C++ What design pattern do I need to use? - c++

I have a question about design patterns. My project is starting to get bigger and bigger and I feel like my design pattern is inaccurate/imprecise in terms of maintainability, scalability, and readability. The way my project is currently structured is that I have a MainLoopFile where I poll my events, I handle the events, draw the textures, and most importantly, instanciate external classes such as MyClassA up to some arbitrary MyClassZ.
The issue is that I'm making only one instance of each of MyClassX, just so that I can access their member functions fooA(), fooB() using MyClassX x; x.fooA(); from with the main loop file.
Is this the best approach to do this? I feel like
Write a class
Make a instance of the class
Call the functions of that class
methodology is useful whenever one needs to make multiple instances of that class. In my case, I'm only making one. Here is an example
MyClassA.hpp
MyClassA {
fooA();
fooB();
};
MyClassB.hpp
MyClassB {
fooA();
fooB();
};
...
MyClassZ.hpp
MyClassZ {
fooA();
fooB();
};
MainLoopFile.cpp
#include "MyClassA.hpp"
#include "MyClassB.hpp"
...
#include "MyClassZ.hpp"
MainLoopFile {
MyClassA a;
MyClassB b;
...
MyClassZ z;
while() {
Event event;
// do operations on a,b,...,z
}
}
Is this design pattern correct? Is there anything better?
Things I have considered
Making namespaces although I don't understand if that is the correct solution
Making some of the classes static (since only one instance necessary), but then half of my project's content becomes static, and it just feels odd
Read online about some design patterns, but was not able to find an answer to this specific solution

The model you describe is called a 'singleton' and its a common design pattern. The debate as to whether 'raw code' not in any class , singleton or static methods of a class is a long running lively one.
A singleton is better if some point you might need 2. Now you simply have to create another one. If its all static you have a lot of rewriting to do.
The thing that encapsulates the start up logic 'MainFile' in your case clearly is best static, since you are only running one program.
Things that encapsulate objects that you operate on are probably best as singletons.
Advantage of statics is that they are always there, you dont have to hand pointer / references around. You can just say Froodle::Noodle(widget) and there you are. The down side of that though is its a huge reorg if suddenly you need 2 Froodles

Just so I understand what you're doing -- you're using MyClassA .. Z in order to organize your code. That seems reasonable. But you don't actually have data associated with them.
The two most obvious answers, if I understand your problem correctly, could be:
Use namespaces and free functions within the namespaces
Use static methods so at least you're not instantiating empty objects
For the latter, you could then just call MyClassA::foo(); without having an instance of MyClassA.

To ask a design question, the most important part is that "what you want to achieve and what's the limitation" instead of "what you've done" (unless you're facing a legacy codebase, then current architecture is the limitation).
Please explain the context what class A ~ Z does.
Are they holding states or just having the same function names?
Why do you need so many different flavors of the same function name?
You may combine multiple patterns to achieve what you want to do.
By your sample code, I presume you want an event loop system (event loop is a design pattern as well!).
You may have multiple event handler instances. Making them Singleton might be what you want, but I don't suggest to make them singleton if your instances have dependency on other instances
To handle event, I think Observer Pattern is too big for this case. I'd suggest to use Strategy Pattern here since you might want to use different handlers according to different event types.

Related

Programming pattern for components that are toggleable at runtime

I'm wondering if there is some kind of logical programming pattern or structure that I should be using if sometimes during runtime a component should be used and other times not. The obvious simple solution is to just use if-else statements everywhere. I'm trying to avoid littering my code with if-else statements since once the component is toggled on, it will more than likely be on for a while and I wonder if its worth it to recheck if the same component is active all over the place when the answer will most likely not have changed between checks.
Thanks
A brief example of what I'm trying to avoid
class MainClass
{
public:
// constructors, destructors, etc
private:
ComponentClass m_TogglableComponent;
}
// somewhere else in the codebase
if (m_TogglableComponent.IsActive())
{
// do stuff
}
// somewhere totally different in the codebase
if (m_TogglableComponent.IsActive())
{
// do some different stuff
}
Looks like you're headed towards a feature toggle. This is a common occurrence when there's a piece of functionality that you need to be able to toggle on or off at run time. The key piece of insight with this approach is to use polymorphism instead of if/else statements, leveraging object oriented practices.
Martin Fowler details an approach here, as well as his rationale: http://martinfowler.com/articles/feature-toggles.html
But for a quick answer, instead of having state in your ComponentClass that tells observers whether it's active or not, you'll want to make a base class, AbstractComponentClass, and two base classes ActiveComponentClass and InactiveComponentClass. Bear in mind that m_TogglableComponent is currently an automatic member, and you'll need to make it a pointer under this new setup.
AbstractComponentClass will define pure virtual methods that both need to implement. In ActiveComponentClass you will put your normal functionality, as if it were enabled. In InactiveComponentClass you do as little as possible, enough to make the component invisible as far as MainClass is concerned. Void functions will do nothing and functions return values will return neutral values.
The last step is creating an instance of one of these two classes. This is where you bring in dependency injection. In your constructor to MainClass, you'll take a pointer of type AbstractComponentClass. From there on it doesn't care if it's Active or Inactive, it just calls the virtual functions. Whoever owns or controls MainClass is the one that injects the kind that you want, either active or inactive, which could be read by configuration or however else your system decides when to toggle.
If you need to change the behaviour at run time, you'll also need a setter method that takes another AbstractComponentClass pointer and replaces the one from the constructor.

oop inheritance of method vs making object only to call method in class which invoke it

I have problem with judge witch approach is better from design, clean code == good practice.
I load some data from files on start-up of my program and structure of classes looks like this:
To be more specific IngredientFromXmlReader, PizzaReader, DrinksFromXmlReader do all job internally, without any data putted from DataFromFileLoader .
The question mark is what with DataFromFileLoader class it should inherit from PizzaReader, IngredientFromXmlReader, DrinksFromXml and have method loadMenuFromFiles like this:
private void loadMenuFromFiles()
{
this->loadIngredientsFromXml();
this->loadPizzasFromXml();
this->loadDrinksFromXml();
}
This approach:
looks more clean for me,
don't create not needed objects,
and DataFromFileLoader not looks more crowded, then second approach, because methods are implemented in parent classes.
Or just do it how I done it right know, they all have to implement public method loadXml(), which is virtual method of AbstractReaderFromXml. And then I create object which invoke method.
private void loadMenuFromFiles()
{
IngredientFromXmlReader ingreRead;
ingreRead.loadXml();
PizzaReader pizzaRead;
pizzaRead.loadXml();
DrinksFromXmlReader drinksRead;
drinksRead.loadXml();
}
Why I choose this:
it's more stick to single responsibility principle, the responsibilities are more separated, what is advantage,
i don't give a chance to invoke this method in places, where is not needed, cause I need object to do so,
The third option is to make static this all internally method of these 3 classes, but I don't like it so much. It's seems to me much heavier for application and I try to avoid it. For sure this is the option.
What approach is better ?
The last thing, if this question fit to stackoverflow or maybe it should be put on
https://softwareengineering.stackexchange.com/
Problem description in this question looks unclear to me. But I would strongly recommend against diamond inheritance in this case.
Inheritance demonstrates IS-A connection. And PizzaReader does not actually look like FileOpener to me. PizzaReader makes use of FileOpener to open files, right? And that means this is a great example of replacing inheritance with composition.

C++ : Is it bad practice to use a static container in a class to contain pointers to all its objects for ease of access?

I would like to know if it's bad practice to have a static container in a class to store all the pointers to the class' objects so they can all be easily accessed by the base classes of the program. This is for a game and I saw it on sdltutorials dot com, and I find it very useful. It would allow me to have a very neat structure for my game and I don't really see a downside doing this, but I know I have to be careful with "global" access and maybe there's a negative effect I'm not seeing right now.
Here is the context/example. The game has a base class with basic methods such as Loop(), Render(), PlayAudio(), CleanMemory(). The idea is to have individual objects to have the same methods being executed inside the base method. Example in pseudocode:
Game::Render() {
for (iterate all enemies in static container) {
current_enemy::Render();
}
}
To be sure, the static member inside the class would look like this:
static std::vector<Enemy*> EnemyList;
So this way, when your game is executing the base Render() method, for example, you can iterate all the enemies in the enemies' class static container and execute all their individual Render() methods, then do the same for environment objects, then for the player, etc.
I would just like to make sure I'm aware of any downside/complication/limitation I might encounter if I choose this method to build my game, because I don't see any right now but I know a have to be careful with static and global stuff.
Thanks very much for your time.
It is certainly convenient, however a static variable or a Singleton are nothing more than global variables; and having global variables comes with drawbacks:
the dependencies of a function become unclear: which global does it rely upon ?
the re-entrancy of a function is compromised: what if current_enemy.render() accidentally calls Game::Render() ? it's an infinite recursion!
the thread-safety of a function is compromised, unless proper synchronization takes place, in which case the serialized access to the global variable bog down the performance of your concurrent code (because of Amdahl's Law)
It might seem painful and pointless to explicitly pass a reference to an instance of Game wherever you need to, however it leaves a clear path of dependencies that can be followed and as the software grows you will appreciate explicitness.
And there is, of course, much to be said about transforming the program to have two instances of Game. While it might seem incongruous in this precise situation, in general it is wise not to assume that it will never be necessary in the future, for we are no oracles.
Different people may have different opinions about this. I can give you some advice on how to store your static objects in a better way.
Use the singleton pattern for a class which stores your objects:
class ObjectManager
{
private:
std::vector<Enemy*> enemies_;
std::vector<Friend*> friends_;
...
public:
void add(Enemy* e) { enemies_.push_back(e); }
...
const std::vector<Enemy*> enemies() const { return enmies_; }
...
private:
static ObjectManager* instance_;
public:
static ObjectManager* Get() { return instance_; }
static void Initialize() { instance_ = new ObjectManager(); }
}
You can access it like that (example with C++11 ranged-based for):
void Game::Render() {
for(auto e : ObjectManager::Get()->enemies()) {
e->Render();
}
}
This is especially convenient for subclasses which want to access information about the world. Normally you would have to give a pointer to ObjectManager to everyone. But if you have only one ObjectManager anyway the singleton pattern may remove clutter from your code.
Don't forget to create the singleton at the beginning of your program by calling ObjectManager::Initialize();.
I would not suggest doing this the way you are. At this point you may as well have a bare global variable in a namespace, it is the same thing you are doing right now.
I also do not suggest using singletons.
When should the Singleton pattern NOT be used? (Besides the obvious)
The best way to approach things is to do good old parameter passing (dependency injection) wherever possible. With careful design this is feasible system wide, and it avoids all the problems you have with globally accessible resources.
When you don't have the luxury of designing your system in such a way, and you are working within existing code that already has quite a bit of trouble with singleton dependence, or loss of locality between resources several levels removed from where they are needed (and you cannot afford to modify the interfaces to cascade dependencies downward) this may not be useful advice.
A middle-ground between bare global and singleton is the service-locator. Many people still consider service-locator an anti-pattern, but most people also agree that it is less bad than the singleton since it offers a certain level of abstraction and decouples creation from supplying the object which means you can offer up a derived class easily if your design or environment changes.
Here is a description of the pattern:
http://gameprogrammingpatterns.com/service-locator.html
And here is a discussion about the singleton vs service-locator.
If Singletons are bad then why is a Service Container good?.
I like the highest voted (but not accepted) answer best.

Is it a good practice to write classes that typically have only one public method exposed?

The more I get into writing unit tests the more often I find myself writing smaller and smaller classes. The classes are so small now that many of them have only one public method on them that is tied to an interface. The tests then go directly against that public method and are fairly small (sometimes that public method will call out to internal private methods within the class). I then use an IOC container to manage the instantiation of these lightweight classes because there are so many of them.
Is this typical of trying to do things in a more of a TDD manner? I fear that I have now refactored a legacy 3,000 line class that had one method in it into something that is also difficult to maintain on the other side of the spectrum because there is now literally about 100 different class files.
Is what I am doing going too far? I am trying to follow the single responsibility principle with this approach but I may be treading into something that is an anemic class structure where I do not have very intelligent "business objects".
This multitude of small classes would drive me nuts. With this design style it becomes really hard to figure out where the real work gets done. I am not a fan of having a ton of interfaces each with a corresponding implementation class, either. Having lots of "IWidget" and "WidgetImpl" pairings is a code smell in my book.
Breaking up a 3,000 line class into smaller pieces is great and commendable. Remember the goal, though: it's to make the code easier to read and easier to work with. If you end up with 30 classes and interfaces you've likely just created a different type of monster. Now you have a really complicated class design. It takes a lot of mental effort to keep that many classes straight in your head. And with lots of small classes you lose the very useful ability to open up a couple of key files, pick out the most important methods, and get an idea of what the heck is going on.
For what it's worth, though, I'm not really sold on test-driven design. Writing tests early, that's sensible. But reorganizing and restructuring your class design so it can be more easily unit tested? No thanks. I'll make interfaces only if they make architectural sense, not because I need to be able to mock up some objects so I can test my classes. That's putting the cart before the horse.
You might have gone a bit too far if you are asking this question. Having only one public method in a class isn't bad as such, if that class has a clear responsibility/function and encapsulates all logic concerning that function, even if most of it is in private methods.
When refactoring such legacy code, I usually try to identify the components in play at a high level that can be assigned distinct roles/responsibilities and separate them into their own classes. I think about which functions should be which components's responsibility and move the methods into that class.
You write a class so that instances of the class maintain state. You put this state in a class because all the state in the class is related.You have function to managed this state so that invalid permutations of state can't be set (the infamous square that has members width and height, but if width doesn't equal height it's not really a square.)
If you don't have state, you don't need a class, you could just use free functions (or in Java, static functions).
So, the question isn't "should I have one function?" but rather "what state-ful entity does my class encapsulate?"
Maybe you have one function that sets all state -- and you should make it more granular, so that, e.g., instead of having void Rectangle::setWidthAndHeight( int x, int y) you should have a setWidth and a separate setHeight.
Perhaps you have a ctor that sets things up, and a single function that doesIt, whatever "it" is. Then you have a functor, and a single doIt might make sense. E.g., class Add implements Operation { Add( int howmuch); Operand doIt(Operand rhs);}
(But then you may find that you really want something like the Visitor Pattern -- a pure functor is more likely if you have purely value objects, Visitor if they're arranged in a tree and are related to each other.)
Even if having these many small objects, single-function is the correct level of granularity, you may want something like a facade Pattern, to compose out of primitive operations, often-used complex operations.
There's no one answer. If you really have a bunch of functors, it's cool. If you're really just making each free function a class, it's foolish.
The real answer lies in answering the question, "what state am I managing, and how well do my classes model my problem domain?"
I'd be speculating if I gave a definite answer without looking at the code.
However it sounds like you're concerned and that is a definite flag for reviewing the code. The short answer to your question comes back to the definition of Simple Design. Minimal number of classes and methods is one of them. If you feel like you can take away some elements without losing the other desirable attributes, go ahead and collapse/inline them.
Some pointers to help you decide:
Do you have a good check for "Single Responsibility" ? It's deceptively difficult to get it right but is a key skill (I still don't see it like the masters). It doesn't necessarily translate to one method-classes. A good yardstick is 5-7 public methods per class. Each class could have 0-5 collaborators. Also to validate against SRP, ask the question what can drive a change into this class ? If there are multiple unrelated answers (e.g. change in the packet structure (parsing) + change in the packet contents to action map (command dispatcher) ) , maybe the class needs to be split. On the other end, if you feel that a change in the packet structure, can affect 4 different classes - you've run off the other cliff; maybe you need to combine them into a cohesive class.
If you have trouble naming the concrete implementations, maybe you don't need the interface. e.g. XXXImpl classes implmenting XXX need to be looked at. I recently learned of a naming convention, where the interface describes a Role and the implementation is named by the technology used to implement the role (or falling back to what it does). e.g. XmppAuction implements Auction (or SniperNotifier implements AuctionEventListener)
Lastly are you finding it difficult to add / modify / test existing code (e.g. test setup is long or painful ) ? Those can be signs that you need to go refactoring.

Best way to use a C++ Interface

I have an interface class similar to:
class IInterface
{
public:
virtual ~IInterface() {}
virtual methodA() = 0;
virtual methodB() = 0;
};
I then implement the interface:
class AImplementation : public IInterface
{
// etc... implementation here
}
When I use the interface in an application is it better to create an instance of the concrete class AImplementation. Eg.
int main()
{
AImplementation* ai = new AIImplementation();
}
Or is it better to put a factory "create" member function in the Interface like the following:
class IInterface
{
public:
virtual ~IInterface() {}
static std::tr1::shared_ptr<IInterface> create(); // implementation in .cpp
virtual methodA() = 0;
virtual methodB() = 0;
};
Then I would be able to use the interface in main like so:
int main()
{
std::tr1::shared_ptr<IInterface> test(IInterface::create());
}
The 1st option seems to be common practice (not to say its right). However, the 2nd option was sourced from "Effective C++".
One of the most common reasons for using an interface is so that you can "program against an abstraction" rather then a concrete implementation.
The biggest benefit of this is that it allows changing of parts of your code while minimising the change on the remaining code.
Therefore although we don't know the full background of what you're building, I would go for the Interface / factory approach.
Having said this, in smaller applications or prototypes I often start with concrete classes until I get a feel for where/if an interface would be desirable. Interfaces can introduce a level of indirection that may just not be necessary for the scale of app you're building.
As a result in smaller apps, I find I don't actually need my own custom interfaces. Like so many things, you need to weigh up the costs and benefits specific to your situation.
There is yet another alternative which you haven't mentioned:
int main(int argc, char* argv[])
{
//...
boost::shared_ptr<IInterface> test(new AImplementation);
//...
return 0;
}
In other words, one can use a smart pointer without using a static "create" function. I prefer this method, because a "create" function adds nothing but code bloat, while the benefits of smart pointers are obvious.
There are two separate issues in your question:
1. How to manage the storage of the created object.
2. How to create the object.
Part 1 is simple - you should use a smart pointer like std::tr1::shared_ptr to prevent memory leaks that otherwise require fancy try/catch logic.
Part 2 is more complicated.
You can't just write create() in main() like you want to - you'd have to write IInterface::create(), because otherwise the compiler will be looking for a global function called create, which isn't what you want. It might seem like having the 'std::tr1::shared_ptr test' initialized with the value returned by create() might seem like it'd do what you want, but that's not how C++ compilers work.
As to whether using a factory method on the interface is a better way to do this than just using new AImplementation(), it's possible it'd be helpful in your situation, but beware of speculative complexity - if you're writing the interface so that it always creates an AImplementation and never a BImplementation or a CImplementation, it's hard to see what the extra complexity buys you.
"Better" in what sense?
The factory method doesn't buy you much if you only plan to have, say, one concrete class. (But then again, if you only plan to have one concrete class, do you really need the interface class at all? Maybe yes, if you're using COM.) In any case, if you can forsee a small, fixed limit on the number of concrete classes, then the simpler implementation may be the "better" one, on the whole.
But if there may be many concrete classes, and if you don't want to have the base class be tightly coupled to them, then the factory pattern may be useful.
And yes, this can help reduce coupling -- if the base class provides some means for the derived classes to register themselves with the base class. This would allow the factory to know which derived classes exist, and how to create them, without needing compile-time information about them.
Use the 1st method. Your factory method in the 2nd option would have to be implemented per-concrete class and this is not possible to do in the interface. I.e., IInterface::create() has no idea exactly which concrete class you actually wish to instantiate.
A static method cannot be virtual, and implementing a non-static create() method in your concrete classes has not really won you anything in this case.
Factory methods are certainly useful, but this is not the correct use.
Which item in Effective C++ recommends the 2nd option? I don't see it in mine (though I don't also have the second book). That may clear up a mis-understanding.
I would go with the first option just because it's more common and more understandable. It's really up to you, but if your working on a commercial app then I would ask what my peers what they use.
I do have a very simple question there:
Are you sure you want to use a pointer ?
This question might seem unlogical but people coming from a Java background use new much often than required. In your example, creating the variable on the stack would be amply sufficient.