How to print any number or random access containers? - c++

Let's assume I have N random access containers (std::vector and std::array for example) of different types, and that all containers have the same length. I want to write to write a function that prints them in a column-ordered fashion, i.e.:
#include <vector>
#include <iostream>
#include <array>
#include <complex>
constexpr int nr=100;
void print(const std::vector<double>& d1, const std::array<std::complex<double>,nr>& b1, const std::vector<int>& b2, const std::array<double,nr>& d2)
{
for(int i=0; i<nr; ++i)
std::cout<<b1[i]<<" "<<d1[i]<<" "<<b2[i]<<" "<<d2[i]<<"\n";
}
Now assuming that all the containers contain the standard numeric types I could write a variadic template function that would look like this:
template<typename... T>
void vprint(T... cs)
{
constexpr int nc=sizeof...(T);
std::vector<std::vector<std::complex<long double>>> v(nr, std::vector<std::complex<long double>>(nc));
//then fill v recursively with all the cs and print it
}
where I used std::complex<long double> since it would contain any possible number.
However this solution is unsatisfactory since I am allocating extra memory, I am converting some integers spoiling the output (and possibly precision), and, finally, the solution does not work if any of the containers contains a printable type that does not convert trivially to a numeric type.
Any idea on how to write a more general solution?

You don't need to create any temporaries. Here's an implementation that requires at least one container to be present, but you can remove that requirement by adding an empty overload:
// Handles empty parameters by doing nothing
void vprint() {}
// Handle non-empty parameters
template<typename T, typename... Ts>
void vprint(const T& front, const Ts&... cs) {
for (int i = 0; i < front.size(); ++i) {
std::cout << front[i];
((std::cout << ' ' << cs[i]), ...);
std::cout << '\n';
}
}
This makes use of C++17 fold expressions to print the ith element of each container, after printing the first one manually. Handling the first one explicitly also ensures we don't print an extra space at the end (or beginning) of each line without branches.
If you don't have access to C++17, it can still be implemented but it'll be a lot uglier than this.
As per Louis' comment, you could also add an assert before the for loop to make sure all the containers have at least front.size() elements in them for safety:
assert(((cs.size() >= front.size()) && ...));
Change the >= to == for strict equality.
Usage:
int main() {
std::array<int, 4> a{1,2,3,4};
std::vector<int> b{5,6,7,8};
vprint(a, b);
}
Prints
1 5
2 6
3 7
4 8
https://godbolt.org/z/z6s34TaT9

Related

How to write my own functions for comparison?

I wrote a function for vector comparison.
#include <vector>
#include <iostream>
#include <algorithm>
using std::vector;
using std::cout;
bool mycomp(const vector<int>& vi_a, const vector<int>& vi_b){
for(auto x:vi_a) cout << x;
cout << '\n';
return true;
}
int main(){
vector<int> vi1{2,9,8};
vector<int> vi2{3,5,6};
vector<int> vi = min(vi1, vi2, mycomp);
for(auto x:vi) cout << x;
cout << '\n';
}
Output:
356
356
What's weird is that the output is 356, instead of 298. It seems that the two vectors are switched when calling mycomp.
p.s. I'd rather not use lambda here, because mycomp contains more than one line of code, which is more readable this way.
If you take a look at the cppreference documentation for std::min() you will see in the possible implementation that the second element is used as the first element in the comparator.
template<class T, class Compare>
const T& min(const T& a, const T& b, Compare comp)
{
return (comp(b, a)) ? b : a;
}
And when you call min() with the arguments vi2 and vi1, the second argument is passed to the comparator (which in your case is vi2), upon which the comparator returns true (implying that vi2 is the minimum of the two). While doing this the comparator also prints out 356 because that is the first element passed to the comparator according to the possible implementation above.
After that happens you take the presumably smaller of the two vectors, which is the first one passed to the comparator according to the possible implementation above (which is vi2). And you print that out. Therefore you get 356 again.
Note that the reason b is passed as the first argument to std::min is because in the case where the two compare equal the algorithm is required to return a. At the same time it is required to call the comparator only once. Combining these two requirements gives the possible implementation above.

Returning container from function: optimizing speed and modern style

Not entirely a question, although just something I have been pondering on how to write such code more elegantly by style and at the same time fully making use of the new c++ standard etc. Here is the example
Returning Fibonacci sequence to a container upto N values (for those not mathematically inclined, this is just adding the previous two values with the first two values equal to 1. i.e. 1,1,2,3,5,8,13, ...)
example run from main:
std::vector<double> vec;
running_fibonacci_seq(vec,30000000);
1)
template <typename T, typename INT_TYPE>
void running_fibonacci_seq(T& coll, const INT_TYPE& N)
{
coll.resize(N);
coll[0] = 1;
if (N>1) {
coll[1] = 1;
for (auto pos = coll.begin()+2;
pos != coll.end();
++pos)
{
*pos = *(pos-1) + *(pos-2);
}
}
}
2) the same but using rvalue && instead of & 1.e.
void running_fibonacci_seq(T&& coll, const INT_TYPE& N)
EDIT: as noticed by the users who commented below, the rvalue and lvalue play no role in timing - the speeds were actually the same for reasons discussed in the comments
results for N = 30,000,000
Time taken for &:919.053ms
Time taken for &&: 800.046ms
Firstly I know this really isn't a question as such, but which of these or which is best modern c++ code? with the rvalue reference (&&) it appears that move semantics are in place and no unnecessary copies are being made which makes a small improvement on time (important for me due to future real-time application development). some specific ''questions'' are
a) passing a container (which was vector in my example) to a function as a parameter is NOT an elegant solution on how rvalue should really be used. is this fact true? if so how would rvalue really show it's light in the above example?
b) coll.resize(N); call and the N=1 case, is there a way to avoid these calls so the user is given a simple interface to only use the function without creating size of vector dynamically. Can template metaprogramming be of use here so the vector is allocated with a particular size at compile time? (i.e. running_fibonacci_seq<30000000>) since the numbers can be large is there any need to use template metaprogramming if so can we use this (link) also
c) Is there an even more elegant method? I have a feeling std::transform function could be used by using lambdas e.g.
void running_fibonacci_seq(T&& coll, const INT_TYPE& N)
{
coll.resize(N);
coll[0] = 1;
coll[1] = 1;
std::transform (coll.begin()+2,
coll.end(), // source
coll.begin(), // destination
[????](????) { // lambda as function object
return ????????;
});
}
[1] http://cpptruths.blogspot.co.uk/2011/07/want-speed-use-constexpr-meta.html
Due to "reference collapsing" this code does NOT use an rvalue reference, or move anything:
template <typename T, typename INT_TYPE>
void running_fibonacci_seq(T&& coll, const INT_TYPE& N);
running_fibonacci_seq(vec,30000000);
All of your questions (and the existing comments) become quite meaningless when you recognize this.
Obvious answer:
std::vector<double> running_fibonacci_seq(uint32_t N);
Why ?
Because of const-ness:
std::vector<double> const result = running_fibonacci_seq(....);
Because of easier invariants:
void running_fibonacci_seq(std::vector<double>& t, uint32_t N) {
// Oh, forgot to clear "t"!
t.push_back(1);
...
}
But what of speed ?
There is an optimization called Return Value Optimization that allows the compiler to omit the copy (and build the result directly in the caller's variable) in a number of cases. It is specifically allowed by the C++ Standard even when the copy/move constructors have side effects.
So, why passing "out" parameters ?
you can only have one return value (sigh)
you may wish the reuse the allocated resources (here the memory buffer of t)
Profile this:
#include <vector>
#include <cstddef>
#include <type_traits>
template <typename Container>
Container generate_fibbonacci_sequence(std::size_t N)
{
Container coll;
coll.resize(N);
coll[0] = 1;
if (N>1) {
coll[1] = 1;
for (auto pos = coll.begin()+2;
pos != coll.end();
++pos)
{
*pos = *(pos-1) + *(pos-2);
}
}
return coll;
}
struct fibbo_maker {
std::size_t N;
fibbo_maker(std::size_t n):N(n) {}
template<typename Container>
operator Container() const {
typedef typename std::remove_reference<Container>::type NRContainer;
typedef typename std::decay<NRContainer>::type VContainer;
return generate_fibbonacci_sequence<VContainer>(N);
}
};
fibbo_maker make_fibbonacci_sequence( std::size_t N ) {
return fibbo_maker(N);
}
int main() {
std::vector<double> tmp = make_fibbonacci_sequence(30000000);
}
the fibbo_maker stuff is just me being clever. But it lets me deduce the type of fibbo sequence you want without you having to repeat it.

Why use functors over functions?

Compare
double average = CalculateAverage(values.begin(), values.end());
with
double average = std::for_each(values.begin(), values.end(), CalculateAverage());
What are the benefits of using a functor over a function? Isn't the first a lot easier to read (even before the implementation is added)?
Assume the functor is defined like this:
class CalculateAverage
{
private:
std::size_t num;
double sum;
public:
CalculateAverage() : num (0) , sum (0)
{
}
void operator () (double elem)
{
num++;
sum += elem;
}
operator double() const
{
return sum / num;
}
};
At least four good reasons:
Separation of concerns
In your particular example, the functor-based approach has the advantage of separating the iteration logic from the average-calculation logic. So you can use your functor in other situations (think about all the other algorithms in the STL), and you can use other functors with for_each.
Parameterisation
You can parameterise a functor more easily. So for instance, you could have a CalculateAverageOfPowers functor that takes the average of the squares, or cubes, etc. of your data, which would be written thus:
class CalculateAverageOfPowers
{
public:
CalculateAverageOfPowers(float p) : acc(0), n(0), p(p) {}
void operator() (float x) { acc += pow(x, p); n++; }
float getAverage() const { return acc / n; }
private:
float acc;
int n;
float p;
};
You could of course do the same thing with a traditional function, but then makes it difficult to use with function pointers, because it has a different prototype to CalculateAverage.
Statefulness
And as functors can be stateful, you could do something like this:
CalculateAverage avg;
avg = std::for_each(dataA.begin(), dataA.end(), avg);
avg = std::for_each(dataB.begin(), dataB.end(), avg);
avg = std::for_each(dataC.begin(), dataC.end(), avg);
to average across a number of different data-sets.
Note that almost all STL algorithms/containers that accept functors require them to be "pure" predicates, i.e. have no observable change in state over time. for_each is a special case in this regard (see e.g. Effective Standard C++ Library - for_each vs. transform).
Performance
Functors can often be inlined by the compiler (the STL is a bunch of templates, after all). Whilst the same is theoretically true of functions, compilers typically won't inline through a function pointer. The canonical example is to compare std::sort vs qsort; the STL version is often 5-10x faster, assuming the comparison predicate itself is simple.
Summary
Of course, it's possible to emulate the first three with traditional functions and pointers, but it becomes a great deal simpler with functors.
Advantages of Functors:
Unlike Functions Functor can have state.
Functor fits into OOP paradigm as compared to functions.
Functor often may be inlined unlike Function pointers
Functor doesn't require vtable and runtime dispatching, and hence more efficient in most cases.
std::for_each is easily the most capricious and least useful of the standard algorithms. It's just a nice wrapper for a loop. However, even it has advantages.
Consider what your first version of CalculateAverage must look like. It will have a loop over the iterators, and then do stuff with each element. What happens if you write that loop incorrectly? Oops; there's a compiler or runtime error. The second version can never have such errors. Yes, it's not a lot of code, but why do we have to write loops so often? Why not just once?
Now, consider real algorithms; the ones that actually do work. Do you want to write std::sort? Or std::find? Or std::nth_element? Do you even know how to implement it in the most efficient way possible? How many times do you want to implement these complex algorithms?
As for ease of reading, that's in the eyes of the beholder. As I said, std::for_each is hardly the first choice for algorithms (especially with C++0x's range-based for syntax). But if you're talking about real algorithms, they're very readable; std::sort sorts a list. Some of the more obscure ones like std::nth_element won't be as familiar, but you can always look it up in your handy C++ reference.
And even std::for_each is perfectly readable once you use Lambda's in C++0x.
•Unlike Functions Functor can have state.
This is very interesting because std::binary_function, std::less and std::equal_to has a template for an operator() that is const. But what if you wanted to print a debug message with the current call count for that object, how would you do it?
Here is template for std::equal_to:
struct equal_to : public binary_function<_Tp, _Tp, bool>
{
bool
operator()(const _Tp& __x, const _Tp& __y) const
{ return __x == __y; }
};
I can think of 3 ways to allow the operator() to be const, and yet change a member variable. But what is the best way? Take this example:
#include <iostream>
#include <string>
#include <algorithm>
#include <functional>
#include <cassert> // assert() MACRO
// functor for comparing two integer's, the quotient when integer division by 10.
// So 50..59 are same, and 60..69 are same.
// Used by std::sort()
struct lessThanByTen: public std::less<int>
{
private:
// data members
int count; // nr of times operator() was called
public:
// default CTOR sets count to 0
lessThanByTen() :
count(0)
{
}
// #override the bool operator() in std::less<int> which simply compares two integers
bool operator() ( const int& arg1, const int& arg2) const
{
// this won't compile, because a const method cannot change a member variable (count)
// ++count;
// Solution 1. this trick allows the const method to change a member variable
++(*(int*)&count);
// Solution 2. this trick also fools the compilers, but is a lot uglier to decipher
++(*(const_cast<int*>(&count)));
// Solution 3. a third way to do same thing:
{
// first, stack copy gets bumped count member variable
int incCount = count+1;
const int *iptr = &count;
// this is now the same as ++count
*(const_cast<int*>(iptr)) = incCount;
}
std::cout << "DEBUG: operator() called " << count << " times.\n";
return (arg1/10) < (arg2/10);
}
};
void test1();
void printArray( const std::string msg, const int nums[], const size_t ASIZE);
int main()
{
test1();
return 0;
}
void test1()
{
// unsorted numbers
int inums[] = {33, 20, 10, 21, 30, 31, 32, 22, };
printArray( "BEFORE SORT", inums, 8 );
// sort by quotient of integer division by 10
std::sort( inums, inums+8, lessThanByTen() );
printArray( "AFTER SORT", inums, 8 );
}
//! #param msg can be "this is a const string" or a std::string because of implicit string(const char *) conversion.
//! print "msg: 1,2,3,...N", where 1..8 are numbers in nums[] array
void printArray( const std::string msg, const int nums[], const size_t ASIZE)
{
std::cout << msg << ": ";
for (size_t inx = 0; inx < ASIZE; ++inx)
{
if (inx > 0)
std::cout << ",";
std::cout << nums[inx];
}
std::cout << "\n";
}
Because all 3 solutions are compiled in, it increments count by 3. Here's the output:
gcc -g -c Main9.cpp
gcc -g Main9.o -o Main9 -lstdc++
./Main9
BEFORE SORT: 33,20,10,21,30,31,32,22
DEBUG: operator() called 3 times.
DEBUG: operator() called 6 times.
DEBUG: operator() called 9 times.
DEBUG: operator() called 12 times.
DEBUG: operator() called 15 times.
DEBUG: operator() called 12 times.
DEBUG: operator() called 15 times.
DEBUG: operator() called 15 times.
DEBUG: operator() called 18 times.
DEBUG: operator() called 18 times.
DEBUG: operator() called 21 times.
DEBUG: operator() called 21 times.
DEBUG: operator() called 24 times.
DEBUG: operator() called 27 times.
DEBUG: operator() called 30 times.
DEBUG: operator() called 33 times.
DEBUG: operator() called 36 times.
AFTER SORT: 10,20,21,22,33,30,31,32
In the first approach the iteration code has to be duplicated in all functions that wants to do something with the collection. The second approach hide the details of iteration.
OOP is keyword here.
http://www.newty.de/fpt/functor.html:
4.1 What are Functors ?
Functors are functions with a state. In C++ you can realize them as a class with one or more private members to store the state and with an overloaded operator () to execute the function. Functors can encapsulate C and C++ function pointers employing the concepts templates and polymorphism. You can build up a list of pointers to member functions of arbitrary classes and call them all through the same interface without bothering about their class or the need of a pointer to an instance. All the functions just have got to have the same return-type and calling parameters. Sometimes functors are also known as closures. You can also use functors to implement callbacks.
You are comparing functions on different level of abstraction.
You can implement CalculateAverage(begin, end) either as:
template<typename Iter>
double CalculateAverage(Iter begin, Iter end)
{
return std::accumulate(begin, end, 0.0, std::plus<double>) / std::distance(begin, end)
}
or you can do it with a for loop
template<typename Iter>
double CalculateAverage(Iter begin, Iter end)
{
double sum = 0;
int count = 0;
for(; begin != end; ++begin) {
sum += *begin;
++count;
}
return sum / count;
}
The former requires you to know more things, but once you know them, is simpler and leaves fewer possibilities for error.
It also only uses two generic components (std::accumulate and std::plus), which is often the case in more complex case too. You can often have a simple, universal functor (or function; plain old function can act as functor) and simply combine it with whatever algorithm you need.

C++ range/xrange equivalent in STL or boost?

Is there C++ equivalent for python Xrange generator in either STL or boost?
xrange basically generates incremented number with each call to ++ operator.
the constructor is like this:
xrange(first, last, increment)
was hoping to do something like this using boost for each:
foreach(int i, xrange(N))
I. am aware of the for loop. in my opinion they are too much boilerplate.
Thanks
my reasons:
my main reason for wanting to do so is because i use speech to text software, and programming loop usual way is difficult, even if using code completion. It is much more efficient to have pronounceable constructs.
many loops start with zero and increment by one, which is default for range. I find python construct more intuitive
for(int i = 0; i < N; ++i)
foreach(int i, range(N))
functions which need to take range as argument:
Function(int start, int and, int inc);
function(xrange r);
I understand differences between languages, however if a particular construct in python is very useful for me and can be implemented efficiently in C++, I do not see a reason not to use it. For each construct is foreign to C++ as well however people use it.
I put my implementation at the bottom of the page as well the example usage.
in my domain i work with multidimensional arrays, often rank 4 tensor. so I would often end up with 4 nested loops with different ranges/increments to compute normalization, indexes, etc. those are not necessarily performance loops, and I am more concerned with correctness readability and ability to modify.
for example
int function(int ifirst, int ilast, int jfirst, int jlast, ...);
versus
int function(range irange, range jrange, ...);
In the above, if different strids are needed, you have to pass more variables, modify loops, etc. eventually you end up with a mass of integers/nearly identical loops.
foreach and range solve my problem exactly. familiarity to average C++ programmer is not high on my list of concerns - problem domain is a rather obscure, there is a lot of meta-programming, SSE intrinsic, generated code.
Boost irange should really be the answer (ThxPaul Brannan)
I'm adding my answer to provide a compelling example of very valid use-cases that are not served well by manual looping:
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm.hpp>
#include <boost/range/irange.hpp>
using namespace boost::adaptors;
static int mod7(int v)
{ return v % 7; }
int main()
{
std::vector<int> v;
boost::copy(
boost::irange(1,100) | transformed(mod7),
std::back_inserter(v));
boost::sort(v);
boost::copy(
v | reversed | uniqued,
std::ostream_iterator<int>(std::cout, ", "));
}
Output: 6, 5, 4, 3, 2, 1, 0,
Note how this resembles generators/comprehensions (functional languages) and enumerables (C#)
Update I just thought I'd mention the following (highly inflexible) idiom that C++11 allows:
for (int x : {1,2,3,4,5,6,7})
std::cout << x << std::endl;
of course you could marry it with irange:
for (int x : boost::irange(1,8))
std::cout << x << std::endl;
Boost has counting_iterator as far as I know, which seems to allow only incrementing in steps of 1. For full xrange functionality you might need to implement a similar iterator yourself.
All in all it could look like this (edit: added an iterator for the third overload of xrange, to play around with boost's iterator facade):
#include <iostream>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/foreach.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <cassert>
template <class T>
boost::iterator_range<boost::counting_iterator<T> > xrange(T to)
{
//these assertions are somewhat problematic:
//might produce warnings, if T is unsigned
assert(T() <= to);
return boost::make_iterator_range(boost::counting_iterator<T>(0), boost::counting_iterator<T>(to));
}
template <class T>
boost::iterator_range<boost::counting_iterator<T> > xrange(T from, T to)
{
assert(from <= to);
return boost::make_iterator_range(boost::counting_iterator<T>(from), boost::counting_iterator<T>(to));
}
//iterator that can do increments in steps (positive and negative)
template <class T>
class xrange_iterator:
public boost::iterator_facade<xrange_iterator<T>, const T, std::forward_iterator_tag>
{
T value, incr;
public:
xrange_iterator(T value, T incr = T()): value(value), incr(incr) {}
private:
friend class boost::iterator_core_access;
void increment() { value += incr; }
bool equal(const xrange_iterator& other) const
{
//this is probably somewhat problematic, assuming that the "end iterator"
//is always the right-hand value?
return (incr >= 0 && value >= other.value) || (incr < 0 && value <= other.value);
}
const T& dereference() const { return value; }
};
template <class T>
boost::iterator_range<xrange_iterator<T> > xrange(T from, T to, T increment)
{
assert((increment >= T() && from <= to) || (increment < T() && from >= to));
return boost::make_iterator_range(xrange_iterator<T>(from, increment), xrange_iterator<T>(to));
}
int main()
{
BOOST_FOREACH(int i, xrange(10)) {
std::cout << i << ' ';
}
BOOST_FOREACH(int i, xrange(10, 20)) {
std::cout << i << ' ';
}
std::cout << '\n';
BOOST_FOREACH(int i, xrange(0, 46, 5)) {
std::cout << i << ' ';
}
BOOST_FOREACH(int i, xrange(10, 0, -1)) {
std::cout << i << ' ';
}
}
As others are saying, I don't see this buying you much over a normal for loop.
std::iota (not yet standardized) is kinda like range. Doesn't make things any shorter or clearer than an explicit for loop, though.
#include <algorithm>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
int main() {
std::vector<int> nums(5);
std::iota(nums.begin(), nums.end(), 1);
std::copy(nums.begin(), nums.end(),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}
Compile with g++ -std=c++0x; this prints "1 2 3 4 5 \n".
well, here is what i wrote, since there does not seem to be one.
the generator does not use any internal storage besides single integer.
range object can be passed around and used in nested loops.
there is a small test case.
#include "iostream"
#include "foreach.hpp"
#include "boost/iterator/iterator_categories.hpp"
struct range {
struct iterator_type {
typedef int value_type;
typedef int difference_type;
typedef boost::single_pass_traversal_tag iterator_category;
typedef const value_type* pointer;
typedef const value_type & reference;
mutable value_type value;
const difference_type increment;
iterator_type(value_type value, difference_type increment = 0)
: value(value), increment(increment) {}
bool operator==(const iterator_type &rhs) const {
return value >= rhs.value;
}
value_type operator++() const { return value += increment; }
operator pointer() const { return &value; }
};
typedef iterator_type iterator;
typedef const iterator_type const_iterator;
int first_, last_, increment_;
range(int last) : first_(0), last_(last), increment_(1) {}
range(int first, int last, int increment = 1)
: first_(first), last_(last), increment_(increment) {}
iterator begin() const {return iterator(first_, increment_);}
iterator end() const {return iterator(last_);}
};
int test(const range & range0, const range & range1){
foreach(int i, range0) {
foreach(int j, range1) {
std::cout << i << " " << j << "\n";
}
}
}
int main() {
test(range(6), range(3, 10, 3));
}
my main reason for wanting to do so is because i use speech to text software, and programming loop usual way is difficult, even if using code completion. It is much more efficient to have pronounceable constructs.
That makes sense. But couldn't a simple macro solve this problem? #define for_i_to(N, body) for (int i = 0; i < N; ++i) { body }
or something similar. Or avoid the loop entirely and use the standard library algorithms. (std::for_each(range.begin(), rang.end(), myfunctor()) seems easier to pronounce)
many loops start with zero and increment by one, which is default for range. I find python construct more intuitive
You're wrong. The Python version is more intuitive to a Python programmer. And it may be more intuitive to a non-programmer. But you're writing C++ code. Your goal should be to make it intuitive to a C++ programmer. And C++ programmer know for-loops and they know the standard library algorithms. Stick to using those. (Or stick to writing Python)
functions which need to take range as argument:
Function(int start, int and, int inc);
function(xrange r);
Or the idiomatic C++ version:
template <typename iter_type>
void function(iter_type first, iter_type last);
In C++, ranges are represented by iterator pairs. Not integers.
If you're going to write code in a new language, respect the conventions of that language. Even if it means you have to adapt and change some habits.
If you're not willing to do that, stick with the language you know.
Trying to turn language X into language Y is always the wrong thing to do. It own't work, and it'll confuse the language X programmers who are going to maintain (or just read) your code.
Since I've started to use BOOST_FOREACH for all my iteration (probably a misguided idea, but that's another story), here's another use for aaa's range class:
std::vector<int> vec;
// ... fill the vector ...
BOOST_FOREACH(size_t idx, make_range(0, vec.size()))
{
// ... do some stuff ...
}
(yes, range should be templatized so I can use user-defined integral types with it)
And here's make_range():
template<typename T>
range<T> make_range(T const & start, T const & end)
{
return range<T>(start, end);
}
See also:
http://groups.google.com/group/boost-list/browse_thread/thread/3e11117be9639bd
and:
https://svn.boost.org/trac/boost/ticket/3469
which propose similar solutions.
And I've just found boost::integer_range; with the above example, the code would look like:
using namespace boost;
std::vector<int> vec;
// ... fill the vector ...
BOOST_FOREACH(size_t idx, make_integer_range(0, vec.size()))
{
// ... do some stuff ...
}
C++ 20's ranges header has iota_view which does this:
#include <ranges>
#include <vector>
#include <iostream>
int main()
{
for (int i : std::views::iota{1, 10})
std::cout << i << ' ';
std::cout << '\n';
for (int i : std::views::iota(1) | std::views::take(9))
std::cout << i << ' ';
}
Output:
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
Since we don't really know what you actually want to use this for, I'm assuming your test case is representative. And then plain simple for loops are a whole lot simpler and more readable:
int main() {
for (int i = 0; i <= 6; ++i){
for (int j = 3; j <= 10; j += 3){
std::cout << i << " " << j << "\n";
}
}
}
A C++ programmer can walk in from the street and understand this function without having to look up complex classes elsewhere. And it's 5 lines instead of your 60. Of course if you have 400 loops exactly like these, then yes, you'd save some effort by using your range object. Or you could just wrap these two loops inside a helper function, and call that whenever you needed.
We don't really have enough information to say what's wrong with simple for loops, or what would be a suitable replacement. The loops here solve your problem with far less complexity and far fewer lines of code than your sample implementation. If this is a bad solution, tell us your requirements (as in what problem you need to solve, rather than "I want python-style loops in C++")
Keep it simple, make a stupid macro;
#define for_range(VARNAME, START, STOP, INCREMENT) \
for(int VARNAME = START, int STOP_ = STOP, INCREMENT_ = INCREMENT; VARNAME != STOP_; VARNAME += INCREMENT_)
and use as;
for_range(i, 10, 5, -1)
cout << i << endl;
You're trying to bring a python idiom into C++. That's unncessary. Use
for(int i=initVal;i<range;i+=increment)
{
/*loop body*/
}
to achieve this. In Python, the for(i in xrange(init, rng, increment)) form is necessary because Python doesn't provide a simple for loop, only a for-each type construct. So you can iterate only over a sequence or a generator. This is simply unnecessary and almost certainly bad practice in a language that provides a for(;;) syntax.
EDIT: As a completely non-recommended aside, the closest I can get to the for i xrange(first, last, inc) syntax in C++ is:
#include <cstdio>
using namespace std;
int xrange(unsigned int last, unsigned int first=0, unsigned int inc=1)
{
static int i = first;
return (i<last)?i+=inc:i=0;
}
int main()
{
while(int i=xrange(10, 0, 1))
printf("in loop at i=%d\n",i);
}
Not that while this loops the correct number of times, i varies from first+inc to last and NOT first to last-inc as in Python. Also, the function can only work reliably with unsigned values, as when i==0, the while loop will exit. Do not use this function. I only added this code here to demonstrate that something of the sort is indeed possible. There are also several other caveats and gotchas (the code won't really work for first!=0 on subsequent function calls, for example)

Initialization of all elements of an array to one default value in C++?

C++ Notes: Array Initialization has a nice list over initialization of arrays. I have a
int array[100] = {-1};
expecting it to be full with -1's but its not, only first value is and the rest are 0's mixed with random values.
The code
int array[100] = {0};
works just fine and sets each element to 0.
What am I missing here.. Can't one initialize it if the value isn't zero ?
And 2: Is the default initialization (as above) faster than the usual loop through the whole array and assign a value or does it do the same thing?
Using the syntax that you used,
int array[100] = {-1};
says "set the first element to -1 and the rest to 0" since all omitted elements are set to 0.
In C++, to set them all to -1, you can use something like std::fill_n (from <algorithm>):
std::fill_n(array, 100, -1);
In portable C, you have to roll your own loop. There are compiler-extensions or you can depend on implementation-defined behavior as a shortcut if that's acceptable.
There is an extension to the gcc compiler which allows the syntax:
int array[100] = { [0 ... 99] = -1 };
This would set all of the elements to -1.
This is known as "Designated Initializers" see here for further information.
Note this isn't implemented for the gcc c++ compiler.
The page you linked to already gave the answer to the first part:
If an explicit array size is
specified, but an shorter
initiliazation list is specified, the
unspecified elements are set to zero.
There is no built-in way to initialize the entire array to some non-zero value.
As for which is faster, the usual rule applies: "The method that gives the compiler the most freedom is probably faster".
int array[100] = {0};
simply tells the compiler "set these 100 ints to zero", which the compiler can optimize freely.
for (int i = 0; i < 100; ++i){
array[i] = 0;
}
is a lot more specific. It tells the compiler to create an iteration variable i, it tells it the order in which the elements should be initialized, and so on. Of course, the compiler is likely to optimize that away, but the point is that here you are overspecifying the problem, forcing the compiler to work harder to get to the same result.
Finally, if you want to set the array to a non-zero value, you should (in C++, at least) use std::fill:
std::fill(array, array+100, 42); // sets every value in the array to 42
Again, you could do the same with an array, but this is more concise, and gives the compiler more freedom. You're just saying that you want the entire array filled with the value 42. You don't say anything about in which order it should be done, or anything else.
C++11 has another (imperfect) option:
std::array<int, 100> a;
a.fill(-1);
With {} you assign the elements as they are declared; the rest is initialized with 0.
If there is no = {} to initalize, the content is undefined.
Using std::array, we can do this in a fairly straightforward way in C++14. It is possible to do in C++11 only, but slightly more complicated.
Our interface is a compile-time size and a default value.
template<typename T>
constexpr auto make_array_n(std::integral_constant<std::size_t, 0>, T &&) {
return std::array<std::decay_t<T>, 0>{};
}
template<std::size_t size, typename T>
constexpr auto make_array_n(std::integral_constant<std::size_t, size>, T && value) {
return detail::make_array_n_impl<size>(std::forward<T>(value), std::make_index_sequence<size - 1>{});
}
template<std::size_t size, typename T>
constexpr auto make_array_n(T && value) {
return make_array_n(std::integral_constant<std::size_t, size>{}, std::forward<T>(value));
}
The third function is mainly for convenience, so the user does not have to construct a std::integral_constant<std::size_t, size> themselves, as that is a pretty wordy construction. The real work is done by one of the first two functions.
The first overload is pretty straightforward: It constructs a std::array of size 0. There is no copying necessary, we just construct it.
The second overload is a little trickier. It forwards along the value it got as the source, and it also constructs an instance of make_index_sequence and just calls some other implementation function. What does that function look like?
namespace detail {
template<std::size_t size, typename T, std::size_t... indexes>
constexpr auto make_array_n_impl(T && value, std::index_sequence<indexes...>) {
// Use the comma operator to expand the variadic pack
// Move the last element in if possible. Order of evaluation is well-defined
// for aggregate initialization, so there is no risk of copy-after-move
return std::array<std::decay_t<T>, size>{ (static_cast<void>(indexes), value)..., std::forward<T>(value) };
}
} // namespace detail
This constructs the first size - 1 arguments by copying the value we passed in. Here, we use our variadic parameter pack indexes just as something to expand. There are size - 1 entries in that pack (as we specified in the construction of make_index_sequence), and they have values of 0, 1, 2, 3, ..., size - 2. However, we do not care about the values (so we cast it to void, to silence any compiler warnings). Parameter pack expansion expands out our code to something like this (assuming size == 4):
return std::array<std::decay_t<T>, 4>{ (static_cast<void>(0), value), (static_cast<void>(1), value), (static_cast<void>(2), value), std::forward<T>(value) };
We use those parentheses to ensure that the variadic pack expansion ... expands what we want, and also to ensure we are using the comma operator. Without the parentheses, it would look like we are passing a bunch of arguments to our array initialization, but really, we are evaluating the index, casting it to void, ignoring that void result, and then returning value, which is copied into the array.
The final argument, the one we call std::forward on, is a minor optimization. If someone passes in a temporary std::string and says "make an array of 5 of these", we would like to have 4 copies and 1 move, instead of 5 copies. The std::forward ensures that we do this.
The full code, including headers and some unit tests:
#include <array>
#include <type_traits>
#include <utility>
namespace detail {
template<std::size_t size, typename T, std::size_t... indexes>
constexpr auto make_array_n_impl(T && value, std::index_sequence<indexes...>) {
// Use the comma operator to expand the variadic pack
// Move the last element in if possible. Order of evaluation is well-defined
// for aggregate initialization, so there is no risk of copy-after-move
return std::array<std::decay_t<T>, size>{ (static_cast<void>(indexes), value)..., std::forward<T>(value) };
}
} // namespace detail
template<typename T>
constexpr auto make_array_n(std::integral_constant<std::size_t, 0>, T &&) {
return std::array<std::decay_t<T>, 0>{};
}
template<std::size_t size, typename T>
constexpr auto make_array_n(std::integral_constant<std::size_t, size>, T && value) {
return detail::make_array_n_impl<size>(std::forward<T>(value), std::make_index_sequence<size - 1>{});
}
template<std::size_t size, typename T>
constexpr auto make_array_n(T && value) {
return make_array_n(std::integral_constant<std::size_t, size>{}, std::forward<T>(value));
}
struct non_copyable {
constexpr non_copyable() = default;
constexpr non_copyable(non_copyable const &) = delete;
constexpr non_copyable(non_copyable &&) = default;
};
int main() {
constexpr auto array_n = make_array_n<6>(5);
static_assert(std::is_same<std::decay_t<decltype(array_n)>::value_type, int>::value, "Incorrect type from make_array_n.");
static_assert(array_n.size() == 6, "Incorrect size from make_array_n.");
static_assert(array_n[3] == 5, "Incorrect values from make_array_n.");
constexpr auto array_non_copyable = make_array_n<1>(non_copyable{});
static_assert(array_non_copyable.size() == 1, "Incorrect array size of 1 for move-only types.");
constexpr auto array_empty = make_array_n<0>(2);
static_assert(array_empty.empty(), "Incorrect array size for empty array.");
constexpr auto array_non_copyable_empty = make_array_n<0>(non_copyable{});
static_assert(array_non_copyable_empty.empty(), "Incorrect array size for empty array of move-only.");
}
The page you linked states
If an explicit array size is specified, but an shorter initiliazation list is specified, the unspecified elements are set to zero.
Speed issue: Any differences would be negligible for arrays this small. If you work with large arrays and speed is much more important than size, you can have a const array of the default values (initialized at compile time) and then memcpy them to the modifiable array.
Another way of initializing the array to a common value, would be to actually generate the list of elements in a series of defines:
#define DUP1( X ) ( X )
#define DUP2( X ) DUP1( X ), ( X )
#define DUP3( X ) DUP2( X ), ( X )
#define DUP4( X ) DUP3( X ), ( X )
#define DUP5( X ) DUP4( X ), ( X )
.
.
#define DUP100( X ) DUP99( X ), ( X )
#define DUPx( X, N ) DUP##N( X )
#define DUP( X, N ) DUPx( X, N )
Initializing an array to a common value can easily be done:
#define LIST_MAX 6
static unsigned char List[ LIST_MAX ]= { DUP( 123, LIST_MAX ) };
Note: DUPx introduced to enable macro substitution in parameters to DUP
For the case of an array of single-byte elements, you can use memset to set all elements to the same value.
There's an example here.
The simplest way is to use std::array and write a function template that will return the required std::array with all of its element initialized with the passed argument as shown below.
C++11 Version
template<std::size_t N> std::array<int, N> make_array(int val)
{
std::array<int, N> tempArray{};
for(int &elem:tempArray)
{
elem = val;
}
return tempArray;
}
int main()
{
//---------------------V-------->number of elements
auto arr = make_array<8>(5);
//------------------------^---->value of element to be initialized with
//lets confirm if all objects have the expected value
for(const auto &elem: arr)
{
std::cout << elem << std::endl; //prints all 5
}
}
Working demo
C++17 Version
With C++17 you can add constexpr to the function template so that it can be used in constexpr context:
//-----------------------------------------vvvvvvvvv--->added constexpr
template<std::size_t N> std::array<int, N> constexpr make_array(int val)
{
std::array<int, N> tempArray{};
for(int &elem:tempArray)
{
elem = val;
}
return tempArray;
}
int main()
{
//--vvvvvvvvv------------------------------>constexpr added
constexpr auto arr = make_array<8>(5);
for(const auto &elem: arr)
{
std::cout << elem << std::endl;
}
}
Working demo
1) When you use an initializer, for a struct or an array like that, the unspecified values are essentially default constructed. In the case of a primitive type like ints, that means they will be zeroed. Note that this applies recursively: you could have an array of structs containing arrays and if you specify just the first field of the first struct, then all the rest will be initialized with zeros and default constructors.
2) The compiler will probably generate initializer code that is at least as good as you could do by hand. I tend to prefer to let the compiler do the initialization for me, when possible.
In the C++ programming language V4, Stroustrup recommends using vectors or valarrays over builtin arrays. With valarrary's, when you create them, you can init them to a specific value like:
valarray <int>seven7s=(7777777,7);
To initialize an array 7 members long with "7777777".
This is a C++ way of implementing the answer using a C++ data structure instead of a "plain old C" array.
I switched to using the valarray as an attempt in my code to try to use C++'isms v. C'isms....