So, I'm pretty inexperienced with calculus, and in C++, so please bear with me if I'm misunderstanding this completely. I'm supposed to be testing this Taylor series program for convergence, which I'm told is when the output value does no change. However, the way mine is written out, it seems impossible as I'm iterating through for loops while implementing it. After around 12 it's no longer accurate to the library sin(); but I'm not sure if that's the same thing because it doesn't seem to be. Advice on what I'm looking for would be grand, I really appreciate it. Apologies again if this question is stupid!
Here is my code:
#include <iostream>
#include<cmath>
using namespace std;
double getFactorial (double num)
{
long double factorial = 1.0;
for (int i = 1; i <= num; ++i)
{
factorial *= i; //iterates from 1 to num value, multiplying by each number
}
return factorial;
}
double taylorSin(double num){
double value=0;
for(int i=0;i<20;i++){
value+=pow(-1.0,i)*pow(num,2*i+1)/getFactorial(2*i+1);
}
return value;
}
int main ()
{ cout<<getFactorial(6);
for(double i=1;i<=12;i++){
//loops through given amount of values to test function
double series=i; //assign double type variable with value of i
//cout<<"Taylor function result is "<<taylorSin(series)<<endl;
//cout<<"Library sin result is "<<sin(series)<<endl;
}
return 0;
}
Based on your answer, I wrote a taylor summing program:
#include <iostream>
#include <cmath>
#include <limits>
#include <concepts>
template<typename F>
concept my_lambda = requires(F f, unsigned long long int x) {
{ f(x) } -> std::same_as<long double>;
};
template<my_lambda ftn>
long double Taylor_sum(ftn term) noexcept {
using namespace std;
long double value = 0, prev = 0;
unsigned long long int i = 0;
try {
do {
if (i == numeric_limits<unsigned long long>::max() || !isfinite(prev)) return numeric_limits<long double>::quiet_NaN();
prev = value;
value += term(i++);
} while (prev != value);
return value;
}
catch (...) { return numeric_limits<long double>::quiet_NaN(); }
};
int main() {
using namespace std; long double x; cin >> x ;
long double series_sum = Taylor_sum([x](unsigned long long int i) -> long double { return /*Your implementation here*/; });
if (!isfinite(series_sum)) cout << "Series does not converge!" << endl;
else {
cout << "Series converged, its value is : " << series_sum << endl;
cout << "Compared to sin : " << sinl(x) << endl;
}
return 0;
}
Although comparing term before & after summing is not much rigorous way to check convergence, but this approach is usual approach in practice.
Note: When I used this function for large x, it differed from the std::sin() and diverged when x is large enough. This is because the floating-point arithmetic has limited precision (std::sin() is more accurate because it takes the periodic nature of the original sine function)
Related
Hi I am trying to calculate the results of the Taylor series expansion for sine to the specified number of terms.
I am running into some problems
Your task is to implement makeSineToOrder(k)
This is templated by the type of values used in the calculation.
It must yield a function that takes a value of the specified type and
returns the sine of that value (in the specified type again)
double factorial(double long order){
#include <iostream>
#include <iomanip>
#include <cmath>
double fact = 1;
for(int i = 1; i <= num; i++){
fact *= i;
}
return fact;
}
void makeSineToOrder(long double order,long double precision = 15){
double value = 0;
for(int n = 0; n < precision; n++){
value += pow(-1.0, n) * pow(num, 2*n+1) / factorial(2*n + 1);
}
return value;
int main()
{
using namespace std;
long double pi = 3.14159265358979323846264338327950288419716939937510L;
for(int order = 1;order < 20; order++) {
auto sine = makeSineToOrder<long double>(order);
cout << "order(" << order << ") -> sine(pi) = " << setprecision(15) << sine(pi) << endl;
}
return 0;
}
I tried debugging
here is a version that at least compiles and gives some output
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
double factorial(double long num) {
double fact = 1;
for (int i = 1; i <= num; i++) {
fact *= i;
}
return fact;
}
double makeSineToOrder(double num, double precision = 15) {
double value = 0;
for (int n = 0; n < precision; n++) {
value += pow(-1.0, n) * pow(num, 2 * n + 1) / factorial(2 * n + 1);
}
return value;
}
int main(){
long double pi = 3.14159265358979323846264338327950288419716939937510L;
for (int order = 1; order < 20; order++) {
auto sine = makeSineToOrder(order);
cout << "order(" << order << ") -> sine(pi) = " << setprecision(15) << sine << endl;
}
return 0;
}
not sure what that odd sine(pi) was supposed to be doing
Apart the obvious syntax errors (the includes should be before your factorial header) in your code:
I see no templates in your code which your assignment clearly states to use
so I would expect template like:
<class T> T mysin(T x,int n=15){ ... }
using pow for generic datatype is not safe
because inbuild pow will use float or double instead of your generic type so you might expect rounding/casting problems or even unresolved function in case of incompatible type.
To remedy that you can rewrite the code to not use pow as its just consequent multiplication in loop so why computing pow again and again?
using factorial function is waste
you can compute it similar to pow in the same loop no need to compute the already computed multiplications again and again. Also not using template for your factorial makes the same problems as using pow
so putting all together using this formula:
along with templates and exchanging pow,factorial functions with consequent iteration I got this:
template <class T> T mysin(T x,int n=15)
{
int i;
T y=0; // result
T x2=x*x; // x^2
T xi=x; // x^i
T ii=1; // i!
if (n>0) for(i=1;;)
{
y+=xi/ii; xi*=x2; i++; ii*=i; i++; ii*=i; n--; if (!n) break;
y-=xi/ii; xi*=x2; i++; ii*=i; i++; ii*=i; n--; if (!n) break;
}
return y;
}
so factorial ii is multiplied by i+1 and i+2 every iteration and power xi is multiplied by x^2 every iteration ... the sign change is hard coded so for loop does 2 iterations per one run (that is the reason for the break;)
As you can see this does not use anything funny so you do not need any includes for this not even math ...
You might want to add x=fmod(x,6.283185307179586476925286766559) at the start of mysin in order to use more than just first period however in that case you have to ensure fmod implementation uses T or compatible type to it ... Also the 2*pi constant should be in target precision or higher
beware too big n will overflow both int and generic type T (so you might want to limit n based on used type somehow or just use it wisely).
Also note on 32bit floats you can not get better than 5 decimal places no matter what n is with this kind of computation.
Btw. there are faster and more accurate methods of computing goniometrics like Chebyshev and CORDIC
I want to round a float number.
in python, i have:
round(x, 2) # 3.1415 -> 3.14
but in c++, i find round function can only round to integer.
Is there any similar method in c++?
AFAIK the standard library provides no such function, but it shouldn't be too hard to roll out your own:
#include <iostream>
#include <cmath>
// fast pow for int, credit to https://stackoverflow.com/a/101613/13188071
int ipow(int base, int exp)
{
int result = 1;
while (true)
{
if (exp & 1)
result *= base;
exp >>= 1;
if (exp == 0)
break;
base *= base;
}
return result;
}
double round_prec(double n, int prec)
{
return std::round(n * ipow(10, prec)) / ipow(10, prec);
}
int main()
{
std::cout << round_prec(3.1415, 2) << '\n';
}
Output:
3.14
This is, however, a bit of a roundabout way of doing it, there's probably a better way that I don't know of.
You can use the built-in round functions and some scientific notation.
#include <cmath>
#include <iostream>
using namespace std;
int main()
{
float x = 3.14159;
int val = 2;
x = round(x * pow(10, val)) / pow(10, val);
cout << x << endl;
return 0;
}
I am writing a program to calculate the factorial of 100. The code is as below. Notwithstanding, the output is 0 as the answer is too big. Is there any answer to display the exact answer? This is because even unsigned long long is not even able to display the factorial of 100. Thank you.
#include <iostream>
using namespace std;
int main()
{
int n,i,fact=1;
cout << "enter the number "<<endl;
cin>>n;
for(i=1;i<=n;i++)
{
fact=fact*i;
}
cout<<"the factorial is "<<fact<<endl;
}
This is a rather simple task. We can do it like we would do it on a piece of paper. We use a std::vector of digits to hold the number. Because the result will be already too big for an unsigned long long for 22!.
The answer will be exact.
With such an approach the calculation is simple. I do not even know what to explain further.
Please see the code:
#include <iostream>
#include <vector>
int main()
{
std::cout << "Calculate n! Enter n (max 10000): ";
if (unsigned int input{}; (std::cin >> input) && (input <= 10000)) {
// Here we store the resulting number as single digits
std::vector<unsigned int> result(3000, 0); // Magic number. Is big enough for 100000!
result.back() = 1; // Start calculation with 1 (from right to left)
// Multiply up to the given input value
for (unsigned int count = 2; count <= input; count++)
{
unsigned int sum{}, remainder{};
unsigned int i = result.size() - 1; // Calculate from right to left
while (i > 0)
{
// Simple multiplication like on a piece of paper
sum = result[i] * count + remainder;
result[i--] = sum % 10;
remainder = sum / 10;
}
}
// Show output. Supporess leading zeroes
bool showZeros{ false };
for (const unsigned int i : result) {
if ((i != 0) || showZeros) {
std::cout << i;
showZeros = true;
}
}
}
else std::cerr << "\nError: Wrong input.";
}
Developed and tested with Microsoft Visual Studio Community 2019, Version 16.8.2.
Additionally compiled and tested with clang11.0 and gcc10.2
Language: C++17
You can use C++ Boost Library to to manipulate such large numbers.
Here is the code:
#include <bits/stdc++.h>
#include <boost/multiprecision/cpp_int.hpp>
using namespace std;
using namespace boost::multiprecision;
cpp_int fact(int);
int main(){
cpp_int a=1;
int n;
cin>>n;
cout<<fact(n)<<endl;
}
cpp_int fact(int x){
if(x==1)
return 1;
cpp_int temp=1;
temp= x*fact(x-1);
return temp;
}
So..
Here is the code:
#include <iostream>
#include <limits>
#include <math.h>
using namespace std;
int main()
{
unsigned long long i,y,n,x=45;
unsigned long long factorial = 1;
for(n = 0; n <= 5; n++)
{
y = (pow(-1,n)*pow(x,2*n)) / factorial;
cout << "COS IS " << y << endl;
}
for(int i = 1; i <=n; i++)
{
factorial *= 2*i;
}
}
I get an overflow but I really don't know why. I use unsigned long long just to make sure that I on't get but.. I still get it. Even limited to small numbers. I tried to implement this:
https://en.wikibooks.org/wiki/Trigonometry/Power_Series_for_Cosine_and_Sine
But I really can't do it because of the overflow. Do you have any ideea on what can I do ? I am newbie in programming so, take it easy on me :D
There are many issues.
you use integer types when you should use floating point types
you use unsigned types for signed calculations
you don't use radians but degrees (45° ≈ 0.78539 radians)
you don't calculate the factorial in the loop, it is always 1, you only calculate it at the end of the loop but then it's too late, and your calculation of the factorial is wrong anyway.
the algorithm is wrong, it just doesn't do what Maclaurin's therorem says, you need to sum up the terms, but you just print the terms.
You probably want this:
#include <iostream>
#include <cmath>
using namespace std;
long factorial(int n)
{
long result = 1;
for (int i = 1; i <= n; i++)
result *= i;
return result;
}
int main()
{
double x = 0.785398163397448309616; //PI/4 expectd result COS(PI/4) = 0.7071067
double mycosinus = 0;
for (int n = 0; n <= 5; n++)
{
mycosinus += (pow(-1, n) * pow(x, 2 * n)) / factorial(2*n);
cout << "COS IS " << mycosinus << endl;
}
}
This is your wrong algorithm for calculating the factorial of 5:
int main()
{
int n = 5;
int factorial = 1;
for (int i = 1; i <= n; i++)
{
factorial *= 2 * i;
}
cout << "factorial 5 = " << factorial << endl;
}
The calculated value is 3840 instead of 120. I let you find out what's wrong yourself.
For performing this sort of maths you need to use a floating point like float or double not integral types like long, int or long long, given that sin and cos can both return negative numbers you shouldn't be using unsigned either.
Can you give me advice about precision of computing Taylor series for an exponent? We have a degree of exponent and a figure of precision calculating as imput data. We should recieve a calculating number with a given precision as output data. I wrote a program, but when I calculate an answer and compare it with embedded function's answer, it has differents. Can you advice me, how I can destroy a difference between answeres? formula of exponent's calculating
#include "stdafx.h"
#include "iostream"
#include <math.h>
#include <Windows.h>
#include <stdlib.h>
using namespace std;
int Factorial(int n);
double Taylor(double x, int q);
int main()
{
double res = 0;
int q = 0;
double number = 0;
cout << "Enter positive number" << "\n";
cin >> number;
cout << "Enter rounding error (precision)" << "\n";
cin >> q;
cout << "\n" << "\n";
res = Taylor(number, q);
cout << "Answer by Taylor : " << res;
cout << "Answer by embedded function: " << exp(number);
Sleep(25000);
return 0;
}
int Factorial(int n) {
int res = 1;
int i = 2;
if (n == 1 || n == 0)
return 1;
else
{
while (i <= n)
{
res *= i;
i++;
}
return res;
}
}
double Taylor(double x, int q) {
double res = 1;
double res1 = 0;
int i =1;
while (i)
{
res += (pow(x, i) / Factorial(i));
if (int(res*pow(10, q)) < (res*pow(10, q)))
{//rounding res below
if ( ( int (res * pow(10,q+1)) - int(res*pow(10, q))) <5 )
res1 = (int(res*pow(10, q))) * pow(10, (-q));
else
res1 = (int(res*pow(10, q))) * pow(10, (-q)) + pow(10,-q);
return res1;
}
i++;
}
}
There are two problems in your code. First, the factorial is very prone to overflow. Actually I dont know when overflow occurs for int factorials, but I remember that eg on usual pocket calculators x! overflows already for x==70. You probably dont need that high factorials, but still it is better to avoid that problem right from the start. If you look at the correction that needs to be added in each step: x^i / i! (maths notation) then you notice that this value is actually much smaller than x^i or i! respectively. Also you can calculate the value easily from the previous one by simply multiplying it by x/i.
Second, I dont understand your calculations for the precision. Maybe it is correct, but to be honest for me it looks too complicated to even try to understand it ;).
Here is how you can get the correct value:
#include <iostream>
#include <cmath>
struct taylor_result {
int iterations;
double value;
taylor_result() : iterations(0),value(0) {}
};
taylor_result taylor(double x,double eps = 1e-8){
taylor_result res;
double accu = 1; // calculate only the correction
// but not its individual terms
while(accu > eps){
res.value += accu;
res.iterations++;
accu *= (x / (res.iterations));
}
return res;
}
int main() {
std::cout << taylor(3.0).value << "\n";
std::cout << exp(3.0) << "\n";
}
Note that I used a struct to return the result, as you should pay attention to the number of iterations needed.
PS: see here for a modified code that lets you use a already calculated result to continue the series for better precision. Imho a nice solution should also provide a way to set a limit for the number of iterations, but this I leave for you to implement ;)