Related
I'm having trouble porting the following C# code to C++:
protected override void OnPaint(CefBrowser browser, CefPaintElementType type, CefRectangle[] dirtyRects
, System.IntPtr buffer, int width, int height)
{
if (isPainting == true)
return;
isPainting = true;
// Save the provided buffer (a bitmap image) as a PNG.
using (System.Drawing.Bitmap bitmap = new System.Drawing.Bitmap(width, height, width * 4, System.Drawing.Imaging.PixelFormat.Format32bppRgb, buffer))
{
bitmap.Save(#"LastOnPaint.png", System.Drawing.Imaging.ImageFormat.Png);
} // End Using bitmap
}
What it does:
Create an image from a WebSite/SVG as rendered by the latest version of Chromium embedded and save it as a file.
So this is the corresponding render-handler in C++:
void RenderHandler::OnPaint(
CefRefPtr<CefBrowser> browser,
CefRenderHandler::PaintElementType type,
const CefRenderHandler::RectList& dirtyRects,
const void* buffer, int width, int height
) {
// size_t len = sizeof(buffer) / sizeof(void*);
// printf("buffer length: %zu\n", len); // 1...
// Array size is probably: width*height * 4;
}
So I was looking into what C# does in the bitmap-constructor, which is the following:
public Bitmap(int width, int height, int stride, PixelFormat format, IntPtr scan0)
{
IntPtr bitmap = IntPtr.Zero;
int status = Gdip.GdipCreateBitmapFromScan0(width, height, stride, unchecked((int)format), new HandleRef(null, scan0), out bitmap);
Gdip.CheckStatus(status);
SetNativeImage(bitmap);
}
internal void SetNativeImage(IntPtr handle) {
if (handle == IntPtr.Zero)
throw new ArgumentException(SR.GetString(SR.NativeHandle0), "handle");
nativeImage = handle;
}
Which traces to
internal const string Gdiplus = "gdiplus.dll";
[DllImport(ExternDll.Gdiplus, SetLastError=true, ExactSpelling=true, CharSet=System.Runtime.InteropServices.CharSet.Unicode)] // 3 = Unicode
[ResourceExposure(ResourceScope.Machine)]
internal static extern int GdipCreateBitmapFromScan0(int width, int height, int stride, int format, HandleRef scan0, out IntPtr bitmap);
So I thought I could just call GdipCreateBitmapFromScan0 in gdibitmapflat and be almost finished
GpStatus WINGDIPAPI GdipCreateBitmapFromScan0(INT width
, INT height, INT stride, PixelFormat format
, BYTE* scan0, GpBitmap** bitmap)
So I gathered the necessary header-files for GDI, which was a horrible experience
#ifndef __BITMAPHELPER_H__
#define __BITMAPHELPER_H__
// #define WIN32_LEAN_AND_MEAN
#pragma warning(disable:4458)
#include <Windows.h>
#include <ObjIdl.h>
#include <minmax.h>
#include <gdiplus.h>
#include <wingdi.h>
#include <gdiplusbitmap.h>
#include <gdiplusflat.h>
using namespace Gdiplus;
#pragma comment (lib,"gdiplus.lib")
#pragma warning(default:4458)
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cstdint>
#include <cstdbool>
#include <algorithm>
#include <memory>
And thought this would about do it
#include "BitmapHelper.h"
static void Test()
{
GpBitmap *bitmap = NULL;
GdipCreateBitmapFromScan0(100, 100, 0, PixelFormat32bppARGB, NULL, &bitmap); // create a bitmap object with specified width/height/color
// GpGraphics *graph;
// Image * syntaxTest = NULL;
//syntaxTest->FromFile(TEXT("d:\\abc.jpg"), true); // create an image object
// Bitmap::FromBITMAPINFO
// GpImage *image = NULL;
// Gdiplus::Image()
Bitmap *bmp = NULL;
// GdipLoadImageFromFile(TEXT("d:\\abc.jpg"), &image); // create an image object
// GdipGetImageGraphicsContext(bitmap, &graph); // create a graphic object via bitmap object
// GdipDrawImageI(graph, image, 100, 100); // draw image to this graphic object, it can be done
}
However, it turns out the compiler doesn't know GdipCreateBitmapFromScan0, although it's definitely inside #include <gdiplusflat.h>...
How to create a bitmap/image from Scan0 ?
Note:
While I am at it, I don't want to resort to C++.NET, and ideally not to the WinAPI either; because i'd like it to work on Linux too. And not to a monstrous dependency like SDL either.
So far, it looks like my possible alternatives are using this code:
https://codereview.stackexchange.com/questions/196084/read-and-write-bmp-file-in-c
which means I have to create the bitmap header myselfs.
Or I could use some code from ImageIO.
I can't quite belive that creating a simple bitmap on even a single operating-system is that hard...
Is there really no better (and portable) way to create a simple bitmap from a trivial array of pixel colors ?
And why does the compiler not find GdipCreateBitmapFromScan0 ?
If I had used LoadLibrary and GetProcAddress to invoke it instead of f*ing windows header files, I'd be about finished by now...
And why does #include <gdiplus.h> not include its own dependencies ?
Your looking at the internals of .NET have led you toward using a function that's not part of the documented, public interface of GDI+. It looks to me like that's the real cause of most of your problems.
What I think you probably want to do is start by creating a GdiPlus::Bitmap object from your pixels. It has a constructor that looks like it'll directly accept your data.
Once you've created the Bitmap object, you call its Save member function. Bitmap is publicly derived from Image, so you're basically dealing with the normal Image::Save to generate a PNG.
If you want to eliminate the dependency on Windows code, you might consider using (for one obvious possibility) libpng instead. This gives you quite a lot more control over the process, at the expense of being quite a bit more work to use (depending on what you want to do, probably on the order of a half dozen to a dozen lines of code rather than one or two).
So, after having done this in both GDI+ and raw C, I can safely say that it's actually faster, and not to mention considerably less problematic and less google-intensive just doing the image-handling without GDI/GDI+. Whoever implemented GDI+ has a major brain damage.
Since I haven't yet handled transparency properly, and not yet incorporated lodepng, I've added GDI+ as an optional extra option, for the time being.
// A program to read, write, and crop BMP image files.
#include "Bmp.h"
// Make a copy of a string on the heap.
// - Postcondition: the caller is responsible to free
// the memory for the string.
char *_string_duplicate(const char *string)
{
char *copy = (char*)malloc(sizeof(*copy) * (strlen(string) + 1));
if (copy == NULL)
{
// return "Not enough memory for error message";
const char* error_message = "Not enough memory for error message";
size_t len = strlen(error_message);
char* error = (char*)malloc(len * sizeof(char) + 1);
strcpy(error, error_message);
return error;
}
strcpy(copy, string);
return copy;
}
// Check condition and set error message.
bool _check(bool condition, char **error, const char *error_message)
{
bool is_valid = true;
if (!condition)
{
is_valid = false;
if (*error == NULL) // to avoid memory leaks
{
*error = _string_duplicate(error_message);
}
}
return is_valid;
}
// Write an image to an already open file.
// - Postcondition: it is the caller's responsibility to free the memory
// for the error message.
// - Return: true if and only if the operation succeeded.
bool write_bmp(FILE *fp, BMPImage *image, char **error)
{
// Write header
rewind(fp);
size_t num_read = fwrite(&image->header, sizeof(image->header), 1, fp);
if (!_check(num_read == 1, error, "Cannot write image"))
{
return false;
}
// Write image data
num_read = fwrite(image->data, image->header.image_size_bytes, 1, fp);
if (!_check(num_read == 1, error, "Cannot write image"))
{
return false;
}
return true;
}
// Free all memory referred to by the given BMPImage.
void free_bmp(BMPImage *image)
{
free(image->data);
free(image);
}
// Open file. In case of error, print message and exit.
FILE *_open_file(const char *filename, const char *mode)
{
FILE *fp = fopen(filename, mode);
if (fp == NULL)
{
fprintf(stderr, "Could not open file %s\n", filename);
exit(EXIT_FAILURE);
}
return fp;
}
// Close file and release memory.void _clean_up(FILE *fp, BMPImage *image, char **error)
void _clean_up(FILE *fp, BMPImage *image, char **error)
{
if (fp != NULL)
{
fclose(fp);
}
free_bmp(image);
free(*error);
}
// Print error message and clean up resources.
void _handle_error(char **error, FILE *fp, BMPImage *image)
{
fprintf(stderr, "ERROR: %s\n", *error);
_clean_up(fp, image, error);
exit(EXIT_FAILURE);
}
void write_image(const char *filename, BMPImage *image, char **error)
{
FILE *output_ptr = _open_file(filename, "wb");
if (!write_bmp(output_ptr, image, error))
{
_handle_error(error, output_ptr, image);
}
fflush(output_ptr);
fclose(output_ptr);
_clean_up(output_ptr, image, error);
}
// Return the size of an image row in bytes.
// - Precondition: the header must have the width of the image in pixels.
uint32_t computeImageSize(BMPHeader *bmp_header)
{
uint32_t bytes_per_pixel = bmp_header->bits_per_pixel / BITS_PER_BYTE;
uint32_t bytes_per_row_without_padding = bmp_header->width_px * bytes_per_pixel;
uint32_t padding = (4 - (bmp_header->width_px * bytes_per_pixel) % 4) % 4;
uint32_t row_size_bytes = bytes_per_row_without_padding + padding;
return row_size_bytes * bmp_header->height_px;
}
#ifdef USE_GDI
#pragma warning(disable:4189)
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
Gdiplus::ImageCodecInfo* pImageCodecInfo = NULL;
Gdiplus::GetImageEncodersSize(&num, &size);
if (size == 0)
return -1; // Failure
pImageCodecInfo = (Gdiplus::ImageCodecInfo*)(malloc(size));
if (pImageCodecInfo == NULL)
return -1; // Failure
Gdiplus::GetImageEncoders(num, size, pImageCodecInfo);
for (UINT j = 0; j < num; ++j)
{
if (wcscmp(pImageCodecInfo[j].MimeType, format) == 0)
{
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
} // if (wcscmp(pImageCodecInfo[j].MimeType, format) == 0)
} // Next j
free(pImageCodecInfo);
return -1; // Failure
}
// https://github.com/lvandeve/lodepng
static bool notInitialized = true;
void WriteBitmapToFile(const char *filename, int width, int height, const void* buffer)
{
// HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE);
if (notInitialized)
{
// https://learn.microsoft.com/en-us/windows/desktop/api/gdiplusinit/nf-gdiplusinit-gdiplusstartup
Gdiplus::GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken;
Gdiplus::Status isOk = Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);
if (isOk != Gdiplus::Status::Ok)
{
printf("Failed on GdiplusStartup\n");
}
notInitialized = false;
// defer
// GdiplusShutdown(gdiplusToken);
} // End if (notInitialized)
// https://learn.microsoft.com/en-us/windows/desktop/gdiplus/-gdiplus-constant-image-pixel-format-constants
Gdiplus::Bitmap* myBitmap = new Gdiplus::Bitmap(width, height, width*4, PixelFormat32bppARGB, (BYTE*)buffer);
// myBitmap->RotateFlip(Gdiplus::Rotate180FlipY);
CLSID pngClsid;
// int result = GetEncoderClsid(L"image/tiff", &tiffClsid);
int result = GetEncoderClsid(L"image/png", &pngClsid);
printf("End GetEncoderClsid:\n");
if (result == -1)
printf("Error: GetEncoderClsid\n");
// throw std::runtime_error("Bitmap::Save");
// if (Ok != myBitmap->Save(L"D\foobartest.png", &pngClsid)) printf("Error: Bitmap::Save");
// WTF ? I guess a standard C/C++-stream would have been too simple ?
IStream* oStream = nullptr;
if (CreateStreamOnHGlobal(NULL, TRUE, (LPSTREAM*)&oStream) != S_OK)
printf("Error on creating an empty IStream\n");
Gdiplus::EncoderParameters encoderParameters;
encoderParameters.Count = 1;
encoderParameters.Parameter[0].Guid = Gdiplus::EncoderQuality;
encoderParameters.Parameter[0].Type = Gdiplus::EncoderParameterValueTypeLong;
encoderParameters.Parameter[0].NumberOfValues = 1;
ULONG quality = 100;
encoderParameters.Parameter[0].Value = &quality;
// https://learn.microsoft.com/en-us/windows/desktop/api/gdiplusheaders/nf-gdiplusheaders-image-save(inistream_inconstclsid_inconstencoderparameters)
if (Gdiplus::Status::Ok != myBitmap->Save(oStream, &pngClsid, &encoderParameters))
printf("Error: Bitmap::Save\n");
// throw std::runtime_error("Bitmap::Save");
ULARGE_INTEGER ulnSize;
LARGE_INTEGER lnOffset;
lnOffset.QuadPart = 0;
oStream->Seek(lnOffset, STREAM_SEEK_END, &ulnSize);
oStream->Seek(lnOffset, STREAM_SEEK_SET, NULL);
uint8_t *pBuff = new uint8_t[(unsigned int)ulnSize.QuadPart];
ULONG ulBytesRead;
oStream->Read(pBuff, (ULONG)ulnSize.QuadPart, &ulBytesRead);
FILE *output_ptr = _open_file(filename, "wb");
fwrite((void*)pBuff, sizeof(uint8_t), (unsigned int)ulnSize.QuadPart, output_ptr);
fflush(output_ptr);
fclose(output_ptr);
oStream->Release();
delete pBuff;
delete myBitmap;
// https://renenyffenegger.ch/notes/development/Base64/Encoding-and-decoding-base-64-with-cpp
// std::string rotated_string = base64_encode((const unsigned char*)pBuff, ulnSize.QuadPart);
}
#pragma warning(default:4189)
#else
// TODO: PNG-Encoder
// https://github.com/lvandeve/lodepng
// https://lodev.org/lodepng/
BMPImage * CreateBitmapFromScan0(int32_t w, int32_t h, uint8_t* scan0)
{
BMPImage *new_image = (BMPImage *)malloc(sizeof(*new_image));
BMPHeader *header = (BMPHeader *)malloc(sizeof(*header));
new_image->header = *header;
new_image->header.type = MAGIC_VALUE;
new_image->header.bits_per_pixel = BITS_PER_PIXEL;
new_image->header.width_px = w;
new_image->header.height_px = h;
new_image->header.image_size_bytes = computeImageSize(&new_image->header);
new_image->header.size = BMP_HEADER_SIZE + new_image->header.image_size_bytes;
new_image->header.dib_header_size = DIB_HEADER_SIZE;
new_image->header.offset = (uint32_t) sizeof(BMPHeader);
new_image->header.num_planes = 1;
new_image->header.compression = 0;
new_image->header.reserved1 = 0;
new_image->header.reserved2 = 0;
new_image->header.num_colors = 0;
new_image->header.important_colors = 0;
new_image->header.x_resolution_ppm = 3780; // image->header.x_resolution_ppm;
new_image->header.y_resolution_ppm = 3780; // image->header.y_resolution_ppm;
new_image->data = (uint8_t*)malloc(sizeof(*new_image->data) * new_image->header.image_size_bytes);
memcpy(new_image->data, scan0, new_image->header.image_size_bytes);
return new_image;
}
void WriteBitmapToFile(const char *filename, int width, int height, const void* buffer)
{
BMPImage * image = CreateBitmapFromScan0((int32_t)width, (int32_t)height, (uint8_t*)buffer);
char *error = NULL;
write_image(filename, image, &error);
}
#endif
Header:
#ifndef BITMAPLION_BITMAPINFORMATION_H
#define BITMAPLION_BITMAPINFORMATION_H
#ifdef __cplusplus
// #include <iostream>
// #include <fstream>
#include <cstdio>
#include <cstdlib>
#include <cstdint>
#include <cstring>
#else
#include <stdio.h>
#include <stdlib.h> // for malloc
#include <stdint.h>
#include <stdbool.h>
#include <string.h> // for strlen, strcopy
#endif
#ifdef __linux__
//linux specific code goes here
#elif _WIN32
// windows specific code goes here
#pragma warning(disable:4458)
#include <Windows.h>
#include <ObjIdl.h>
#include <minmax.h>
#include <gdiplus.h>
// #include <gdiplusheaders.h>
// #include <wingdi.h>
// #include <gdiplusbitmap.h>
// #include <gdiplusflat.h>
// #include <Gdipluspixelformats.h>
#pragma comment (lib,"gdiplus.lib")
// using namespace Gdiplus;
#pragma warning(default:4458)
#else
#endif
#define BMP_HEADER_SIZE 54
#define DIB_HEADER_SIZE 40
// Correct values for the header
#define MAGIC_VALUE 0x4D42
#define NUM_PLANE 1
#define COMPRESSION 0
#define NUM_COLORS 0
#define IMPORTANT_COLORS 0
#define BITS_PER_BYTE 8
// #define BITS_PER_PIXEL 24
#define BITS_PER_PIXEL 32
#ifdef _MSC_VER
#pragma pack(push) // save the original data alignment
#pragma pack(1) // Set data alignment to 1 byte boundary
#endif
typedef struct
#ifndef _MSC_VER
__attribute__((packed))
#endif
{
uint16_t type; // Magic identifier: 0x4d42
uint32_t size; // File size in bytes
uint16_t reserved1; // Not used
uint16_t reserved2; // Not used
uint32_t offset; // Offset to image data in bytes from beginning of file
uint32_t dib_header_size; // DIB Header size in bytes
int32_t width_px; // Width of the image
int32_t height_px; // Height of image
uint16_t num_planes; // Number of color planes
uint16_t bits_per_pixel; // Bits per pixel
uint32_t compression; // Compression type
uint32_t image_size_bytes; // Image size in bytes
int32_t x_resolution_ppm; // Pixels per meter
int32_t y_resolution_ppm; // Pixels per meter
uint32_t num_colors; // Number of colors
uint32_t important_colors; // Important colors
} BMPHeader;
#ifdef _MSC_VER
#pragma pack(pop) // restore the previous pack setting
#endif
typedef struct {
BMPHeader header;
// unsigned char* data;
// It is more informative and will force a necessary compiler error
// on a rare machine with 16-bit char.
uint8_t* data;
} BMPImage;
// #define USE_GDI true
#ifndef USE_GDI
BMPImage * CreateBitmapFromScan0(int32_t w, int32_t h, uint8_t* scan0);
#endif
void WriteBitmapToFile(const char *filename, int width, int height, const void* buffer);
#endif //BITMAPLION_BITMAPINFORMATION_H
Within the property window of a JPEG image, there is a tab called 'Summary'. Within this tab, there is a field called 'Comments' I would like to write some MFC code which will add a given string to this field e.g "This is a photo".
Does some kind soul out there know how to do this?
Many thanks.
MFC doesn't provide this functionality, however you can use GDI+ for the task. The Image class is capable of reading and writing Exif metadata.
This is almost trivial, and explained under Reading and Writing Metadata. However, since the UserComment metadata tag allows for different character encodings, things get a little more involved. The following code1) implements a command line utility that allows to set (or replace if present) the UserComment field:
#include <windows.h>
#include <gdiplus.h>
using namespace Gdiplus;
#pragma comment(lib, "Gdiplus.lib")
int wmain( int argc, const wchar_t* argv[] ) {
// Input format: AddExifComment "<input filename>" "<comment>" "<output filename>"
if (argc != 4)
return -1;
// Initialize GDI+
GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken{ 0 };
GdiplusStartup( &gdiplusToken, &gdiplusStartupInput, nullptr );
// Load image
Image* img = new Image(argv[1]);
// Construct Unicode comment
const auto& comment = MakeUnicodeComment(argv[2]);
// Assign the UserComment property
PropertyItem propertyItem;
propertyItem.id = PropertyTagExifUserComment;
propertyItem.length = comment.size();
propertyItem.type = PropertyTagTypeUndefined;
propertyItem.value = (void*)comment.data();
img->SetPropertyItem(&propertyItem);
// Save image
CLSID clsid;
GetEncoderClsid(L"image/jpeg", &clsid);
img->Save(argv[3], &clsid);
// Cleanup
delete img;
GdiplusShutdown(gdiplusToken);
return 0;
}
Constructing an appropriately formatted comment takes a bit of work. This is implemented in the following function:
#include <vector>
using std::vector;
#include <iterator>
using std::back_inserter;
vector<BYTE> MakeUnicodeComment(const wchar_t* text){
// Exif 2.2 header for Unicode (UCS-2): 'U', 'N', 'I', 'C', 'O', 'D', 'E', '\0'
static const char header[]{"UNICODE"};
static const size_t headerSize{ sizeof(header) / sizeof(header[0]) };
// UserComment field contains the 8-byte header followed by UTF-16LE encoded code units
vector<BYTE> buffer;
std::copy(header, header + headerSize, back_inserter(buffer));
// Append comment text (NUL terminator is not required)
auto current = text;
while (*current) {
buffer.push_back(*current & 0xFF);
buffer.push_back((*current >> 8) & 0xFF);
++current;
}
return buffer;
}
Retrieving the JPEG encoder from its MIME type is copied from Retrieving the Class Identifier for an Encoder for reference:
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid) {
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
ImageCodecInfo* pImageCodecInfo = NULL;
GetImageEncodersSize(&num, &size);
if (size == 0)
return -1; // Failure
pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
if (pImageCodecInfo == NULL)
return -1; // Failure
GetImageEncoders(num, size, pImageCodecInfo);
for (UINT j = 0; j < num; ++j) {
if (wcscmp(pImageCodecInfo[j].MimeType, format) == 0) {
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
}
}
free(pImageCodecInfo);
return -1; // Failure
}
1) Error handling elided for brevity.
OK,Finally I manage to solove the problem!There is the code:
OK,Finally I manage to solove the problem!There is the code:
#include "stdafx.h"
#include <windows.h>
#include <gdiplus.h>
#include <stdio.h>
using namespace Gdiplus;
#pragma comment(lib, "gdiplus.lib")
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num= 0;
UINT size= 0;
ImageCodecInfo* pImageCodecInfo= NULL;
GetImageEncodersSize(&num, &size);
if(size== 0)
{
return -1;
}
pImageCodecInfo= (ImageCodecInfo*)(malloc(size));
if(pImageCodecInfo== NULL)
{
return -1;
}
GetImageEncoders(num, size, pImageCodecInfo);
for(UINT j=0; j< num; ++j)
{
if(wcscmp(pImageCodecInfo[j].MimeType, format)== 0)
{
*pClsid= pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j;
}
}
free(pImageCodecInfo);
return -1;
}
// load bitmap from memory,sync way
Bitmap* LoadBitmapFromMemory(const void* memory, DWORD size)
{
Bitmap* bmp = NULL;
IStream* stream = NULL;
if (CreateStreamOnHGlobal(NULL, TRUE, &stream) == S_OK)
{
ULARGE_INTEGER uli;
uli.QuadPart = size;
stream->SetSize(uli);
if (stream->Write(memory, size, NULL) == S_OK)
bmp = new Bitmap(stream);
stream->Release();
}
return bmp;
}
// load bitmap from file,sync way
Bitmap* LoadBitmapFromFile(const TCHAR* file_name)
{
Bitmap* bmp = NULL;
HANDLE file_handle = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (file_handle != INVALID_HANDLE_VALUE)
{
DWORD temp = 0;
DWORD file_size = GetFileSize(file_handle, &temp);
if (file_size && !temp) // the file must be less than 4G
{
unsigned char* buffer = new unsigned char[file_size];
if (ReadFile(file_handle, buffer, file_size, &temp, NULL))
bmp = LoadBitmapFromMemory(buffer, temp);
delete [] buffer;
}
CloseHandle(file_handle);
}
return bmp;
}
int _tmain(int argc, _TCHAR* argv[])
{
GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken;
GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);
Status stat;
CLSID clsid;
char propertyValue[] = "Fake Photograph";
Bitmap* bitmap = LoadBitmapFromFile(L"E:/sandbox/stone.jpg");
PropertyItem* propertyItem = new PropertyItem;
// Get the CLSID of the JPEG encoder.
GetEncoderClsid(L"image/jpeg", &clsid);
propertyItem->id = PropertyTagCopyright;
propertyItem->length = 16; // string length including NULL terminator
propertyItem->type = PropertyTagTypeASCII;
propertyItem->value = propertyValue;
bitmap->SetPropertyItem(propertyItem);
stat = bitmap->Save(L"E:/sandbox/stone.jpg", &clsid, NULL);
if(stat == Ok)
printf("FakePhoto2.jpg saved successfully.\n");
delete propertyItem;
delete bitmap;
GdiplusShutdown(gdiplusToken);
return 0;
return 0;
}
I have a C++ DLL for use from C#. I have a function which takes a string passed to it, and I have those set on the C++ function parameters as const char * like so:
int __stdcall extract_all_frames(const char* szDestination, float scaleFactor)
The main body of this function is copied directly from a working FFmpeg example function so I'm almost certain the problem isn't there. I feel like the problem is in this modification I made to it:
//Open file
char szFilename[32];
sprintf_s(szFilename, sizeof(szFilename), "frame%d.ppm\0", iFrame);
// JOIN szFILENAME AND szDESTINATION
std::string buffer(szDestination, sizeof(szDestination));
buffer.append("\\");
buffer.append(szDestination);
Which is supposed to be a concatenated path and directory. I then pass buffer.c_str() into fopen_s(), which takes const char * not std::string. Whenever calling this function from C#, I get the following exception:
A first chance exception of type 'System.AccessViolationException' occurred in XRF FFmpeg Invoke Test.exe
Additional information: Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
This is the complete code:
#include "stdafx.h"
#pragma comment (lib, "avcodec.lib")
#pragma comment (lib, "avformat.lib")
#pragma comment (lib, "avutil.lib")
#pragma comment (lib, "swscale.lib")
extern "C"
{
#include <libavcodec\avcodec.h>
#include <libavformat\avformat.h>
#include <libavutil\avutil.h>
#include <libswscale\swscale.h>
}
#include <string>
#include "Xrf.FFmpeg.hpp"
void save_frame(AVFrame* pFrame, int iFrame, const char* szDestination)
{
//Open file
char szFilename[32];
sprintf_s(szFilename, sizeof(szFilename), "frame%d.ppm\0", iFrame);
// JOIN szFILENAME AND szDESTINATION
std::string buffer(szDestination, sizeof(szDestination));
buffer.append("\\");
buffer.append(szDestination);
FILE* pFile;
errno_t openError = fopen_s(&pFile, buffer.c_str(), "wb");
if (pFile == NULL)
{
return;
}
//Write header
int width = pFrame->width;
int height = pFrame->height;
fprintf(pFile, "P6\n%d %d\n255\n", width, height);
//Write pixel data
for (int y = 0; y < height; y++)
{
fwrite(pFrame->data[0] + y * pFrame->linesize[0], 1, width * 3, pFile);
}
// Close file
fclose(pFile);
}
int __stdcall extract_all_frames(const char* szPath, const char* szDestination, float scaleFactor)
{
// Check if scaleFactor is valid
if ((scaleFactor != 0.f) &&
(scaleFactor > 3.f))
{
fprintf(stderr, "Xrf: Scale factor '%f' out of bounds!\nMust be greater than 0, and less then or equal to 3.0.\n", scaleFactor);
return -1;
}
// Register all formats and codecs
av_register_all();
AVFormatContext* pFormatCtx;
if (avformat_open_input(&pFormatCtx, szPath, nullptr, nullptr) != 0)
{
fprintf(stderr, "libavformat: Couldn't open file '%s'!\n", szPath);
return -1;
}
// Retrieve stream information
if (avformat_find_stream_info(pFormatCtx, nullptr) < 0)
{
fprintf(stderr, "libavformat: Unable to find stream information!\n");
return -1;
}
// Dump information about file onto standard error
av_dump_format(pFormatCtx, 0, szPath, 0);
// Find the first video stream
size_t i;
int videoStream = -1;
for (i = 0; i < pFormatCtx->nb_streams; i++)
{
if (pFormatCtx->streams[i]->codec->codec_type == AVMEDIA_TYPE_VIDEO)
{
videoStream = i;
break;
}
}
if (videoStream == -1)
{
fprintf(stderr, "libavformat: No video stream found!\n");
return -1;
}
// Get a pointer to the codec context for the video stream
AVCodecContext* pCodecCtx = pFormatCtx->streams[videoStream]->codec;
// Scale the frame
int scaleHeight = static_cast<int>(floor(pCodecCtx->height * scaleFactor));
int scaleWidth = static_cast<int>(floor(pCodecCtx->width * scaleFactor));
//Check if frame sizes are valid (not 0, because that's dumb)
if (scaleHeight == 0 || scaleWidth == 0)
{
fprintf(stderr, "Xrf: Scale factor caused a zero value in either width or height!\n");
return -1;
}
// Find the decoder for the video stream
AVCodec* pCodec = avcodec_find_decoder(pCodecCtx->codec_id);
if (pCodec == NULL)
{
fprintf(stderr, "libavcodec: Unsupported codec!\n");
return -1; // Codec not found
}
// Open codec
AVDictionary* optionsDict = nullptr;
if (avcodec_open2(pCodecCtx, pCodec, &optionsDict) < 0)
{
fprintf(stderr, "libavcodec: Couldn't open codec '%s'!\n", pCodec->long_name);
return -1;
}
// Allocate video frame
AVFrame* pFrame = av_frame_alloc();
// Allocate an AVFrame structure
AVFrame* pFrameRGB = av_frame_alloc();
if (pFrameRGB == NULL)
{
fprintf(stderr, "libavformat: Unable to allocate a YUV->RGB resampling AVFrame!\n");
return -1;
}
// Determine required buffer size and allocate buffer
int numBytes = avpicture_get_size(PIX_FMT_RGB24, scaleWidth, scaleHeight);
uint8_t* buffer = static_cast <uint8_t *> (av_malloc(numBytes * sizeof(uint8_t)));
struct SwsContext* sws_ctx = sws_getContext(pCodecCtx->width,
pCodecCtx->height,
pCodecCtx->pix_fmt,
scaleWidth,
scaleHeight,
PIX_FMT_RGB24,
SWS_BILINEAR,
nullptr, nullptr, nullptr);
// Assign appropriate parts of buffer to image planes in pFrameRGB
// Note that pFrameRGB is an AVFrame, but AVFrame is a superset
// of AVPicture
avpicture_fill(reinterpret_cast <AVPicture *> (pFrameRGB),
buffer,
PIX_FMT_RGB24,
scaleWidth,
scaleHeight);
// Read frames and save first five frames to disk
AVPacket packet;
int frameFinished;
while (av_read_frame(pFormatCtx, &packet) >= 0)
{
// Is this a packet from the video stream?
if (packet.stream_index == videoStream)
{
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished, &packet);
// Did we get a video frame?
if (frameFinished)
{
// Convert the image from its native format to RGB
sws_scale(sws_ctx,
static_cast <uint8_t const * const *> (pFrame->data),
pFrame->linesize,
0,
pCodecCtx->height,
pFrameRGB->data,
pFrameRGB->linesize);
// Save the frame to disk
if (++i <= 5)
{
save_frame(pFrameRGB, i, szDestination);
}
}
}
// Free the packet that was allocated by av_read_frame
av_free_packet(&packet);
}
av_free(buffer); // Free the RGB image
av_free(pFrameRGB);
av_free(pFrame); // Free the YUV frame
avcodec_close(pCodecCtx); // Close the codec
avformat_close_input(&pFormatCtx); // Close the video file
return 0;
}
I don't know if the error is in my modification (most likely, I'm extremely new to C++), or the other code, as the exception only throws on the invocation line in C#, not the actual C++ line causing the problem.
This is wrong:
std::string buffer(szDestination, sizeof(szDestination));
szDestination is a pointer, thus sizeof(szDestination) will return the pointer size, in bytes, not the number of characters.
If szDestination is a null terminated string, use strlen or similar function to determine the number of characters. If it isn't null terminated, then you need to pass the number of bytes to copy as a parameter.
The better thing to do is when your DLL function is called:
int __stdcall extract_all_frames(const char* szPath, const char* szDestination, float scaleFactor)
take those pointers and immediately assign them to std::string. Then drop all usage of char* or const char* from there. There is no need for your helper functions to deal with "dumb" character pointers.
Example:
int __stdcall extract_all_frames(const char* szPath, const char* szDestination, float scaleFactor)
{
std::string sPath = szPath;
std::string sDestination = sDestination;
// From here, use sPath and sDestination
//...
}
// redefinition of save_frame
//...
void save_frame(AVFrame* pFrame, int iFrame, const std::string& szDestination)
{
//Open file
std::string buffer = "frame" + to_string(iFrame) + ".ppm\0";
buffer.append("\\");
buffer.append(szDestination);
//...
}
I have a simple program that reads data from a PNG into a 2D array. I would like to save that data to a .RAW file so that Raw Studio or Irfanview can view the raw image that my program outputs to my_out.raw. Currently if I just write the raw binary data to the my_out.raw file, neither application can actually read the file, that is view the image. What do I need to do to the program below so that I can see the image?
The code to read the PNG files is:
// MAIN.cpp
#include "pngfilereader.h"
#include <string>
#include <vector>
#include <fstream>
int main (int argc, char *argv[])
{
PNGFileReader pngfr;
if (!pngfr.decompress_png_to_raw(std::string("/home/matt6809/Downloads"
"/City.png"))) {
std::cout << "File decompression error: " << std::endl;
} else {
std::ofstream out;
out.open("./my_out.raw", std::ios_base::out);
std::vector<std::vector<unsigned char> > data;
pngfr.get_image_data(data);
typedef std::vector<std::vector<unsigned char> >::iterator row_it;
typedef std::vector<unsigned char>::iterator col_it;
for(row_it rit= data.begin(); rit != data.end(); ++rit) {
for(col_it cit = rit->begin(); cit != rit->end(); ++cit) {
out << (*cit);
}
}
out << std::endl;
}
return 0;
}
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <png.h>
#include <iostream>
#include <vector>
#include <string>
class PNGFileReader
{
public:
PNGFileReader();
~PNGFileReader();
// Public exposed API:
bool compress_raw_to_png(uint8_t data, int size);
bool decompress_png_to_raw(const std::string &path);
// Getters
long unsigned int get_image_width();
long unsigned int get_image_height();
void get_image_data(std::vector<std::vector<unsigned char> > &data);
private:
// Helper functions:
bool read_png(const std::string &path);
bool create_png_structs(FILE *fp);
bool free_data();
bool alloc_data();
// Member variables:
png_structp m_pPNG;
png_infop m_pPNGInfo;
png_infop m_pPNGEndInfo;
png_bytepp m_Data;
long unsigned int m_ImageWidth;
long unsigned int m_ImageHeight;
// Enums
enum PNGBOOL {NOT_PNG, PNG};
enum PNGERRORS {ERROR, SUCCESS};
};
#include "pngfilereader.h"
#include <stdexcept>
PNGFileReader::PNGFileReader() :
m_pPNG(NULL),
m_pPNGInfo(NULL),
m_pPNGEndInfo(NULL),
m_Data(NULL),
m_ImageWidth(0),
m_ImageHeight(0)
{
}
PNGFileReader::~PNGFileReader()
{
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
}
// Public Exposed API
bool PNGFileReader::compress_raw_to_png(uint8_t m_Data, int size)
{
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::decompress_png_to_raw(const std::string &path)
{
return read_png(path);
}
// Getters
long unsigned int PNGFileReader::get_image_width()
{
return m_ImageWidth;
}
long unsigned int PNGFileReader::get_image_height()
{
return m_ImageHeight;
}
void PNGFileReader::get_image_data(
std::vector<std::vector<unsigned char> > &data)
{
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
std::vector<unsigned char> v;
data.push_back(v);
for (unsigned long int j = 0; j < m_ImageWidth; ++j) {
std::vector<unsigned char> *vp = &data[i];
vp->push_back(m_Data[i][j]);
}
}
}
// Private Methods
bool PNGFileReader::read_png(const std::string &path)
{
/*
* Open up the file to read (path) in binary mode
* first so that if anything goes wrong with libpng
* we won't have much to undo
*/
const char *c_path = path.c_str();
FILE *fp = fopen(c_path, "rb");
if (!fp)
return PNGFileReader::ERROR;
/*
* Read the first BYTES_TO_READ bytes from file
* then determine if it is a png file or
* not. If png_sig_cmp == 0 all is okay
*/
enum {BYTES_TO_READ = 8};
unsigned char sig[BYTES_TO_READ];
if (!fread(sig, 1, BYTES_TO_READ, fp)) {
fclose(fp);
return PNGFileReader::ERROR;
}
bool is_png = !png_sig_cmp(sig, 0, BYTES_TO_READ);
if (!is_png) {
fclose(fp);
return PNGFileReader::ERROR;
}
if (!this->create_png_structs(fp)) {
fclose(fp);
return PNGFileReader::ERROR;
}
/*
* For error handling purposes. Set a long pointer
* back to this function to handle all error related
* to file IO
*/
if (setjmp(png_jmpbuf(m_pPNG)))
{
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, &m_pPNGEndInfo);
fclose(fp);
return PNGFileReader::ERROR;
}
/*
* Set up the input code for FILE openend in binary mode,
* and tell libpng we have already read BYTES_TO_READ btyes from
* signature
*/
png_init_io(m_pPNG, fp);
png_set_sig_bytes(m_pPNG, BYTES_TO_READ);
/*
* Using the lowlevel interface to lib png ...
*/
png_read_info(m_pPNG, m_pPNGInfo);
m_ImageHeight = png_get_image_height(m_pPNG, m_pPNGInfo);
m_ImageWidth = png_get_rowbytes(m_pPNG, m_pPNGInfo);
this->alloc_data();
png_read_image(m_pPNG, m_Data);
png_read_end(m_pPNG, NULL);
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, &m_pPNGEndInfo);
fclose(fp);
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::create_png_structs(FILE *fp)
{
/*
* Create the pointer to main libpng struct, as well as
* two info structs to maintain information after, and
* prior to all operations on png m_Data. Only necessary
* to release resource after function succeeds.
*/
m_pPNG = png_create_read_struct(PNG_LIBPNG_VER_STRING, (png_voidp)NULL,
NULL, NULL);
if (!m_pPNG)
{
fclose(fp);
return PNGFileReader::ERROR;
}
m_pPNGInfo = png_create_info_struct(m_pPNG);
if (!m_pPNGInfo)
{
png_destroy_read_struct(&m_pPNG, (png_infopp)NULL,(png_infopp)NULL);
fclose(fp);
return PNGFileReader::ERROR;
}
m_pPNGEndInfo = png_create_info_struct(m_pPNG);
if (!m_pPNGEndInfo)
{
png_destroy_read_struct(&m_pPNG, &m_pPNGInfo, (png_infopp)NULL);
fclose(fp);
return PNGFileReader::ERROR;
}
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::free_data()
{
if (m_ImageHeight == 0 || m_ImageWidth == 0)
return PNGFileReader::ERROR;
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
return PNGFileReader::SUCCESS;
}
bool PNGFileReader::alloc_data()
{
if (m_ImageHeight == 0 || m_ImageWidth == 0)
return PNGFileReader::ERROR;
if (m_Data != NULL)
this->free_data();
m_Data = new png_bytep[m_ImageHeight]();
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
m_Data[i] = NULL;
}
try {
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
m_Data[i] = new png_byte[m_ImageWidth];
}
}
catch (std::bad_alloc e) {
for (unsigned long int i = 0; i < m_ImageHeight; ++i) {
if (m_Data[i]) {
delete m_Data[i];
m_Data[i] = NULL;
}
}
if (m_Data) {
delete m_Data;
m_Data = NULL;
}
throw e;
}
return PNGFileReader::SUCCESS;
}
A "raw" file that is intended to be used with a camera-image processing program like Raw Studio and Irfraview is not a raw-binary dump of the image-data with no header. Instead the "raw" moniker refers to the fact that the image has a minimal amount of image-processing applied in-camera. For instance, the image-data may still be a single-channel monochrome image from the camera's bayer-pattern CFA, or no white-balance, color-matrix, etc. has been applied, etc. Either way, the image-data is still formatted in a standard binary image file format complete with a header, data-packing method, etc. Examples include formats such as Adobe's DNG file format (which is based on TIFF), or proprietary formats from camera manufacturer's themselves such as Canon's CR2, Nikon's NEF, etc.
So if you want these raw-file processing programs to read your "raw" file image data, you'll have to read-up on the binary data specifications the raw-file formats they support, and then re-format the original PNG image-data correctly.
There is a usage example at the zlib website: http://www.zlib.net/zlib_how.html
However in the example they are compressing a file. I would like to compress a binary data stored in a buffer in memory. I don't want to save the compressed buffer to disk either.
Basically here is my buffer:
fIplImageHeader->imageData = (char*)imageIn->getFrame();
How can I compress it with zlib?
I would appreciate some code example of how to do that.
zlib.h has all the functions you need: compress (or compress2) and uncompress. See the source code of zlib for an answer.
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen));
/*
Compresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be at least the value returned by
compressBound(sourceLen). Upon exit, destLen is the actual size of the
compressed buffer.
compress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer.
*/
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen));
/*
Decompresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be large enough to hold the entire
uncompressed data. (The size of the uncompressed data must have been saved
previously by the compressor and transmitted to the decompressor by some
mechanism outside the scope of this compression library.) Upon exit, destLen
is the actual size of the uncompressed buffer.
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In
the case where there is not enough room, uncompress() will fill the output
buffer with the uncompressed data up to that point.
*/
This is an example to pack a buffer with zlib and save the compressed contents in a vector.
void compress_memory(void *in_data, size_t in_data_size, std::vector<uint8_t> &out_data)
{
std::vector<uint8_t> buffer;
const size_t BUFSIZE = 128 * 1024;
uint8_t temp_buffer[BUFSIZE];
z_stream strm;
strm.zalloc = 0;
strm.zfree = 0;
strm.next_in = reinterpret_cast<uint8_t *>(in_data);
strm.avail_in = in_data_size;
strm.next_out = temp_buffer;
strm.avail_out = BUFSIZE;
deflateInit(&strm, Z_BEST_COMPRESSION);
while (strm.avail_in != 0)
{
int res = deflate(&strm, Z_NO_FLUSH);
assert(res == Z_OK);
if (strm.avail_out == 0)
{
buffer.insert(buffer.end(), temp_buffer, temp_buffer + BUFSIZE);
strm.next_out = temp_buffer;
strm.avail_out = BUFSIZE;
}
}
int deflate_res = Z_OK;
while (deflate_res == Z_OK)
{
if (strm.avail_out == 0)
{
buffer.insert(buffer.end(), temp_buffer, temp_buffer + BUFSIZE);
strm.next_out = temp_buffer;
strm.avail_out = BUFSIZE;
}
deflate_res = deflate(&strm, Z_FINISH);
}
assert(deflate_res == Z_STREAM_END);
buffer.insert(buffer.end(), temp_buffer, temp_buffer + BUFSIZE - strm.avail_out);
deflateEnd(&strm);
out_data.swap(buffer);
}
You can easily adapt the example by replacing fread() and fwrite() calls with direct pointers to your data. For zlib compression (referred to as deflate as you "take out all the air of your data") you allocate z_stream structure, call deflateInit() and then:
fill next_in with the next chunk of data you want to compress
set avail_in to the number of bytes available in next_in
set next_out to where the compressed data should be written which should usually be a pointer inside your buffer that advances as you go along
set avail_out to the number of bytes available in next_out
call deflate
repeat steps 3-5 until avail_out is non-zero (i.e. there's more room in the output buffer than zlib needs - no more data to write)
repeat steps 1-6 while you have data to compress
Eventually you call deflateEnd() and you're done.
You're basically feeding it chunks of input and output until you're out of input and it is out of output.
The classic way more convenient with C++ features
Here's a full example which demonstrates compression and decompression using C++ std::vector objects:
#include <cstdio>
#include <iosfwd>
#include <iostream>
#include <vector>
#include <zconf.h>
#include <zlib.h>
#include <iomanip>
#include <cassert>
void add_buffer_to_vector(std::vector<char> &vector, const char *buffer, uLongf length) {
for (int character_index = 0; character_index < length; character_index++) {
char current_character = buffer[character_index];
vector.push_back(current_character);
}
}
int compress_vector(std::vector<char> source, std::vector<char> &destination) {
unsigned long source_length = source.size();
uLongf destination_length = compressBound(source_length);
char *destination_data = (char *) malloc(destination_length);
if (destination_data == nullptr) {
return Z_MEM_ERROR;
}
Bytef *source_data = (Bytef *) source.data();
int return_value = compress2((Bytef *) destination_data, &destination_length, source_data, source_length,
Z_BEST_COMPRESSION);
add_buffer_to_vector(destination, destination_data, destination_length);
free(destination_data);
return return_value;
}
int decompress_vector(std::vector<char> source, std::vector<char> &destination) {
unsigned long source_length = source.size();
uLongf destination_length = compressBound(source_length);
char *destination_data = (char *) malloc(destination_length);
if (destination_data == nullptr) {
return Z_MEM_ERROR;
}
Bytef *source_data = (Bytef *) source.data();
int return_value = uncompress((Bytef *) destination_data, &destination_length, source_data, source.size());
add_buffer_to_vector(destination, destination_data, destination_length);
free(destination_data);
return return_value;
}
void add_string_to_vector(std::vector<char> &uncompressed_data,
const char *my_string) {
int character_index = 0;
while (true) {
char current_character = my_string[character_index];
uncompressed_data.push_back(current_character);
if (current_character == '\00') {
break;
}
character_index++;
}
}
// https://stackoverflow.com/a/27173017/3764804
void print_bytes(std::ostream &stream, const unsigned char *data, size_t data_length, bool format = true) {
stream << std::setfill('0');
for (size_t data_index = 0; data_index < data_length; ++data_index) {
stream << std::hex << std::setw(2) << (int) data[data_index];
if (format) {
stream << (((data_index + 1) % 16 == 0) ? "\n" : " ");
}
}
stream << std::endl;
}
void test_compression() {
std::vector<char> uncompressed(0);
auto *my_string = (char *) "Hello, world!";
add_string_to_vector(uncompressed, my_string);
std::vector<char> compressed(0);
int compression_result = compress_vector(uncompressed, compressed);
assert(compression_result == F_OK);
std::vector<char> decompressed(0);
int decompression_result = decompress_vector(compressed, decompressed);
assert(decompression_result == F_OK);
printf("Uncompressed: %s\n", uncompressed.data());
printf("Compressed: ");
std::ostream &standard_output = std::cout;
print_bytes(standard_output, (const unsigned char *) compressed.data(), compressed.size(), false);
printf("Decompressed: %s\n", decompressed.data());
}
In your main.cpp simply call:
int main(int argc, char *argv[]) {
test_compression();
return EXIT_SUCCESS;
}
The output produced:
Uncompressed: Hello, world!
Compressed: 78daf348cdc9c9d75128cf2fca495164000024e8048a
Decompressed: Hello, world!
The Boost way
#include <iostream>
#include <boost/iostreams/filtering_streambuf.hpp>
#include <boost/iostreams/copy.hpp>
#include <boost/iostreams/filter/zlib.hpp>
std::string compress(const std::string &data) {
boost::iostreams::filtering_streambuf<boost::iostreams::output> output_stream;
output_stream.push(boost::iostreams::zlib_compressor());
std::stringstream string_stream;
output_stream.push(string_stream);
boost::iostreams::copy(boost::iostreams::basic_array_source<char>(data.c_str(),
data.size()), output_stream);
return string_stream.str();
}
std::string decompress(const std::string &cipher_text) {
std::stringstream string_stream;
string_stream << cipher_text;
boost::iostreams::filtering_streambuf<boost::iostreams::input> input_stream;
input_stream.push(boost::iostreams::zlib_decompressor());
input_stream.push(string_stream);
std::stringstream unpacked_text;
boost::iostreams::copy(input_stream, unpacked_text);
return unpacked_text.str();
}
TEST_CASE("zlib") {
std::string plain_text = "Hello, world!";
const auto cipher_text = compress(plain_text);
const auto decompressed_plain_text = decompress(cipher_text);
REQUIRE(plain_text == decompressed_plain_text);
}
This is not a direct answer on your question about the zlib API, but you may be interested in boost::iostreams library paired with zlib.
This allows to use zlib-driven packing algorithms using the basic "stream" operations notation and then your data could be easily compressed by opening some memory stream and doing the << data operation on it.
In case of boost::iostreams this would automatically invoke the corresponding packing filter for every data that passes through the stream.