why concurrent programs are faster? - concurrency

I've been reading a lot about concurrent programming as well as watching a lot videos online, but I still can't understand one big idea. Provided that a piece of software is written correctly and is not executed on a mulit-core processor (i.e. it runs on a single core machine) why is concurrent program runs faster than a sequential one? I keep trying to figure it out but I really can't understand.

It's not. The argument for writing concurrent code for single processors wasn't on the grounds of speed, it was about organization of tasks. It's cleaner to have different tasks handled by different threads with switching between them done by the OS, otherwise the application has to juggle the tasks itself. Data for a task can be confined to a thread and kept separate from other tasks.

Related

10 threads in a single program or 1 thread program ran 10 times (C++)?

I am wondering whether there is any difference in performance in running a single program (exe) with 10 different threads or running the program with a single thread 10 times in parallel (starting it from a .bat file) assuming the work done is the same and only the number of threads spawned by the program change?
I am developing a client/server communication program and want to test it for throughput. I'm currently learning about parallel programming and threading as wasn't sure how Windows would handle the above scenario. Will the scheduler schedule work the same way for both scenarios? Will there be a performance difference?
The machine the program is running on has 4 threads.
Threads are slightly lighter weight than processes as there are many things a process gets it's own copy of. Especially when you compare the time it takes to start a new thread, vs starting a new process (from scratch, fork where available also avoids a lot of costs). Although in either case you can generally get even better performance using a worker pool where possible rather than starting and stopping fresh processes/threads.
The other major difference is that threads by default all share the same memory while processes get their own and need to communicate through more explicit means (which may include blocks of shared memory). This might make it easier for a threaded solution to avoid copying data, but this is also one of the dangers of multithreaded programming when care is not taken in how they use the shared memory/objects.
Also there may be API's that are more orientated around a single process. For example on Windows there is IO Completion Ports which basically works on the idea of having many in-progress IO operations for different files, sockets, etc. with multiple threads (but generally far less than the number of files/sockets) handling the results as they become available through a GetQueuedCompletionStatus loop.

Benefits of a multi thread program in a unicore system [duplicate]

This question already has answers here:
How can multithreading speed up an application (when threads can't run concurrently)?
(9 answers)
Closed 9 years ago.
My professor causally mentioned that we should program multi-thread programs even if we are using a unicore processor however because of the lack of time , he did not elaborate on it .
I would like to know what are the benefits of a multi-thread program in a unicore processor ??
It won't be as significant as a multi-core system but it can still provide some benefits.
Mainly all the benefits that you are going to get will be regarding to the context switch that will happen after a input miss to the already executing thread. Executing thread may be waiting for anything such as a hardware resource or a branch mis-prediction or even data transfer after a cache miss.
At this point the waiting thread can be executed to benefit from this "waiting time". But of course context switch will take some time. Also managing threads inside the code rather than sequential computation can create some extra complexity to your program. And as it has been said, some applications needs to be multi-threaded so there is no escape from the context switch in some cases.
Some applications need to be multi-threaded. Multi-threading isn't just about improving performance by using more cores, it's also about performing multiple tasks at once.
Take Skype for example - The GUI needs to be able to accept the text you're entering, display it on the screen, listen for new messages coming from the user you're talking to, and display them. This wouldn't be a trivial task in a single threaded application.
Even if there's only one core available, the OS thread scheduler will give you the illusion of parallelism.
Usually it is about not blocking. Running many threads on a single core still gives the illusion of concurrency. So you can have, say, a thread doing IO while another one does user interactions. The user interaction thread is not blocked while the other does IO, so the user is free to carry on interacting.
Benefits could be different.
One of the widely used examples is the application with GUI, which supposed to perform some kind of computations. If you will have a single thread - the user will have to wait the result before dealing something else with the application, but if you start it in the separate thread - user interface could be still available for user during the computation process. So, multi-thread program could emulate multi-task environment even on a unicore system. That's one of the points.
As others have already mentioned, not blocking is one application. Another one is separation of logic for unrelated tasks that are to be executed simultaneously. Using threads for that leaves handling of scheduling these tasks to the OS.
However, note that it may also be possible to implement similar behavior using asynchronous operations in a single thread. "Future" and boost::asio provide ways of doing non-blocking stuff without necessarily resorting to multiple threads.
I think it depends a bit on how exactly you design your threads and which logic is actually in the thread. Some benefits you can even get on a single core:
A thread can wrap a blocking/long-during call you can't circumvent otherwise. For some operations there are polling mechanisms, but not for all.
A thread can wrap an almost standalone part of your application that has virtually no interaction with other code. For example background polling for updates, monitoring some resource (e.g. free storage), checking internet connectivity. If you keep them in a separate thread you can keep the code relatively simple in its own 'runtime' without caring too much about the impact on the main program, the sole communication with the main logic is usually a single 'event'.
In some environments you might get more processing time. This mainly depends on how your OS scheduling system works, but if this allocates time per thread, the more threads you have the more your app will be scheduled.
Some benefits long-term:
Where it's not hard to do you benefit if your hardware evolves. You never know what's going to happen, today your app runs on a single-core embedded device, tomorrow that embedded device gets a quad core. Programming threaded from the beginning improves your future scalability.
One example is an environment where you can deterministically assign work to a thread, e.g. based on some hash all related operations end up in the same thread. The advantage for single cores is 'small' but it's not hard to do as you need little synchronization primitives so the overhead stays small.
That said, I think there are situations where it's very ill advise:
As soon as your required synchronization mechanism with other threads becomes complex (e.g. multiple locks, lots of critical sections, ...). It might still be then that multi-threading gives you a benefit when effectively moving to multiple CPUs, but the overhead is huge both for your single core and your programming time.
For instance think about operations that block because of slow peripheral devices (harddisk access etc.). While these are waiting, even the single core can do other things asyncronously.
In a lot of applications the bottleneck is not CPU processing power. So when the program flow is waiting for completion of IO requests (user input, network/disk IO), critical resources to be available, or any sort of asynchroneously triggered events, the CPU can be scheduled to do other work instead of just blocking.
In this case you don't necessarily need multiple threads that can actually run in parallel. Cooperative multi-tasking concepts like asynchroneous IO, coroutines, or fibers come into mind.
If however the application's bottleneck is CPU processing power (constantly 100% CPU usage), then it makes sense to increase the number of CPUs available to the application. At that point it is easier to scale the application up to use more CPUs if it was designed to run in parallel upfront.
As far as I can see, one answer was not yet given:
You will have to write multithreaded applications in the future!
The average number of cores will double every 18 months in the future. People have learned single-threaded programming for 50 years now, and now they are confronted with devices that have multiple cores. The programming style in a multi-threaded environment differs significantly from single-threaded programming. This refers to low-level aspects like avoiding race conditions and proper synchronization, as well as the high-level aspects like the general algorithm design.
So in addition to the points already mentioned, it's also about writing future-proof software, scalability and the development of the skills that are required to achieve these goals.

Understanding the scalability of Erlang

It is said that thousands of processes can be spawned to do the similar task concurrently and Erlang is good at handling it. If there is more work to be done, we can simply and safely add more worker processes and that makes it scalable.
What I fail to understand is that if the work performed by each work is itself resource-intensive, how will Erlang be able to handle it? For instance, if entries are being made into a table by several sources and an Erlang application withing its hundreds of processes reads rows from the table and does something, this is obviously likely to cause resource burden. Every worker will try to pull a record from the table.
If this is a bad example, consider a worker that has to perform a highly CPU-intensive computation in memory. Thousands of such workers running concurrently will overwork the CPU.
Please rectify my understanding of the scalability in Erlang:
Erlang processes get time slices of the CPU only if there is work available for them. OS processes on the other hand get time slices regardless of whether they are idle.
The startup and shutdown time of Erlang processes is much lower than that of OS processes.
Apart from the above two points is there something about Erlang that makes it scalable?
Thanks,
Melvyn
Scaling in Erlang is not automatic. The Erlang language and runtime provides some tools which makes it comparatively easy to write concurrent programs. If these are written correctly, then they are able to scale along several different dimensions:
Parallel execution on multiple cores - since the VM understands to utilize them all.
Capacity - Since you can have a process per task and they are light weight.
The biggest advantage is that Erlang processes are isolated, like in the OS, but unlike the OS the communication overhead is small. These two traits is what you want to exploit in Erlang programming.
The problem where you have a highly contended data resource is one to avoid if you are targeting high parallel execution. The best way to go around it is to split up your problem so it doesn't occur.
I have a blog post, http://jlouisramblings.blogspot.dk/2013/01/how-erlang-does-scheduling.html which describes in some more detail how the Erlang scheduler works. You may want to read that.

Multithreading vs multiprocessing

I am new to this kind of programming and need your point of view.
I have to build an application but I can't get it to compute fast enough. I have already tried Intel TBB, and it is easy to use, but I have never used other libraries.
In multiprocessor programming, I am reading about OpenMP and Boost for the multithreading, but I don't know their pros and cons.
In C++, when is multi threaded programming advantageous compared to multiprocessor programming and vice versa?Which is best suited to heavy computations or launching many tasks...? What are their pros and cons when we build an application designed with them? And finally, which library is best to work with?
Multithreading means exactly that, running multiple threads. This can be done on a uni-processor system, or on a multi-processor system.
On a single-processor system, when running multiple threads, the actual observation of the computer doing multiple things at the same time (i.e., multi-tasking) is an illusion, because what's really happening under the hood is that there is a software scheduler performing time-slicing on the single CPU. So only a single task is happening at any given time, but the scheduler is switching between tasks fast enough so that you never notice that there are multiple processes, threads, etc., contending for the same CPU resource.
On a multi-processor system, the need for time-slicing is reduced. The time-slicing effect is still there, because a modern OS could have hundred's of threads contending for two or more processors, and there is typically never a 1-to-1 relationship in the number of threads to the number of processing cores available. So at some point, a thread will have to stop and another thread starts on a CPU that the two threads are sharing. This is again handled by the OS's scheduler. That being said, with a multiprocessors system, you can have two things happening at the same time, unlike with the uni-processor system.
In the end, the two paradigms are really somewhat orthogonal in the sense that you will need multithreading whenever you want to have two or more tasks running asynchronously, but because of time-slicing, you do not necessarily need a multi-processor system to accomplish that. If you are trying to run multiple threads, and are doing a task that is highly parallel (i.e., trying to solve an integral), then yes, the more cores you can throw at a problem, the better. You won't necessarily need a 1-to-1 relationship between threads and processing cores, but at the same time, you don't want to spin off so many threads that you end up with tons of idle threads because they must wait to be scheduled on one of the available CPU cores. On the other hand, if your parallel tasks requires some sequential component, i.e., a thread will be waiting for the result from another thread before it can continue, then you may be able to run more threads with some type of barrier or synchronization method so that the threads that need to be idle are not spinning away using CPU time, and only the threads that need to run are contending for CPU resources.
There are a few important points that I believe should be added to the excellent answer by #Jason.
First, multithreading is not always an illusion even on a single processor - there are operations that do not involve the processor. These are mainly I/O - disk, network, terminal etc. The basic form for such operation is blocking or synchronous, i.e. your program waits until the operation is completed and then proceeds. While waiting, the CPU is switched to another process/thread.
if you have anything you can do during that time (e.g. background computation while waiting for user input, serving another request etc.) you have basically two options:
use asynchronous I/O: you call a non-blocking I/O providing it with a callback function, telling it "call this function when you are done". The call returns immediately and the I/O operation continues in the background. You go on with the other stuff.
use multithreading: you have a dedicated thread for each kind of task. While one waits for the blocking I/O call, the other goes on.
Both approaches are difficult programming paradigms, each has its pros and cons.
with async I/O the logic of the program's logic is less obvious and is difficult to follow and debug. However you avoid thread-safety issues.
with threads, the challange is to write thread-safe programs. Thread safety faults are nasty bugs that are quite difficult to reproduce. Over-use of locking can actually lead to degrading instead of improving the performance.
(coming to the multi-processing)
Multithreading made popular on Windows because manipulating processes is quite heavy on Windows (creating a process, context-switching etc.) as opposed to threads which are much more lightweight (at least this was the case when I worked on Win2K).
On Linux/Unix, processes are much more lightweight. Also (AFAIK) threads on Linux are implemented actually as a kind of processes internally, so there is no gain in context-switching of threads vs. processes. However, you need to use some form of IPC (inter-process communications), as shared memory, pipes, message queue etc.
On a more lite note, look at the SQLite FAQ, which declares "Threads are evil"! :)
To answer the first question:
The best approach is to just use multithreading techniques in your code until you get to the point where even that doesn't give you enough benefit. Assume the OS will handle delegation to multiple processors if they're available.
If you actually are working on a problem where multithreading isn't enough, even with multiple processors (or if you're running on an OS that isn't using its multiple processors), then you can worry about discovering how to get more power. Which might mean spawning processes across a network to other machines.
I haven't used TBB, but I have used IPP and found it to be efficient and well-designed. Boost is portable.
Just wanted to mention that the Flow-Based Programming ( http://www.jpaulmorrison.com/fbp ) paradigm is a naturally multiprogramming/multiprocessing approach to application development. It provides a consistent application view from high level to low level. The Java and C# implementations take advantage of all the processors on your machine, but the older C++ implementation only uses one processor. However, it could fairly easily be extended to use BOOST (or pthreads, I assume) by the use of locking on connections. I had started converting it to use fibers, but I'm not sure if there's any point in continuing on this route. :-) Feedback would be appreciated. BTW The Java and C# implementations can even intercommunicate using sockets.

Large number of simultaneous long-running operations in Qt

I have some long-running operations that number in the hundreds. At the moment they are each on their own thread. My main goal in using threads is not to speed these operations up. The more important thing in this case is that they appear to run simultaneously.
I'm aware of cooperative multitasking and fibers. However, I'm trying to avoid anything that would require touching the code in the operations, e.g. peppering them with things like yieldToScheduler(). I also don't want to prescribe that these routines be stylized to be coded to emit queues of bite-sized task items...I want to treat them as black boxes.
For the moment I can live with these downsides:
Maximum # of threads tend to be O(1000)
Cost per thread is O(1MB)
To address the bad cache performance due to context-switches, I did have the idea of a timer which would juggle the priorities such that only idealThreadCount() threads were ever at Normal priority, with all the rest set to Idle. This would let me widen the timeslices, which would mean fewer context switches and still be okay for my purposes.
Question #1: Is that a good idea at all? One certain downside is it won't work on Linux (docs say no QThread::setPriority() there).
Question #2: Any other ideas or approaches? Is QtConcurrent thinking about this scenario?
(Some related reading: how-many-threads-does-it-take-to-make-them-a-bad-choice, many-threads-or-as-few-threads-as-possible, maximum-number-of-threads-per-process-in-linux)
IMHO, this is a very bad idea. If I were you, I would try really, really hard to find another way to do this. You're combining two really bad ideas: creating a truck load of threads, and messing with thread priorities.
You mention that these operations only need to appear to run simultaneously. So why not try to find a way to make them appear to run simultaneously, without literally running them simultaneously?
It's been 6 months, so I'm going to close this.
Firstly I'll say that threads serve more than one purpose. One is speedup...and a lot of people are focusing on that in the era of multi-core machines. But another is concurrency, which can be desirable even if it slows the system down when taken as a whole. Yet concurrency can be achieved using mechanisms more lightweight than threads, although it may complicate the code.
So this is just one of those situations where the tradeoff of programmer convenience against user experience must be tuned to fit the target environment. It's how Google's approach to a process-per-tab with Chrome would have been ill-advised in the era of Mosaic (even if process isolation was preferable with all else being equal). If the OS, memory, and CPU couldn't give a good browsing experience...they wouldn't do it that way now.
Similarly, creating a lot of threads when there are independent operations you want to be concurrent saves you the trouble of sticking in your own scheduler and yield() operations. It may be the cleanest way to express the code, but if it chokes the target environment then something different needs to be done.
So I think I'll settle on the idea that in the future when our hardware is better than it is today, we'll probably not have to worry about how many threads we make. But for now I'll take it on a case-by-case basis. i.e. If I have 100 of concurrent task class A, and 10 of concurrent task class B, and 3 of concurrent task class C... then switching A to a fiber-based solution and giving it a pool of a few threads is probably worth the extra complication.