Trouble Rendering 2 Object separately in OpenGL - c++

I have taken code for two projects. One being the code for creating a cube and another is the code for creating a pyramid. I am now trying to render both of the objects in OpenGL which I have done the problem is the objects are attached to one another. I have added some code heading towards rendering them separately, however I am now stuck where my cube is only showing 3 of the triangles used to create it and the whole pyramid shows. Yet the objects are still attached to one another. Any help or guidance?
#include <iostream> // cout, cerr
#include <cstdlib> // EXIT_FAILURE
#include <GL/glew.h> // GLEW library
#include <GLFW/glfw3.h> // GLFW library
// GLM Math Header inclusions
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtc/type_ptr.hpp>
using namespace std; // Standard namespace
using glm::vec3;
using glm::mat4;
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version " core \n" #Source
#endif
// Unnamed namespace
namespace
{
const char* const WINDOW_TITLE = "3D Scene Troubleshooting"; // Macro for window title
// Variables for window width and height
const int WINDOW_WIDTH = 800;
const int WINDOW_HEIGHT = 600;
// Stores the GL data relative to a given mesh
struct GLMesh
{
GLuint vao; // Handle for the vertex array object 1
GLuint vao2; // Handle for the vertex array object 2
GLuint vbos[2]; // Handles for the vertex buffer objects 1
GLuint vbos2[2]; // Handles for the vertex buffer objects 2
GLuint cubeIndices; // Number of cube indices of the mesh
GLuint pyramidIndices; // Number of pyramid indices of the mesh
};
// Main GLFW window
GLFWwindow* gWindow = nullptr;
// Triangle mesh data
GLMesh gMesh;
// Shader program
GLuint gProgramId;
}
/* User-defined Function prototypes to:
* initialize the program, set the window size,
* redraw graphics on the window when resized,
* and render graphics on the screen
*/
bool UInitialize(int, char* [], GLFWwindow** window);
void UResizeWindow(GLFWwindow* window, int width, int height);
void UProcessInput(GLFWwindow* window);
void UCreateMesh(GLMesh& mesh);
void UDestroyMesh(GLMesh& mesh);
void URender();
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId);
void UDestroyShaderProgram(GLuint programId);
/* Vertex Shader Source Code*/
const GLchar* vertexShaderSource = GLSL(440,
layout(location = 0) in vec3 position; // Vertex data from Vertex Attrib Pointer 0
layout(location = 1) in vec4 color; // Color data from Vertex Attrib Pointer 1
out vec4 vertexColor; // variable to transfer color data to the fragment shader
//Global variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f); // transforms vertices to clip coordinates
vertexColor = color; // references incoming color data
}
);
/* Fragment Shader Source Code*/
const GLchar* fragmentShaderSource = GLSL(440,
in vec4 vertexColor; // Variable to hold incoming color data from vertex shader
out vec4 fragmentColor;
void main()
{
fragmentColor = vec4(vertexColor);
}
);
int main(int argc, char* argv[])
{
if (!UInitialize(argc, argv, &gWindow))
return EXIT_FAILURE;
// Create the mesh
UCreateMesh(gMesh); // Calls the function to create the Vertex Buffer Object
// Create the shader program
if (!UCreateShaderProgram(vertexShaderSource, fragmentShaderSource, gProgramId))
return EXIT_FAILURE;
// Sets the background color of the window to black (it will be implicitely used by glClear)
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// render loop
// -----------
while (!glfwWindowShouldClose(gWindow))
{
// input
// -----
UProcessInput(gWindow);
// Render this frame
URender();
glfwPollEvents();
}
// Release mesh data
UDestroyMesh(gMesh);
// Release shader program
UDestroyShaderProgram(gProgramId);
exit(EXIT_SUCCESS); // Terminates the program successfully
}
// Initialize GLFW, GLEW, and create a window
bool UInitialize(int argc, char* argv[], GLFWwindow** window)
{
// GLFW: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// GLFW: window creation
// ---------------------
* window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "3D Scene TroubleShooting", NULL, NULL);
if (*window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return false;
}
glfwMakeContextCurrent(*window);
glfwSetFramebufferSizeCallback(*window, UResizeWindow);
// GLEW: initialize
// ----------------
// Note: if using GLEW version 1.13 or earlier
glewExperimental = GL_TRUE;
GLenum GlewInitResult = glewInit();
if (GLEW_OK != GlewInitResult)
{
std::cerr << glewGetErrorString(GlewInitResult) << std::endl;
return false;
}
// Displays GPU OpenGL version
cout << "INFO: OpenGL Version: " << glGetString(GL_VERSION) << endl;
return true;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
void UProcessInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function
executes
void UResizeWindow(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
// Functioned called to render a frame
void URender()
{
// Enable z-depth
glEnable(GL_DEPTH_TEST);
// Clear the frame and z buffers
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Scales the object by 2
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
// 2. Rotates shape by 15 degrees in the x axis
glm::mat4 rotation = glm::rotate(45.0f, glm::vec3(1.0, 1.0f, 1.0f));
// 3. Place object at the origin
glm::mat4 translation = glm::translate(glm::vec3(0.5f, -0.3f, -0.1f));
// Model matrix: transformations are applied right-to-left order
glm::mat4 model = translation * rotation * scale;
// Transforms the camera: move the camera back (z axis)
glm::mat4 view = glm::translate(glm::vec3(-2.6f, 2.9f, -5.0f));
// Creates a orthographic projection
glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);
// Set the shader to be used
glUseProgram(gProgramId);
// Retrieves and passes transform matrices to the Shader program
GLint modelLoc = glGetUniformLocation(gProgramId, "model");
GLint viewLoc = glGetUniformLocation(gProgramId, "view");
GLint projLoc = glGetUniformLocation(gProgramId, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Activate the VBOs contained within the mesh's VAO
glBindVertexArray(gMesh.vao);
glBindVertexArray(gMesh.vao2);
// Draws the CUBE
glDrawElements(GL_TRIANGLES, gMesh.cubeIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
glDrawArrays(GL_TRIANGLES, 0, 24);
// Draws the PYRAMID
glDrawElements(GL_TRIANGLES, gMesh.pyramidIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
glDrawArrays(GL_TRIANGLES, 0, 54);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
glfwSwapBuffers(gWindow); // Flips the the back buffer with the front buffer every frame.
}
void UCylinder(GLUquadric* qobj, GLdouble baseRadius, GLdouble topRadius, GLdouble height, GLint slices, GLint stacks)
{
GLUquadricObj* quadratic;
quadratic = gluNewQuadric();
gluCylinder(quadratic, 0.3f, 0.3f, 3.0f, 32, 32);
glDrawElements(GL_TRIANGLES, gMesh.cubeIndices, GL_UNSIGNED_SHORT, NULL);
}
// Implements the UCreateMesh function
void UCreateMesh(GLMesh& mesh)
{
// Position and Color data
GLfloat verts[] = {
// Vertex Positions // Colors (r,g,b,a)
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Top Right Vertex 0 (effects top right and bottom right top sides of cube)
0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Bottom Right corner Vertex 1
-0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Bottom center of cube Vertex 2 (effects bottom left and bottomr right sides of cube)
-0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Center of cube Vertex 3 (effects top, bottom left and bottom right sides of cube)
0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // Bottomside left of cube Vertex 4 (doesn't effect cube color at all with current orientation)
0.5f, 0.5f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Top center of cube Vertex 5
-0.5f, 0.5f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Top left corner cube Vertex 6 (effects both top and bottom left sides of cube)
-0.5f, -0.5f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Bottom left of cube Vertex 7
// Vertex Positions // Colors (r,g,b,a)
-0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, // Vertex 8
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Vertex 9
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Vertex 10
-0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, // Vertex 11
0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, // Vertex 12
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Vertex 13
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 1.0f, // Vertex 14
-0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Vertex 15
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Vertex 16
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 1.0f, // Vertex 17
0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, // Vertex 18
0.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, // Vertex 19
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, // Vertex 20
0.5f, -0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Vertex 21
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Vertex 22
-0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, // Vertex 23
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 1.0f, 1.0f, // Vertex 24
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Vertex 25
};
// Index data to share position data
GLushort cubeIndices[] = {
0, 1, 3, // Triangle 1
1, 2, 3, // Triangle 2
0, 1, 4, // Triangle 3
0, 4, 5, // Triangle 4
0, 5, 6, // Triangle 5
0, 3, 6, // Triangle 6
4, 5, 6, // Triangle 7
4, 6, 7, // Triangle 8
2, 3, 6, // Triangle 9
2, 6, 7, // Triangle 10
1, 4, 7, // Triangle 11
1, 2, 7, // Triangle 12
};
GLushort pyramidIndices[] = {
8, 9, 10, // Triangle 1
11, 12, 13, // Triangle 2
14, 15, 16, // Triangle 3
17, 18, 19, // Triangle 4
20, 21, 22, // Triangle 5
23, 24, 25 // Triangle 6
};
const GLuint floatsPerVertex = 3;
const GLuint floatsPerColor = 4;
// For CUBE
glGenVertexArrays(1, &mesh.vao); // we can also generate multiple VAOs or buffers at the same time
glBindVertexArray(mesh.vao);
// For PYRAMID
glGenVertexArrays(1, &mesh.vao2);
glBindVertexArray(mesh.vao2);
// Create 2 buffers: first one for the vertex data; second one for the indices for the CUBE
glGenBuffers(2, mesh.vbos);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]); // Activates the buffer for CUBE
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW); // Sends vertex or coordinate data to the GPU for CUBE
// Create 2 buffers: first one for the vertex data; second one for the indices for the PYRAMID
glGenBuffers(2, mesh.vbos2);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos2[0]); // Activates the buffer for PYRAMID
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW); // Sends vertex or coordinate data to the GPU for PYRAMID
// For CUBE
mesh.cubeIndices = sizeof(cubeIndices) / sizeof(cubeIndices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(cubeIndices), cubeIndices, GL_STATIC_DRAW);
// For PYRAMID
mesh.pyramidIndices = sizeof(pyramidIndices) / sizeof(pyramidIndices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos2[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(pyramidIndices), pyramidIndices, GL_STATIC_DRAW);
// Strides between vertex coordinates is 6 (x, y, z, r, g, b, a). A tightly packed stride is 0.
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);// The number of floats before each
// Create Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
}
void UDestroyMesh(GLMesh& mesh)
{
// For CUBE
glDeleteVertexArrays(1, &mesh.vao);
glDeleteBuffers(2, mesh.vbos);
// For PYRAMID
glDeleteVertexArrays(1, &mesh.vao2);
glDeleteBuffers(2, mesh.vbos2);
}
// Implements the UCreateShaders function
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId)
{
// Compilation and linkage error reporting
int success = 0;
char infoLog[512];
// Create a Shader program object.
programId = glCreateProgram();
// Create the vertex and fragment shader objects
GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
// Retrive the shader source
glShaderSource(vertexShaderId, 1, &vtxShaderSource, NULL);
glShaderSource(fragmentShaderId, 1, &fragShaderSource, NULL);
// Compile the vertex shader, and print compilation errors (if any)
glCompileShader(vertexShaderId); // compile the vertex shader
// check for shader compile errors
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShaderId, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
glCompileShader(fragmentShaderId); // compile the fragment shader
// check for shader compile errors
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShaderId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
// Attached compiled shaders to the shader program
glAttachShader(programId, vertexShaderId);
glAttachShader(programId, fragmentShaderId);
glLinkProgram(programId); // links the shader program
// check for linking errors
glGetProgramiv(programId, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(programId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
return false;
}
glUseProgram(programId); // Uses the shader program
return true;
}
void UDestroyShaderProgram(GLuint programId)
{
glDeleteProgram(programId);
}

See Vertex Specification. You cannot specify 2 vertex array objects at the same time. You have to do this in a row.
The Vertex Array Binding is a global state. Only one VAO can be bound at a time.
When calling OpenGL instructions like glVertexAttribPointer, glEnableVertexAttribArray and glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,...)`, the state of the currently bound Vertex Array Object is changed. Note that different VAOs can use the same data buffers.
void UCreateMesh(GLMesh& mesh)
{
// [...]
glGenBuffers(1, mesh.vbos);
glGenBuffers(2, mesh.vbos2);
// 1 Vertex Buffer for both objects
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
// Strides between vertex coordinates is 6 (x, y, z, r, g, b, a). A tightly packed stride is 0.
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);// The number of floats before each
// CUBE
glGenVertexArrays(1, &mesh.vao); // we can also generate multiple VAOs or buffers at the same time
glBindVertexArray(mesh.vao);
// Create Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
mesh.cubeIndices = sizeof(cubeIndices) / sizeof(cubeIndices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(cubeIndices), cubeIndices, GL_STATIC_DRAW);
// PYRAMID
glGenVertexArrays(1, &mesh.vao2);
glBindVertexArray(mesh.vao2);
// Create Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
mesh.pyramidIndices = sizeof(pyramidIndices) / sizeof(pyramidIndices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos2[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(pyramidIndices), pyramidIndices, GL_STATIC_DRAW);
}
Finally you can draw the meshes one after the other. The draw call uses the data from the currently bound Vertex Array Object. As already mentioned, only one VAO can be bound at a time:
glBindVertexArray(gMesh.vao);
glDrawElements(GL_TRIANGLES, gMesh.cubeIndices, GL_UNSIGNED_SHORT, NULL);
glBindVertexArray(gMesh.vao2);
glDrawElements(GL_TRIANGLES, gMesh.pyramidIndices, GL_UNSIGNED_SHORT, NULL);

Related

Why is my OpenGL code producing a black screen?

This is my code written in C++ that is supposed to produce 2 triangles, however I am getting a blank screen. Is there something I am missing?
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <glm/vec3.hpp> // glm::vec3
#include <glm/vec4.hpp> // glm::vec4
#include <glm/mat4x4.hpp> // glm::mat4
#include <glm/gtc/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale, glm::perspective
using namespace std;
static string ParseShader(string filepath) {
ifstream stream(filepath);
string line;
stringstream stringStream;
while (getline(stream, line))
{
stringStream << line << '\n';
}
return stringStream.str();
}
static unsigned int CompileShader(unsigned int type, const string& source) {
unsigned int id = glCreateShader(type);
const char* src = source.c_str(); // this returns a pointer to data inside the string, the first character
glShaderSource(id, 1, &src, nullptr); // shader id, count of source codes, a pointer to the array that holds the strings
glCompileShader(id);
int result;
glGetShaderiv(id, GL_COMPILE_STATUS, &result);
if (result == GL_FALSE) {
int length;
glGetShaderiv(id, GL_INFO_LOG_LENGTH, &length);
char* message = (char*)alloca(length * sizeof(char));
glGetShaderInfoLog(id, length, &length, message);
cout << type << endl;
cout << message << endl;
glDeleteShader(id);
return 0;
}
return id;
}
// takes the shader codes as a string parameters
static unsigned int CreateShader(const string& vertexShader, const string& fragmentShader)
{
GLuint program = glCreateProgram();
unsigned int vs = CompileShader(GL_VERTEX_SHADER, vertexShader);
unsigned int fs = CompileShader(GL_FRAGMENT_SHADER, fragmentShader);
glAttachShader(program, vs);
glAttachShader(program, fs);
glLinkProgram(program);
glValidateProgram(program); // validate if the program is valid and can be run in the current state of opengl
glDeleteShader(vs);
glDeleteShader(fs);
return program;
}
int main(void)
{
GLFWwindow* window;
float Angle = 0;
/* Initialize the library */
if (!glfwInit())
return -1;
/* Create a windowed mode window and its OpenGL context */
window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
if (!window)
{
glfwTerminate();
return -1;
}
/* Make the window's context current */
glfwMakeContextCurrent(window);
// call glewInit after creating the context...
GLenum err = glewInit();
if (GLEW_OK != err)
{
/* Problem: glewInit failed, something is seriously wrong. */
fprintf(stderr, "Error: %s\n", glewGetErrorString(err));
}
GLfloat coordinates[12] = {
-0.5f, 0.5f,
0.0f, 0.5f,
0.5f, 0.5f,
-0.5f, -0.5f,
0.0f, -0.5f,
0.5f, -0.5f
};
GLuint indices[6] = { 0, 3, 1, 4, 2, 5 };
GLuint position_buffer;
glGenBuffers(1, &position_buffer);
glBindBuffer(GL_ARRAY_BUFFER, position_buffer);
glBufferData(GL_ARRAY_BUFFER, 6 * 2 * sizeof(float), coordinates, GL_STATIC_DRAW);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, 0); //vertex positions
glEnableVertexAttribArray(0);
GLuint index_buffer;
glGenBuffers(1, &index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(GLuint), indices, GL_STATIC_DRAW);
string vertexSource = ParseShader("vertex.shader");
string fragmentSource = ParseShader("fragment.shader");
unsigned int program = CreateShader(vertexSource, fragmentSource);
glUseProgram(program);
/* Loop until the user closes the window */
while (!glfwWindowShouldClose(window))
{
// Render here
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawElements(GL_TRIANGLE_STRIP, 6, GL_UNSIGNED_INT, nullptr);
//Swap front and back buffers
glfwSwapBuffers(window);
// Poll for and process events
glfwPollEvents();
}
glDeleteProgram(program);
glfwTerminate();
return 0;
}
This is my vertex shader.
#version 330 core
layout(location = 0) in vec4 position;
layout(location = 1) in vec4 color;
out vec4 var_color;
void main()
{
var_color = color;
gl_Position = position;
};
And here is my fragment shader.
#version 330 core
out vec4 color;
in vec4 var_color;
void main()
{
//color = vec4(1.0f, 0.0f, 0.0f, 1.0f);
color = var_color;
//discard;
};
I get a black screen as a result, I doubt this is an issue with my machine as other code snippets worked on it.
Colors are not specified in the provided code. The shader are most probably drawing black squares because of the value already in memory when you execute the program. To add colors, use this code:
GLfloat colors[24] = { // Random colors
1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
};
GLuint color_buffer;
glGenBuffers(1, &color_buffer);
glBindBuffer(GL_ARRAY_BUFFER, color_buffer);
glBufferData(GL_ARRAY_BUFFER, 6 * 4 * sizeof(float), colors, GL_STATIC_DRAW);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0); //vertex colors
glEnableVertexAttribArray(1);
The code shouldn't produce two triangles, as it is asked to render a triangle strip. The first three vertices define one triangle and each subsequent vertex adds another triangle for a total of 4 triangles.
The blank screen you're getting is the result of the vertex shader being sent 2D positions and interpreting them as 4D positions, as well as no color information being present.
To resolve these issues:
The vertex shader should receive a vec2 for the positions, since these are given in 2D:
layout(location = 0) in vec2 position;
Then convert these to 4D for gl_Position:
gl_Position = vec4(position, 0.0f, 1.0f);
The definition of the colors, setting up the corresponding buffer and uploading of the color data was missing. For example, add:
GLfloat colors[24] = {
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f,
};
GLuint color_buffer;
glGenBuffers(1, &color_buffer);
glBindBuffer(GL_ARRAY_BUFFER, color_buffer);
glBufferData(GL_ARRAY_BUFFER, 6 * 4 * sizeof(float), colors, GL_STATIC_DRAW);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0);
glEnableVertexAttribArray(1);
The result:

Is there a way to position the 3D cube in the upper left corner of the window for OpenGL?

I have been able to create a 3D cube in OpenGL but need assistance with positioning it in the upper left-hand corner of the window. No matter what I try I cannot seem to get the cube in the upper left-hand corner of the window. Currently, the 3D Cube is position close to the center of the window. I have provided the C++ OpenGL code below for reference. Can someone please let me know where I am going wrong?
#include <iostream> // cout, cerr
#include <cstdlib> // EXIT_FAILURE
#include <GL/glew.h> // GLEW library
#include <GLFW/glfw3.h> // GLFW library
// GLM Math Header inclusions
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtc/type_ptr.hpp>
using namespace std; // Standard namespace
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version " core \n" #Source
#endif
// Unnamed namespace
namespace
{
const char* const WINDOW_TITLE = "3D Cube"; // Macro for window title
// Variables for window width and height
const int WINDOW_WIDTH = 800;
const int WINDOW_HEIGHT = 600;
// Stores the GL data relative to a given mesh
struct GLMesh
{
GLuint vao; // Handle for the vertex array object
GLuint vbos[2]; // Handles for the vertex buffer objects
GLuint nIndices; // Number of indices of the mesh
};
// Main GLFW window
GLFWwindow* gWindow = nullptr;
// Triangle mesh data
GLMesh gMesh;
// Shader program
GLuint gProgramId;
}
/* User-defined Function prototypes to:
* initialize the program, set the window size,
* redraw graphics on the window when resized,
* and render graphics on the screen
*/
bool UInitialize(int, char*[], GLFWwindow** window);
void UResizeWindow(GLFWwindow* window, int width, int height);
void UProcessInput(GLFWwindow* window);
void UCreateMesh(GLMesh &mesh);
void UDestroyMesh(GLMesh &mesh);
void URender();
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint &programId);
void UDestroyShaderProgram(GLuint programId);
/* Vertex Shader Source Code*/
const GLchar * vertexShaderSource = GLSL(440,
layout (location = 0) in vec3 position; // Vertex data from Vertex Attrib Pointer 0
layout (location = 1) in vec4 color; // Color data from Vertex Attrib Pointer 1
out vec4 vertexColor; // variable to transfer color data to the fragment shader
//Global variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f); // transforms vertices to clip coordinates
vertexColor = color; // references incoming color data
}
);
/* Fragment Shader Source Code*/
const GLchar * fragmentShaderSource = GLSL(440,
in vec4 vertexColor; // Variable to hold incoming color data from vertex shader
out vec4 fragmentColor;
void main()
{
fragmentColor = vec4(vertexColor);
}
);
int main(int argc, char* argv[])
{
if (!UInitialize(argc, argv, &gWindow))
return EXIT_FAILURE;
// Create the mesh
UCreateMesh(gMesh); // Calls the function to create the Vertex Buffer Object
// Create the shader program
if (!UCreateShaderProgram(vertexShaderSource, fragmentShaderSource, gProgramId))
return EXIT_FAILURE;
// Sets the background color of the window to black (it will be implicitely used by glClear)
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// render loop
// -----------
while (!glfwWindowShouldClose(gWindow))
{
// input
// -----
UProcessInput(gWindow);
// Render this frame
URender();
glfwPollEvents();
}
// Release mesh data
UDestroyMesh(gMesh);
// Release shader program
UDestroyShaderProgram(gProgramId);
exit(EXIT_SUCCESS); // Terminates the program successfully
}
// Initialize GLFW, GLEW, and create a window
bool UInitialize(int argc, char* argv[], GLFWwindow** window)
{
// GLFW: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// GLFW: window creation
// ---------------------
*window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, NULL, NULL);
if (*window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return false;
}
glfwMakeContextCurrent(*window);
glfwSetFramebufferSizeCallback(*window, UResizeWindow);
// GLEW: initialize
// ----------------
// Note: if using GLEW version 1.13 or earlier
glewExperimental = GL_TRUE;
GLenum GlewInitResult = glewInit();
if (GLEW_OK != GlewInitResult)
{
std::cerr << glewGetErrorString(GlewInitResult) << std::endl;
return false;
}
// Displays GPU OpenGL version
cout << "INFO: OpenGL Version: " << glGetString(GL_VERSION) << endl;
return true;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
void UProcessInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
void UResizeWindow(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
// Functioned called to render a frame
void URender()
{
// Enable z-depth
glEnable(GL_DEPTH_TEST);
// Clear the frame and z buffers
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Scales the object by 2
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
// 2. Rotates shape by 15 degrees in the x axis
glm::mat4 rotation = glm::rotate(45.0f, glm::vec3(2.0f, 2.0f, 1.0f));
// 3. Place object at the origin
glm::mat4 translation = glm::translate(glm::vec3(0.0f, 0.0f, 0.0f));
// Model matrix: transformations are applied right-to-left order
glm::mat4 model = translation * rotation * scale;
// Transforms the camera: move the camera back (z axis)
glm::mat4 view = glm::translate(glm::vec3(0.0f, 0.0f, -5.0f));
// Creates a orthographic projection
glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);
// Set the shader to be used
glUseProgram(gProgramId);
// Retrieves and passes transform matrices to the Shader program
GLint modelLoc = glGetUniformLocation(gProgramId, "model");
GLint viewLoc = glGetUniformLocation(gProgramId, "view");
GLint projLoc = glGetUniformLocation(gProgramId, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Activate the VBOs contained within the mesh's VAO
glBindVertexArray(gMesh.vao);
// Draws the triangles
glDrawElements(GL_TRIANGLES, gMesh.nIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
// Deactivate the Vertex Array Object
glBindVertexArray(0);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
glfwSwapBuffers(gWindow); // Flips the the back buffer with the front buffer every frame.
}
// Implements the UCreateMesh function
void UCreateMesh(GLMesh &mesh)
{
// Position and Color data
GLfloat verts[] = {
// Vertex Positions // Colors (r,g,b,a)
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Top Right Vertex 0
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // Bottom Right Vertex 1
-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom Left Vertex 2
-0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Top Left Vertex 3
0.5f, -0.5f, -1.0f, 0.5f, 0.5f, 1.0f, 1.0f, // 4 br right
0.5f, 0.5f, -1.0f, 1.0f, 1.0f, 0.5f, 1.0f, // 5 tl right
-0.5f, 0.5f, -1.0f, 0.2f, 0.2f, 0.5f, 1.0f, // 6 tl top
-0.5f, -0.5f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f // 7 bl back
};
// Index data to share position data
GLushort indices[] = {
0, 1, 3, // Triangle 1
1, 2, 3, // Triangle 2
0, 1, 4, // Triangle 3
0, 4, 5, // Triangle 4
0, 5, 6, // Triangle 5
0, 3, 6, // Triangle 6
4, 5, 6, // Triangle 7
4, 6, 7, // Triangle 8
2, 3, 6, // Triangle 9
2, 6, 7, // Triangle 10
1, 4, 7, // Triangle 11
1, 2, 7 // Triangle 12
};
const GLuint floatsPerVertex = 3;
const GLuint floatsPerColor = 4;
glGenVertexArrays(1, &mesh.vao); // we can also generate multiple VAOs or buffers at the same time
glBindVertexArray(mesh.vao);
// Create 2 buffers: first one for the vertex data; second one for the indices
glGenBuffers(2, mesh.vbos);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]); // Activates the buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW); // Sends vertex or coordinate data to the GPU
mesh.nIndices = sizeof(indices) / sizeof(indices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
// Strides between vertex coordinates is 6 (x, y, z, r, g, b, a). A tightly packed stride is 0.
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);// The number of floats before each
// Create Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
}
void UDestroyMesh(GLMesh &mesh)
{
glDeleteVertexArrays(1, &mesh.vao);
glDeleteBuffers(2, mesh.vbos);
}
// Implements the UCreateShaders function
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint &programId)
{
// Compilation and linkage error reporting
int success = 0;
char infoLog[512];
// Create a Shader program object.
programId = glCreateProgram();
// Create the vertex and fragment shader objects
GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
// Retrive the shader source
glShaderSource(vertexShaderId, 1, &vtxShaderSource, NULL);
glShaderSource(fragmentShaderId, 1, &fragShaderSource, NULL);
// Compile the vertex shader, and print compilation errors (if any)
glCompileShader(vertexShaderId); // compile the vertex shader
// check for shader compile errors
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShaderId, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
glCompileShader(fragmentShaderId); // compile the fragment shader
// check for shader compile errors
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShaderId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
// Attached compiled shaders to the shader program
glAttachShader(programId, vertexShaderId);
glAttachShader(programId, fragmentShaderId);
glLinkProgram(programId); // links the shader program
// check for linking errors
glGetProgramiv(programId, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(programId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
return false;
}
glUseProgram(programId); // Uses the shader program
return true;
}
void UDestroyShaderProgram(GLuint programId)
{
glDeleteProgram(programId);
}
The unit of the angle of glm::rotate is radians, not degrees:
glm::mat4 rotation = glm::rotate(45.0f, glm::vec3(2.0f, 2.0f, 1.0f));
glm::mat4 rotation = glm::rotate(glm::radians(45.0f), glm::vec3(2.0f, 2.0f, 1.0f));
The size of the size of the cube is 1x1x1. The cube is scaled by 2. Because of the orthographic projection
(glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);)
the bottom left of the view port is (-5, -5) and the top right is (5, 5).
Because of the orthographic projection and scale, the bottom left corner of the cube is (-1, -1) and the top right corner is (1, 1). If you want to move the cube to the top left, don't rotate the cube, but move it 4 units to the left and 4 units up:
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
glm::mat4 rotation = glm::mat4(1.0f);
glm::mat4 translation = glm::translate(glm::vec3(-4.0f, 4.0f, 0.0f));
glm::mat4 model = translation * rotation * scale;

Writing OpenGL basic camera movement

I am trying to implement a camera into my code to move around a pyramid. Specifically, I need:
WASD keys: These keys should be used to control the forward, backward, left, and right motion.
QE keys: These keys should be used to control the upward and downward movement.
Mouse cursor: This should be used to change the orientation of the camera so it can look up and down or right and left.
Mouse scroll: This should be used to adjust the speed of the movement, or the speed the camera travels around the scene.
My code for a pyramid is below. Can someone tell me what I need to add??? I am a beginner with openGL and C++. Anything will help!!
#include <iostream> // cout, cerr
#include <cstdlib> // EXIT_FAILURE
#include <GL/glew.h> // GLEW library
#include <GLFW/glfw3.h> // GLFW library
// GLM Math Header inclusions
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtc/type_ptr.hpp>
using namespace std; // Standard namespace
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version " core \n" #Source
#endif
// Unnamed namespace
namespace
{
const char* const WINDOW_TITLE = "Upside Down Pyramid!"; // title
// width and height
const int WINDOW_WIDTH = 800;
const int WINDOW_HEIGHT = 600;
// mesh data
struct GLMesh
{
GLuint vao; // vertex array object
GLuint vbos[2]; // vertex buffer objects
GLuint nIndices; // Number of indices
};
// Main GLFW window
GLFWwindow* gWindow = nullptr;
// Triangle mesh data
GLMesh gMesh;
// Shader program
GLuint gProgramId;
}
/* User-defined Function prototypes to:
* initialize the program, set the window size,
* redraw graphics on the window when resized,
* and render graphics on the screen
*/
bool UInitialize(int, char* [], GLFWwindow** window);
void UResizeWindow(GLFWwindow* window, int width, int height);
void UProcessInput(GLFWwindow* window);
void UCreateMesh(GLMesh& mesh);
void UDestroyMesh(GLMesh& mesh);
void URender();
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId);
void UDestroyShaderProgram(GLuint programId);
/* Vertex Shader Source Code*/
const GLchar* vertexShaderSource = GLSL(440,
layout(location = 0) in vec3 position; // Vertex data from Vertex Attrib Pointer 0
layout(location = 1) in vec4 color; // Color data from Vertex Attrib Pointer 1
out vec4 vertexColor;
// variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f); //coordinates
vertexColor = color;
}
);
const GLchar* fragmentShaderSource = GLSL(440,
in vec4 vertexColor;
out vec4 fragmentColor;
void main()
{
fragmentColor = vec4(vertexColor);
}
);
int main(int argc, char* argv[])
{
if (!UInitialize(argc, argv, &gWindow))
return EXIT_FAILURE;
// Create the mesh
UCreateMesh(gMesh);
// Create the shader program
if (!UCreateShaderProgram(vertexShaderSource, fragmentShaderSource, gProgramId))
return EXIT_FAILURE;
// Sets the background color
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// render loop
// -----------
while (!glfwWindowShouldClose(gWindow))
{
// input
// -----
UProcessInput(gWindow);
URender();
glfwPollEvents();
}
// Release mesh data
UDestroyMesh(gMesh);
// Release shader program
UDestroyShaderProgram(gProgramId);
exit(EXIT_SUCCESS); //program successfull
}
// Initialize
bool UInitialize(int argc, char* argv[], GLFWwindow** window)
{
// GLFW: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// GLFW: window creation
// ---------------------
* window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, NULL, NULL);
if (*window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return false;
}
glfwMakeContextCurrent(*window);
glfwSetFramebufferSizeCallback(*window, UResizeWindow);
// GLEW: initialize
glewExperimental = GL_TRUE;
GLenum GlewInitResult = glewInit();
if (GLEW_OK != GlewInitResult)
{
std::cerr << glewGetErrorString(GlewInitResult) << std::endl;
return false;
}
cout << "INFO: OpenGL Version: " << glGetString(GL_VERSION) << endl;
return true;
}
// process all input
void UProcessInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
void UResizeWindow(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
void URender()
{
// z-depth
glEnable(GL_DEPTH_TEST);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Scales the object by 2
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
// 2. Rotates shape by 360 degrees in the x axis
glm::mat4 rotation = glm::rotate(360.0f, glm::vec3(1.0, 1.0f, 1.0f));
// 3. Place object at the origin
glm::mat4 translation = glm::translate(glm::vec3(0.0f, 0.0f, 0.0f));
// Model matrix: transformations are applied right-to-left order
glm::mat4 model = translation * rotation * scale;
// Transforms the camera
glm::mat4 view = glm::translate(glm::vec3(0.0f, 0.0f, -5.0f));
// Creates a orthographic projection
glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);
// Set the shader to be used
glUseProgram(gProgramId);
// Retrieves and passes transform matrices
GLint modelLoc = glGetUniformLocation(gProgramId, "model");
GLint viewLoc = glGetUniformLocation(gProgramId, "view");
GLint projLoc = glGetUniformLocation(gProgramId, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Activate the VBOs contained within the mesh's VAO
glBindVertexArray(gMesh.vao);
// Draws the triangles to create pyramid
glDrawElements(GL_TRIANGLES, gMesh.nIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
glBindVertexArray(0);
glfwSwapBuffers(gWindow); // Flips the the back buffer with the front buffer every frame.
}
// Implements the UCreateMesh
void UCreateMesh(GLMesh& mesh)
{
// color position
GLfloat verts[] = {
// Vertex Positions // Colors
-0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, // Top
0.5f, -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom
-0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 1.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.5f, 1.0f, // Bottom
-0.5f, -0.5f, -0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Top
-0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 1.0f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.5f, 0.5f, 1.0f, 1.0f, // Bottom
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Bottom
0.5f, -0.5f, -0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
0.5f, -0.5f, 0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom
-0.5f, -0.5f, 0.5f, 1.0f, 1.0f, 0.5f, 1.0f, // Top
-0.5f, -0.5f, -0.5f, 0.2f, 0.2f, 0.5f, 1.0f, // Middle
0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f // Bottom
};
// Index data to share position data
GLushort indices[] = {
2, 1, 0, // Triangle 1
3, 1, 0, // Triangle 2
};
const GLuint floatsPerVertex = 3;
const GLuint floatsPerColor = 4;
glGenVertexArrays(1, &mesh.vao);
glBindVertexArray(mesh.vao);
// Create 2 buffers
glGenBuffers(2, mesh.vbos);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
mesh.nIndices = sizeof(indices) / sizeof(indices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);
// Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
}
void UDestroyMesh(GLMesh& mesh)
{
glDeleteVertexArrays(1, &mesh.vao);
glDeleteBuffers(2, mesh.vbos);
}
//Shader function
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId)
{
// error report
int success = 0;
char infoLog[512];
programId = glCreateProgram();
// Create the vertex and fragment shader objects
GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
// Retrieve the shader source
glShaderSource(vertexShaderId, 1, &vtxShaderSource, NULL);
glShaderSource(fragmentShaderId, 1, &fragShaderSource, NULL);
// compile and check for errors)
glCompileShader(vertexShaderId);
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShaderId, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
glCompileShader(fragmentShaderId);
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShaderId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
// Compiled shaders
glAttachShader(programId, vertexShaderId);
glAttachShader(programId, fragmentShaderId);
glLinkProgram(programId);
glGetProgramiv(programId, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(programId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
return false;
}
glUseProgram(programId);
return true;
}
void UDestroyShaderProgram(GLuint programId)
{
glDeleteProgram(programId);
}
There are multiple ways to move the camera around your scene (please note that you aren't moving around the camera but all vertices usually). One way would be to use the lookAt method. This method returns a rotation matrix, which you can use as the view matrix of your camera. This approach was discussed in great detail already in many sources:
Writing a LookAt function
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/lookat-function
https://learnopengl.com/Getting-started/Camera
Simply put you are defining your camera orientation with a camera position, a target of the camera (which the camera will look at), and an up vector. You can describe the orientation of the camera with these three vectors. So your view matrix would be calculated with:
glm::mat4 view = glm::lookAt(position, target, up) (instead of glm::mat4 view = glm::translate(glm::vec3(0.0f, 0.0f, -5.0f))). How you generate these vectors is up to you and therefore how your camera behaves. If you want to have a look at an implementation of a camera model here is one.

How to draw two or more triangles in OpenGL?

Can someone show show me how I can modify my code so I can draw more than one triangle?
I'm hoping to accomplish something like the picture shown here:
// Include standard headers
#include <stdio.h>
#include <stdlib.h>
// Include GLEW
#include <GL/glew.h>
// Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window;
// Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm;
#include <common/shader.hpp>
int main(void)
{
// Initialise GLFW
if (!glfwInit())
{
fprintf(stderr, "Failed to initialize GLFW\n");
getchar();
return -1;
}
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// Open a window and create its OpenGL context
window = glfwCreateWindow(1024, 768, "Tutorial 04 - Colored Cube", NULL, NULL);
if (window == NULL) {
fprintf(stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n");
getchar();
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
getchar();
glfwTerminate();
return -1;
}
// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
// Enable depth test
glEnable(GL_DEPTH_TEST);
// Accept fragment if it closer to the camera than the former one
glDepthFunc(GL_LESS);
GLuint VertexArrayID;
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID);
// Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders("TransformVertexShader.vertexshader", "ColorFragmentShader.fragmentshader");
// Get a handle for our "MVP" uniform
GLuint MatrixID = glGetUniformLocation(programID, "MVP");
int verticeCount = 3;
static const GLfloat g_vertex_buffer_data[] = {
-0.5f, 0.5f, 0.0f,
0.5f, 0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
};
static const GLfloat g_color_buffer_data[] = {
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
};
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);
GLuint colorbuffer;
glGenBuffers(1, &colorbuffer);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_color_buffer_data), g_color_buffer_data, GL_STATIC_DRAW);
do {
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
glUseProgram(programID);
glm::mat4 MVP = glm::mat4(1.0);
// Send our transformation to the currently bound shader,
// in the "MVP" uniform
glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute. No particular reason for 0, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 2nd attribute buffer : colors
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
glVertexAttribPointer(
1, // attribute. No particular reason for 1, but must match the layout in the shader.
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// Draw the triangle !
glDrawArrays(GL_TRIANGLES, 0, verticeCount * 3);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
// Swap buffers
glfwSwapBuffers(window);
glfwPollEvents();
} // Check if the ESC key was pressed or the window was closed
while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS &&
glfwWindowShouldClose(window) == 0);
// Cleanup VBO and shader
glDeleteBuffers(1, &vertexbuffer);
glDeleteBuffers(1, &colorbuffer);
glDeleteProgram(programID);
glDeleteVertexArrays(1, &VertexArrayID);
// Close OpenGL window and terminate GLFW
glfwTerminate();
return 0;
}
It's actually right in front of your nose.
Triangles are defined by 3 vertices.
static const GLfloat g_vertex_buffer_data[] = {
-0.5f, 0.5f, 0.0f,
0.5f, 0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
};
Here, you initialized your vertex data array with 3, 3-dimensional vertices. That's 1 triangle.
Adding more triangles, i.e. 3 sets of 3 vertices, to this array is all you need to do, along with extending the g_color_buffer_data array and changing verticeCount accordingly.
So this:
static const GLfloat g_vertex_buffer_data[] = {
-0.50f, +0.50f, +0.00f,
+0.50f, +0.50f, +0.00f,
+0.50f, -0.50f, +0.00f,
-0.50f, -0.25f, +0.00f,
-0.50f, -0.50f, +0.00f,
-0.25f, -0.50f, +0.00f,
};
static const GLfloat g_color_buffer_data[] = {
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
};
would give you 2 triangles: 1 red, 1 blue.
You could also define verticeCount as:
int verticeCount = sizeof(g_vertex_buffer_data) / (sizeof(g_vertex_buffer_data[0]) * 3);
(Thread on finding the size of a C-style array in C++)
This way you won't manually have to change it.
You can always create a new vertex buffer, but it is usually a good idea to implement vertex and fragment shaders instead. If you choose to use shaders, you can draw the buffer, transform the vertex shader, then draw the buffer again. Fragment shaders also provide a better way of specifying color dynamically. You can read more and see some examples at https://learnopengl.com/Getting-started/Shaders

I can't color my OpenGL circle properly [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 5 years ago.
Improve this question
I am supposed to draw 6 different 2D shapes (dot, line, triangle, square, star, circle) and assign them each a different color. I managed to draw all of them and color them, except for my circle. The color i gave (g_colors_circle) the circle however is drawn from the center of the circle but does not reach the edges. Here is the current output:
Can someone tell me how to fix it?
Here is my code:
SimpleTriangle.cpp:
#include <cstdio> // for C++ i/o
#include <iostream>
using namespace std; // to avoid having to use std::
#define GLEW_STATIC // include GLEW as a static library
#include <GLEW/glew.h> // include GLEW
#include <GLFW/glfw3.h> // include GLFW (which includes the OpenGL header)
#include <glm/glm.hpp> // include GLM (ideally should only use the GLM headers that are actually used)
using namespace glm; // to avoid having to use glm::
#include "shader.h"
/*-------------------- Circle Code --------------------*/
//Constants for Circle
#define PI 3.14159265
#define MAX_SLICES 32
#define MIN_SLICES 8
#define MAX_VERTICES (MAX_SLICES+2)*3 // a triangle fan should have a minimum of 3 vertices
#define CIRCLE_RADIUS 0.5
GLuint g_VBO_circle[2]; // identifiers
GLuint g_VAO_circle = 0;
//Vertices for the circle
GLfloat g_vertices_circle[MAX_VERTICES] = {
0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f,
};
GLfloat g_colors_circle[] = {
1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
GLuint g_slices = MIN_SLICES; // number of circle slices
//raz: i think this generates the vertice values for array of the circle
void generate_circle()
{
float angle = PI * 2 / static_cast<float>(g_slices); // used to generate x and y coordinates
float scale_factor = static_cast<float>(768) / 1024; // scale to make it a circle instead of an elipse
int index = 0; // vertex index
g_vertices_circle[3] = CIRCLE_RADIUS * scale_factor; // set x coordinate of vertex 1
// generate vertex coordinates for triangle fan
for (int i = 2; i < g_slices + 2; i++)
{
// multiply by 3 because a vertex has x, y, z coordinates
index = i * 3;
g_vertices_circle[index] = CIRCLE_RADIUS * cos(angle) * scale_factor;
g_vertices_circle[index + 1] = CIRCLE_RADIUS * sin(angle);
g_vertices_circle[index + 2] = 0.0f;
// update to next angle
angle += PI * 2 / static_cast<float>(g_slices);
}
}
static void init_circle()
{
// generate vertices of triangle fan
generate_circle();
// create VBO (vertice positions) and buffer the data
glGenBuffers(2, g_VBO_circle);
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * (g_slices + 2), g_vertices_circle, GL_DYNAMIC_DRAW);
// create VBO (vertice color) and buffer the data
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * (g_slices + 2), g_colors_circle, GL_STATIC_DRAW);
// create VAO and specify VBO data
glGenVertexArrays(1, &g_VAO_circle);
glBindVertexArray(g_VAO_circle);
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[0]);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); // specify the form of the data
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[1]);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); // specify the form of the data
glEnableVertexAttribArray(0); // enable vertex attributes
glEnableVertexAttribArray(1);
}
/*---------------------------------------------------------*/
// global variables
GLuint g_VBO[2]; // vertex buffer object identifier
GLuint g_VAO = 0; // vertex array object identifier
GLuint g_shaderProgramID = 0; // shader program identifier
static void init()
{
glClearColor(0.0, 0.0, 0.0, 1.0); // set clear background colour
// create and compile our GLSL program from the shader files
g_shaderProgramID = loadShaders("SimpleVS.vert", "SimpleFS.frag");
// enable point size
glEnable(GL_PROGRAM_POINT_SIZE);
// set line width
glLineWidth(5.0);
GLfloat verticesPosition[] = {
//Dot
-0.7f, 0.7f, 0.0f,
//Line
-0.5f, 0.7f, 0.0f,
-0.2f, 0.7f, 0.0f,
//Triangle
0.2f, 0.75f, 0.0f,
0.0f, 0.4f, 0.0f,
0.4f, 0.4f, 0.0f,
//Star
0.0f, 0.2f, 0.0f,
0.1f, 0.1f, 0.0f,
0.2f, 0.05f, 0.0f,
0.1f, 0.0f, 0.0f,
0.2f, -0.1f, 0.0f,
0.0f, 0.0f, 0.0f,
-0.2f, -0.1f, 0.0f,
-0.1f, 0.0f, 0.0f,
-0.2f, 0.05f, 0.0f,
-0.1f, 0.1f, 0.0f,
//Rectangle
-0.8f, 0.4f, 0.0f,
-0.8f, 0.0f, 0.0f,
-0.3f, 0.4f, 0.0f,
-0.3f, 0.0f, 0.0f
};
GLfloat verticesColor[] = {
//Dot
1.0f, 1.0f, 1.0f,
//Line
0.5f, 0.0f, 0.0f,
0.5f, 0.0f, 0.0f,
//Triangle
0.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f,
//Star
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
//Rectangle
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
};
// create VBO and buffer the data
glGenBuffers(2, g_VBO);
glBindBuffer(GL_ARRAY_BUFFER, g_VBO[0]); // bind the VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(verticesPosition), verticesPosition, GL_STATIC_DRAW); // copy data to buffer
glBindBuffer(GL_ARRAY_BUFFER, g_VBO[1]); // bind the VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(verticesColor), verticesColor, GL_STATIC_DRAW); // copy data to buffer
// create VAO and specify VBO data
glGenVertexArrays(1, &g_VAO);
glBindVertexArray(g_VAO);
glBindBuffer(GL_ARRAY_BUFFER, g_VBO[0]); // bind the VBO
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); // specify the form of the data
glBindBuffer(GL_ARRAY_BUFFER, g_VBO[1]); // bind the VBO
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); // specify the form of the data
glEnableVertexAttribArray(0); // enable vertex attributes
glEnableVertexAttribArray(1);
}
// function used to render the scene
static void render_scene()
{
glClear(GL_COLOR_BUFFER_BIT); // clear colour buffer
glUseProgram(g_shaderProgramID); // use the shaders associated with the shader program
glBindVertexArray(g_VAO); // make VAO active
glDrawArrays(GL_POINTS, 0, 1); //Draw dot
glDrawArrays(GL_LINES, 1, 2); //Draw line
glDrawArrays(GL_TRIANGLES, 3, 3); //Draw triangle
glDrawArrays(GL_LINE_LOOP, 6, 10); //Draw star
glDrawArrays(GL_TRIANGLE_STRIP, 16, 4); //Draw rectangle
glFlush(); // flush the pipeline
//To draw circle
glBindVertexArray(g_VAO_circle); // make VAO for circle active
glDrawArrays(GL_TRIANGLE_FAN, 0, g_slices + 2); // display the vertices based on the primitive type
glFlush(); // flush the pipeline
}
// key press or release callback function
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
// quit if the ESCAPE key was press
if(key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
{
// set flag to close the window
glfwSetWindowShouldClose(window, GL_TRUE);
return;
}
else if (key == GLFW_KEY_W && action == GLFW_PRESS)
{
// renderer using wireframe
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
return;
}
else if (key == GLFW_KEY_S && action == GLFW_PRESS)
{
// renderer using wireframe
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
return;
}
else if (key == GLFW_KEY_UP && action == GLFW_PRESS)
{
if (g_slices < MAX_SLICES)
{
g_slices++; // increment number of slices
// generate vertices of triangle fan
generate_circle();
// bind and copy data to GPU
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * (g_slices + 2), g_vertices_circle, GL_DYNAMIC_DRAW);
}
return;
}
else if (key == GLFW_KEY_DOWN && action == GLFW_PRESS)
{
if (g_slices > MIN_SLICES)
{
g_slices--; // decrement number of slices
// generate vertices of triangle fan
generate_circle();
// bind and copy data to GPU
glBindBuffer(GL_ARRAY_BUFFER, g_VBO_circle[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * (g_slices + 2), g_vertices_circle, GL_DYNAMIC_DRAW);
return;
}
}
}
// error callback function
static void error_callback(int error, const char* description)
{
cerr << description << endl; // output error description
}
int main(void)
{
GLFWwindow* window = NULL; // pointer to a GLFW window handle
glfwSetErrorCallback(error_callback); // set error callback function
// initialise GLFW
if(!glfwInit())
{
// if failed to initialise GLFW
exit(EXIT_FAILURE);
}
// minimum OpenGL version 3.3
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
// create a window and its OpenGL context
window = glfwCreateWindow(1024, 768, "Assignment 1", NULL, NULL);
// if failed to create window
if(window == NULL)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwMakeContextCurrent(window); // set window context as the current context
glfwSwapInterval(1); // swap buffer interval
// initialise GLEW
if(glewInit() != GLEW_OK)
{
// if failed to initialise GLEW
cerr << "GLEW initialisation failed" << endl;
exit(EXIT_FAILURE);
}
// set key callback function
glfwSetKeyCallback(window, key_callback);
// initialise rendering states
init();
init_circle();
// the rendering loop
while(!glfwWindowShouldClose(window))
{
render_scene(); // render the scene
glfwSwapBuffers(window); // swap buffers
glfwPollEvents(); // poll for events
}
// clean up
glDeleteProgram(g_shaderProgramID);
glDeleteBuffers(1, g_VBO);
glDeleteVertexArrays(1, &g_VAO);
glDeleteBuffers(1, g_VBO_circle);
glDeleteVertexArrays(1, &g_VAO_circle);
// close the window and terminate GLFW
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);
}
SimpleVS.vert:
#version 330 core
// input data (different for all executions of this shader)
layout(location = 0) in vec3 aPosition;
layout(location = 1) in vec3 aColor;
// output data (will be interpolated for each fragment)
out vec3 vColor; //raz: this output is passed as input to the fragment shader
void main()
{
// set point size
gl_PointSize = 10.0;
// set vertex position
gl_Position = vec4(aPosition, 1.0);
// the color of each vertex will be interpolated
// to produce the color of each fragment
vColor = aColor;
}
SimpleFS.frag:
#version 330 core
// interpolated values from the vertex shaders
in vec3 vColor;
// output data
out vec3 fColor;
void main()
{
// set output color
fColor = vColor;
}
For each vertex in your circle geometry, you must set a color attribute. The 2 array buffers g_vertices_circle and g_colors_circle, which you are using for your attribute buffers, must have the same number of elements.
If the circle has to be unicolor, you must always use the same color for each element in the color attribute buffer.
In between the primitives the attributes are interpolate according to its barycentric coordinates. You did set the color for the center of the circle and the first outer point, but not the colors for the other outer points and left them undefined (probably black), this causes the effect you can see in your example.
Create a buffer for the color attributes in the same length as your vertex buffer and fill it up when you generate your vertices.
Your revised code should look something like this:
GLfloat g_colors_circle[MAX_VERTICES] = {
1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
for (int i = 2; i < g_slices + 2; i++)
{
// multiply by 3 because a vertex has x, y, z coordinates
index = i * 3;
g_vertices_circle[index] = CIRCLE_RADIUS * cos(angle) * scale_factor;
g_vertices_circle[index + 1] = CIRCLE_RADIUS * sin(angle);
g_vertices_circle[index + 2] = 0.0f;
g_colors_circle[index] = 1.0f;
g_colors_circle[index + 1] = 1.0f;
g_colors_circle[index + 2] = 0.0f;
// update to next angle
angle += PI * 2 / static_cast<float>(g_slices);
}
Note, if you only want to have single-color geometry, you can omit the color attributes and set the color through a single uniform variable.