Get all tables and fields from glue data catalog - amazon-web-services

Thanks for taking your time to read this!
I have multiple tables within an AWS glue catalog database and want to create an ER diagram from that database.
It should contain all the fields and data types.
Is there a straightforward tool to achieve this, like pointing a schema creation tool like DBschema to the glue catalog?

Related

AWS Glue reading glue catalog table VS reading files from s3

I am writing the AWS Glue ETL job and I have 2 options to construct the spark dataframe :
Use the AWS Glue Data Catalog as the metastore for Spark SQL
df = spark.sql("select name from bronze_db.table_tbl")
df.write.save("s3://silver/...")
another option is to read directly from s3 location like this
df = spark.read.format("parquet").load("s3://bronze/table_tbl/1.parquet","s3://bronze/table_tbl/2.parquet")
df.write.save("s3://silver/...")
should I consider reading files directly to save cost or any limit on the number of queries (select name from bronze_db.table_tbl) or to get better read performance?
I am not sure if this query will be run on Athena to return the results
If you only have one file and you know the schema there is no need for a table. A table is useful when there are multiple files, you don't know the schema (e.g. the table was set up and is populated by another process), or if you are querying the data from multiple engines (Athena, EMR, Redshift Spectrum, etc.)
Think of tables as an interoperability thing. Interoperability with other processes, other engines, etc.

How does Amazon Athena manage rename of columns?

everyone!
I'm working on a solution that intends to use Amazon Athena to run SQL queries from Parquet files on S3.
Those filed will be generated from a PostgreSQL database (RDS). I'll run a query and export data to S3 using Python's Pyarrow.
My question is: since Athena is schema-on-read, add or delete of columns on database will not be a problem...but what will happen when I get a column renamed on database?
Day 1: COLUMNS['col_a', 'col_b', 'col_c']
Day 2: COLUMNS['col_a', 'col_beta', 'col_c']
On Athena,
SELECT col_beta FROM table;
will return only data from Day 2, right?
Is there a way that Athena knows about these schema evolution or I would have to run a script to iterate through all my files on S3, rename columns and update table schema on Athena from 'col_a' to 'col_beta'?
Would AWS Glue Data Catalog help in any way to solve this?
I'll love to discuss more about this!
I recommend reading more about handling schema updates with Athena here. Generally Athena supports multiple ways of reading Parquet files (as well as other columnar data formats such as ORC). By default, using Parquet, columns will be read by name, but you can change that to reading by index as well. Each way has its own advantages / disadvantages dealing with schema changes. Based on your example, you might want to consider reading by index if you are sure new columns are only appended to the end.
A Glue crawler can help you to keep your schema updated (and versioned), but it doesn't necessarily help you to resolve schema changes (logically). And it comes at an additional cost, of course.
Another approach could be to use a schema that is a superset of all schemas over time (using columns by name) and define a view on top of it to resolve changes "manually".
You can set a granularity based on 'On Demand' or 'Time Based' for the AWS Glue crawler, so every time your data on the S3 updates a new schema will be generated (you can edit the schema on the data types for the attributes). This way your columns will stay updated and you can query on the new field.
Since AWS Athena reads data in CSV and TSV in the "order of the columns" in the schema and returns them in the same order. It does not use column names for mapping data to a column, which is why you can rename columns in CSV or TSV without breaking Athena queries.

How data retrieved from metadata created tables in Glue Script

In AWS Glue, Although I read documentation, but I didn't get cleared one thing. Below is what I understood.
Regarding Crawlers: This will create a metadata table for either S3 or DynamoDB table. But what I don't understand is: how does Scala/Python script able to retrieve data from Actual Source (say DynamoDB or S3) using Metadata created tables.
val input = glueContext
.getCatalogSource(database = "my_data_base", tableName = "my_table")
.getDynamicFrame()
Does above line retrieve data from actual source via metadata tables?
I will be glad if someone can able to explain me behind the scenes of retrieving data in Glue script via metadata tables.
When you run a Glue crawler it will fetch metadata from S3 or JDBC (depends on your requirement) and creates tables in AWS Glue Data Catalog.
Now if you want to connect to this data/tables from Glue ETL job then you can do it in multiple ways depending on your requirement:
[from_options][1] : if you want to load directly from S3/JDBC with out connecting to Glue catalog.
[from_catalog][1] : If you want to load data from Glue catalog then you need to link it with catalog using getCatalogSource method as shown in your code. As the name infers it will use Glue data catalog as source and load particular table that you pass to this method.
Once it looks at your table definition which is pointed to a location then it will make a connection and load the data present in the source.
Yes you need to use getCatalogSource if you want to load tables from Glue catalog.
Does Catalog look into Crawler and refer to actual source and load data?
Check out the diagram in this [link][2] . It will give you an idea about the flow.
What if crawler deleted before I run getCatalogSource, then will I can able to load data in this case?
Crawler and Table are two different components. It all depends on when the table is deleted. If you delete the table after your job start to execute then there will not be any problem. If you delete it before execution starts then you will encounter an error.
What if my Source has lots of million of records? then will this load all records or how in this case?
It is good to have large files to be present in source so it will avoid most of the small files problem. Glue based on Spark and it will read files which can be fit in memory and then do the computations. Check this [answer][3] and [this][4] for best practices while reading larger files in AWS Glue.
[1]: https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html
[2]: https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html
[3]: https://stackoverflow.com/questions/46638901/how-spark-read-a-large-file-petabyte-when-file-can-not-be-fit-in-sparks-main
[4]: https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/#:~:text=Incremental%20processing:%20Processing%20large%20datasets

Create tables in Glue Data Catalog for data in S3 and unknown schema

My current use case is, in an ETL based service (NOTE: The ETL service is not using the Glue ETL, it is an independent service), I am getting some data from AWS Redshift clusters into the S3. The data in S3 is then fed into the T and L jobs. I want to populate the metadata into the Glue Catalog. The most basic solution for this is to use the Glue Crawler, but the crawler runs for approximately 1 hour and 20 mins(lot of s3 partitions). The other solution that I came across is to use Glue API's. However, I am facing the issue of data type definition in the same.
Is there any way, I can create/update the Glue Catalog Tables where I have data in S3 and the data types are known only during the extraction process.
But also, when the T and L jobs are being run, the data types should be readily available in the catalog.
In order to create, update the data catalog during your ETL process, you can make use of the following:
Update:
additionalOptions = {"enableUpdateCatalog": True, "updateBehavior": "UPDATE_IN_DATABASE"}
additionalOptions["partitionKeys"] = ["partition_key0", "partition_key1"]
sink = glueContext.write_dynamic_frame_from_catalog(frame=last_transform, database=<dst_db_name>,
table_name=<dst_tbl_name>, transformation_ctx="write_sink",
additional_options=additionalOptions)
job.commit()
The above can be used to update the schema. You also have the option to set the updateBehavior choosing between LOG or UPDATE_IN_DATABASE (default).
Create
To create new tables in the data catalog during your ETL you can follow this example:
sink = glueContext.getSink(connection_type="s3", path="s3://path/to/data",
enableUpdateCatalog=True, updateBehavior="UPDATE_IN_DATABASE",
partitionKeys=["partition_key0", "partition_key1"])
sink.setFormat("<format>")
sink.setCatalogInfo(catalogDatabase=<dst_db_name>, catalogTableName=<dst_tbl_name>)
sink.writeFrame(last_transform)
You can specify the database and new table name using setCatalogInfo.
You also have the option to update the partitions in the data catalog using the enableUpdateCatalog argument then specifying the partitionKeys.
A more detailed explanation on the functionality can be found here.
Found a solution to the problem, I ended up utilising the Glue Catalog API's to make it seamless and fast.
I created an interface which interacts with the Glue Catalog, and override those methods for various data sources. Right after the data has been loaded into the S3, I fire the query to get the schema from the source and then the interface does its work.

AWS Glue: Do I really need a Crawler for new content?

What I understand from the AWS Glue docs is a craweler will help crawl and discover new data. However, I noticed that once I crawled once, if new data goes into S3, the data is actually already discovered when I query the data catalog from Athena for example. So, can I say I do not need a crawler to crawl everytime new data is added, unless there are new schemas?
In fact, if I know the schema of the files, I can just manually create the table and do without a crawler, am I correct?
If data is partitioned by some keys (placed in sub-folders, like /data/year=2018/month=11/day=2) then you need a crawler to register newly added partitions (ie. /day=3) in Data Catalog to be able to query it via Athena.
However, if data is not partitined or comes into already registered partitions then there is no need to run a crawler.
Alternatively to runnig a crawler you can discover and register new partitions by running Athena command MSCK REPAIR TABLE <table> or registering them manually.
The easiest way to create a table in Data Catalog is running a crawler. But if you know schema and have patience to compose CREATE TABLE Athena query or fill all fields via AWS Glue console then you can go that way as well.
If you have the schema then you don't need to use the crawler and you might get better results (the crawler assumes partition columns are strings for example).
As Yuriy says, remember to run MSCK REPAIR TABLE or register new partitions manually.
MSCK can time out if you've added a lot of partitions. If it does, keep running it until it completes normally.