number(X) ,
T1 is T+1 ,
count_numbers_in_list( Xs , T1 , N )
.
You'll want to structure the recursive bit so that it is tail recursive as well, meaning that the recursive call depends on nothing but data in the argument list. This allows the compiler to reuse the existing stack frame on each call, so the predicate becomes, in effect, iterative instead of recursive. A properly tail-recursive predicate can process a list of infinite length; one that is not will allocate a new stack frame on every recursion and eventually blow its stack. The above count_numbers_in_list/3 is tail recursive. This is not:
getnumbers([H | T], N) :-
number(H),
getnumbers(T, N1),
N is N1+1.